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Abstract
This paper describes a mechanism by which a traversally generic flow v on a smooth
connected (n + 1)-dimensional manifold X with boundary produces a compact n-
dimensional CW -complex T (v), which is homotopy equivalent to X and such that
X embeds in T (v) × R. The CW -complex T (v) captures some residual information
about the smooth structure on X (such as the stable tangent bundle of X ). Moreover,
T (v) is obtained from a simplicial origami map O : Dn → T (v), whose source
space is a ball Dn ⊂ ∂X . The fibers of O have the cardinality (n + 1) at most. The
knowledge of the map O , together with the restriction to Dn of a Lyapunov function
f : X → R for v, make it possible to reconstruct the topological type of the pair
(X ,F(v)), were F(v) is the 1-foliation, generated by v. This fact motivates the use
of the word “holography” in the title. In a qualitative formulation of the holography
principle, for a massive class of ODE’s on a given compact manifold X , the solutions
of the appropriately staged boundary value problems are topologically rigid.

Keywords Manifolds with boundary · Traversing flows · Trajectory spaces ·
Boundary value problems · Holography

1 Introduction

The results of this paper are relatively direct implications of our previous study in [9,10]
of boundary generic and traversally generic vector flows on manifolds with boundary.
The present results support one general holography principle which animates our
recent research; itmay be vaguely phrased as follows: for an open subspace in the space
of all ODE’s on a given compact connected smooth manifold X with boundary, the
solutions of the appropriately staged boundary value problems are topologically rigid
([12,13]). Crudely, the open subspace consists of vector flows that admit a Lyapunov
function. We call such flows traversing (see Definition 2.1 below).
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Fig. 1 An origami map O : D2 → K of the 2-disk onto a collapsable 2-complex K . Note the pairs of arcs
in D2, marked by the labels a, b, c; each pair is identified by O into a single arc, residing in K . The map
O is a 3-to-1 at most, and his generic fiber is a singleton

This paper contains two types of claims about the traversing vector flowson compact
connected smooth (n + 1)-dimensional manifolds X with boundary.

The Origami Theorem 3.1 belongs to the first type. It employs a traversally generic
(see Definition 2.4) vector field v to produce a homotopy n-dimensional model T (v)

of X , a model which retains even some surrogate smooth structure of X . That model
T (v) is the space of v-trajectories. So we get an obvious map � : X → T (v) which,
upon a close examination, turns out to be a homotopy equivalence. Its fibers are closed
intervals or singletons. Similar n-dimensional “shadows” of (n+1)-dimensional man-
ifolds, with fibers being graphs1 of a particular type, have been studied in [7,15]. In
Theorem 3.1, we prove that, for an open set of traversing vector fields, the space of
trajectories T (v) may be obtained as the image of a n-ball Dn under a continuous
surjection O : Dn → T (v) with finite fibers of cardinality n + 1 at most. The generic
O-fiber has the cardinality 1. So, speaking informally, we obtain the trajectory space
T (v) by “folding” the ball Dn , while identifying some points on its boundary ∂Dn

with other points in Dn . Thus the word “origami” in the title (see Fig. 1 for an example
of such an origami map O for n = 2). Remarkably, not only the homotopy type of X ,
but even its stable characteristic classes (like the Pontryagin classes) are encoded in
the origami map O . However, deciphering this information seems to be challenging.

TheOrigami Theorem 3.1 has another intriguing aspect. It implies that any compact
connected (n + 1)-dimensional smooth manifold X with boundary admits an embed-
ding α : X ↪→ T × R, where T is a compact n-dimensional CW -complex, which
is homotopy equivalent to X , and R denotes the number line (see Fig. 2). Moreover,
the typically singular space T is the image of the ball Dn under a continuous map O ,

1 i.e., compact 1-dimensional CW -complexes.
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Fig. 2 The embedding α( f , v)

of X into the product T (v) × R

(v)

(v)   R X
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whose generic fiber is a singleton. Thus the singularities of the X -shadow T , forced
by the topology of X , admit a simple resolution Dn .

Given a traversing vector field v on a compact connected smooth manifold X with
boundary, we denote by F(v) the oriented 1-dimensional foliation, generated by v.
Its leaves are the un-parametrized v-trajectories.

Theorem 4.1 validates the holographic principle, crudely stated above. We are
interested in thev-generated residual data on the boundary ∂X thatwillmake it possible
to reconstruct (X ,F(v)), up to (1) a homeomorphism, or up to (2) a diffeomorphism of
X . In Theorem 4.1, we present a simple solution of the first problem for any traversing
vector field v on X . The second problem is much more subtle; it was partially solved
in [12] for many boundary generic (see Definition 2.2) and traversing vector fields.
However, the solution of (2) there is quite involved. So it seems appropriate to present
here a simple argument for solving (1).

In Corollary 4.3, we combine the results from the Holography Theorem 4.1 with
the Origami Theorem 3.1 to conclude that the origami map O : Dn → T (v), together
with the restriction f ∂+ : Dn → R

2 of the Lyapunov function f : X → R for v, allows
for a reconstruction of the topological type of the pair (X ,F(v)) — another instance
of holography at work.

2 Trivia About Traversing Flows onManifolds with Boundary

For the reader convenience, we start with presenting few basic definitions and facts
related to the boundary generic, traversing, and traversally generic vector fields on
manifolds with boundary.

Definition 2.1 Let X be a compact connected smooth (n + 1)-dimensional manifold
with boundary. A vector field v on X is called traversing if each v-trajectory is ether
a closed interval with its both ends residing in ∂X , or a singleton, also residing in ∂X .

We denote by Vtrav(X) the space of all traversing fields on X . ��
The proof of the following key lemma can be found in [9], Lemma 4.1.

Lemma 2.1 A vector field v on X is traversing if and only if it admits a smooth
Lyapunov function f : X → R, such that d f (v) > 0 in X. ��
2 In fact, we may assume that Dn ⊂ ∂X .
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In contrast with the vector flows that have fixed points, for a generic traversing
vector flow v on a compact connected manifold X , the space of its trajectories T (v) is
not pathological: in fact, it is a compactCW -complex of dimension dim(X)−1. Such
trajectory space T (v) is homology equivalent to X (Theorem 5.1, [11]). Moreover,
it also shares with X all stable characteristic classes of a surrogate “tangent bundle”
τ(T (v)).

We consider an important subclass of traversing vector fields which we call traver-
sally generic (see Definition 2.4). The traversally generic vector fields form an open
anddense subset of the space of all traversing vector fields on a given X ([10]). Crudely,
any trajectory of a traversally generic vector field admits a special system of coordi-
nates (u, x0, . . . , xm), with u being the flow-aligned coordinate and m < dim(X), so
that the boundary ∂X is given by a polynomial in u equation of degree ≤ 2 · dim(X)

(see formula (2.4) below). In order to introduce the notion of a traversally generic vec-
tor field accurately, we need to describe below some relevant combinatorial structures.
This description will take some space.

For a traversally generic vector field v, the trajectory space T (v) is naturally strat-
ified by closed subspaces, labeled by the elements ω of an universal poset �•′〈n],
which depends only on dim(X) = n + 1. The elements ω ∈ �•′〈n] are represented

by sequences of natural numbers (ω1, . . . , ω	) such that
∑	

i=1(ωi − 1) ≤ n and
∑	

i=1 ωi ≤ 2n+ 2 (see [11], Sect. 2, for the definition of the partial order in �•′〈n] and
its properties).

Such sequences ω correspond to combinatorial patterns that describe the way in
which v-trajectories γ ⊂ X intersect the boundary ∂X . For a boundary generic vector
field v (see Definition 2.2), each intersection point a ∈ γ ∩∂X acquires a well-defined
multiplicity m(a) ≤ n+ 1, a natural number that reflects the order of tangency of γ to
∂X at the point a (see Definition 2.3 for the expanded definition ofm(a)). So the finite
v-ordered set γ ∩ ∂1X , together with the multiplicities of its points, can be viewed
as a divisor Dγ on the trajectory γ . Then ω, associated with γ , is just the ordered
sequence of multiplicities {m(a)}a∈γ∩∂X .

The support of the divisor Dγ is: (1) either a singleton a, in which case m(a) ≡ 0
mod 2, or (2) the minimum and maximum points of sup Dγ have odd multiplicities,
and the rest of the points have even multiplicities.

For a boundary generic traversing vector field v and its trajectory γ , let

m(γ ) =def

∑

a∈γ ∩ ∂1X

m(a) and m′(γ ) =def

∑

a∈γ ∩ ∂1X

(m(a) − 1). (2.1)

Similarly, for ω =def (ω1, ω2, . . . , ωi , . . . ) we introduce the norm and the reduced
norm of ω by the formulas:

|ω| =def

∑

i

ωi and |ω|′ =def

∑

i

(ωi − 1). (2.2)
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Throughout this text, we assume that X is embedded in a larger smooth manifold
X̂ , and the vector field v is extended to a non-vanishing vector field v̂ in X̂ . We treat
the pair (X̂ , v̂) as a germ, containing (X , v).

Let ∂ j X =def ∂ j X(v) denote the locus of points a ∈ ∂1X such that the multiplicity
of the v-trajectory γa through a at a is greater than or equal to j . (By definition,
∂1X(v) = ∂X .) This locus ∂ j X has a description in terms of an auxiliary function
z : X̂ → R that satisfies the following three properties:

• 0 is a regular value of z,

• z−1(0) = ∂1X , and

• z−1((−∞, 0]) = X . (2.3)

In terms of z, the locus ∂ j X =def ∂ j X(v) is defined by the equations:

{z = 0, Lvz = 0, . . . , L( j−1)
v z = 0},

whereL(k)
v stands for the k-th iteration of the Lie derivative operatorLv in the direction

of v (see [10]).
The pure stratum ∂ j X◦ ⊂ ∂ j X is defined by the additional constraint L( j)

v z �= 0.

The locus ∂ j X is the union of two loci: (1) ∂+
j X , defined by the constraint L

( j)
v z ≥ 0,

and (2) ∂−
j X , defined by the constraint L

( j)
v z ≤ 0. The two loci, ∂+

j X and ∂−
j X , share

a common boundary ∂ j+1X .

Definition 2.2 We say that a vector field v on a smooth (n + 1)-dimensional manifold
X with boundary is boundary generic if, for for each j ∈ [1, n + 1], the differential
j-form dz ∧ Lv(dz) ∧ · · · ∧ L( j−1)

v (dz) does not vanish along the locus ∂ j X(v).
We denote by B†(X) the space of boundary generic vector fields on X . ��
This definition implies that, for boundary generic vector fields v, all the loci

{∂ j X(v)} are closed smooth manifolds, and all the loci {∂±
j X(v)} are compact smooth

manifolds. This property of the locimay servewell as aworking definition of boundary
generic vector fields.

The boundary generic vector fields form an open and dense subset B†(X) in the
space of all vector fields on X that do not vanish on the boundary ∂X [9].

Definition 2.3 For a boundary generic vector field v on X , themultiplicity m(a), where
a ∈ ∂X , is the index j such that a ∈ ∂ j X◦(v). ��

As we have mentioned, the characteristic property of traversally generic vector
fields is that their trajectories admit special flow-adjusted coordinate systems, in which
the boundary is given by quite special polynomial equations (see formula (2.4)), and
the trajectories are parallel to one of the preferred coordinate axis u (see [10], Lemma
3.4). According to this lemma, for a traversally generic v on a (n+1)-dimensional X ,
the vicinity U ⊂ X̂ of each v-trajectory γ of the combinatorial type ω has a special
coordinate system
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(u, �x, �y) : U → R × R
|ω|′ × R

n−|ω|′ .

By Lemma 3.4 and formula (3.17) from [10], in these coordinates, the boundary ∂1X
is given by the polynomial equation:

℘(u, �x) =def

∏

i

[

(u − i)ωi +
ωi−2∑

	=0

xi,	(u − i)	
]

= 0 (2.4)

of an even degree |ω| in u. Here i ∈ Z runs over the distinct roots of℘(u,∼), and �x :=
{xi,	}i,	. At the same time, X is given by the polynomial inequality {℘(u, �x) ≤ 0}.
Each v-trajectory in U is produced by freezing all the coordinates �x, �y, while letting
u to be free.

Definition 2.4 A traversing vector field v on a compact connected (n+1)-manifold X
with boundary is called traversally generic if eachv-trajectory admits local coordinates
(u, �x, �y) in which ∂X is given by the equation (2.4) and all the nearby trajectories by
the equations {℘(u, �x) ≤ 0, �x = �const, �y = �const ′}.

We denote by V‡(X) the space of traversally generic vector fields on X . ♦
It turns out that any traversally generic vector field is traversing and boundary

generic ([10]); in other words,

V‡(X) ⊂ B†(X) ∩ Vtrav(X).

In fact,V‡(X) is an open and dense (in theC∞-topology) subspaceVtrav(X) of travers-
ing vector fields (see [10], Theorem 3.5).

We denote by X(v, ω) the union of v-trajectories whose divisors are of a given
combinatorial type ω ∈ �•′〈n]. Its closure

⋃
ω′ �• ω X(v, ω′) is denoted by X(v, ω�•).

Let T (v, ω) ⊂ T (v) denote the space of trajectories of the combinatorial type
ω ∈ �•′〈n]. Each pure stratum T (v, ω) is an open smooth manifold and, as such, has a
“conventional” tangent bundle (see [12], Lemma 2.1).

3 How Traversally Generic Flows Generate the Origami Homotopy
Models of Manifolds with Boundary

Let X be an (n+1)-dimensional compact connected smooth manifold with boundary,
carrying a traversally generic vector field v (by [10], such a vector field is always
available). Abusing notations, we use the same symbol “γ ” for the v-trajectory in X
and for the point in the trajectory space T (v) it represents.

We introduce a new filtration
{
T +

{max≥k}(v)
}
k ∈ [1, n+1] of the trajectory space T (v)

by closed subspaces (actually, by cellular subcomplexes). This stratification is cruder
than the stratification

{
T (v, ω�•)

}
�•′〈n]

. By definition, a trajectory γ ∈ T +
{max≥k}(v)

if γ ∩ ∂+
1 X contains at least one point x of multiplicity greater than or equal to k.

Moreover, we insist that this point x ∈ ∂+
k X (and not in ∂−

k X◦). In other words,
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T +
{max≥k}(v) is exactly the image of ∂+

k X(v) in the trajectory space under the obvious

map � : X → T (v). In particular, T +
{max≥1}(v) = T (v).

The key step is based onCorollary 3.3 from [9] and Theorems 3.4 and 3.5 from [10].
They claim that, for a given Lyapunov function f : X → R, there is a considerable
freedom to alter the stratification {∂+

k X(v)}k by varying a given vector field v within
the space V‡(X) (of traversally generic vector fields) so that f remains a Lyapunov
function for the variation. Specifically, these results imply that there is an nonempty
open subsetD(X) of the space V‡(X) such that, for each field v ∈ D(X), all the strata
{∂+

j X} j are diffeomorphic to closed balls, except for ∂+
n X (which is a finite union of

1-balls) and for the finite set ∂+
n+1X .

So let us consider a model filtration

Z0 ⊂ Z1 ⊂ D2 ⊂ D3 ⊂ . . . Dn−1 ⊂ Dn (3.1)

of a closed ball Dn , such that:

(1) each ball D j ⊂ ∂D j+1,
(2) Z1 is a disjoint union of finitely many arcs in ∂D2,
(3) Z0 ⊂ ∂Z1 is a finite set.

It turns out that, for v ∈ D(X), the trajectory space T (v) can be produced by an
origami-like folding of the ball Dn (see Fig. 1 for an example of an origami map on a
2-ball).

The theorem below should be compared with Theorem 1 from [5]. That theorem
claims that a closed 3-manifold X has a spine (see [6] for the brief description of spines)
which is the image of an immersed 2-sphere in general position in X . Theorem 3.1
should be compared also with somewhat similar Theorem 5.2 in [8], the latter dealing
with the flow-generated spines, not trajectory spaces.

Theorem 3.1 (Trajectory spaces as the ball-based origami) For n ≥ 2, any compact
connected smooth (n + 1)-manifold X with boundary admits a traversally generic
vector field v such that:

• its trajectory space T (v) is the image of a closed ball Dn ⊂ ∂1X under a contin-
uous cellular map � : Dn → T (v), which is (n + 1)-to-1 at most. A generic fiber
of � is a singleton.

• The �-image in T (v) of each ball Dk from the filtration (3.1), is the space
T +

{max≥ n+1−k}(v), and the restriction �|Dk is a � n
n−k �-to-1 map at most.

For n > 2, the maps

� : Z1 → T +
{max≥n}(v) and � : Z0 → T +

{max≥n+1}(v)

are both bijective.
• The restrictions of � to ∂Dk+1\Dk are 1-to-1 maps for all 1 < k < n, and so are
the restrictions of � to ∂D2\Z1 and to ∂Z1\Z0.

• The vector fields v, for which the above properties hold, form an open nonempty
set D(X) in the space V‡(X), and thus an open set in the space Vtrav(X) of all
traversing fields.
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Proof If ∂1X := ∂X has several connected components, we pick one of them, say,
∂�
1 X . The union of the remaining boundary components is denoted by ∂��

1 X . We can
construct a Morse function f : X → R so that it is locally constant on ∂��

1 X , and
these constants are the local maxima of f in a collar U of ∂��

1 X in X . Then by finger
moves (as in the proof of Lemma 3.2, [9]) we eliminate all critical points of f without
changing f in U .

We pick a Riemmanian metric on X and let v be the gradient field of f . Evidently,
∂��
1 X ⊂ ∂−

1 X(v) and ∂+
1 X(v) ⊂ ∂�

1 X .
By an argument as in [9], Corollary 3.3, in the vicinity of ∂�

1 X , we can deform the
field v to a new f -gradient-like field so that all the manifolds ∂+

1 X , ∂+
2 X , …, ∂+

n−1X ,
residing in the component ∂�

1 X , will be diffeomorphic to balls, and Z1 =def ∂+
n X will

consist of a number of arcs. The argument in Corollary 3.3 from [9] constructs such
a v to be boundary generic in the sense of Definition 2.2. Moreover, by Theorem 3.5
from [10], we can further perturb v inside X , without changing it on ∂1X , so that the
new perturbation will be a traversally generic field. Abusing notations, we continue to
denote the new field by v.

Thus the locus ∂+
n+1−k X(v) is diffeomorphic to the disk Dk , provided k ≥ 2. We

notice that, for k ≥ 2, for each point x ∈ Dk = ∂+
n+1−k X(v), the v-trajectory γx has

at least one tangency point of multiplicity n+1−k, residing in ∂+
1 X : namely, x itself.

Thus, � maps Dk onto the locus T +
{max≥ n+1−k}(v). Similarly, � : Z1 → T +

{max≥ n}(v),

� : Z0 → T +
{max≥ n+1}(v) are surjective maps.

We notice that, due to the convexity of the flow in their neighborhoods (or rather,
due to the convexity of the boundary with respect to the flow), the points of ∂−

j X

are “protected” in the following sense: no v-trajectory can reach ∂−
2 X(v), unless the

trajectory is a singleton which belongs to ∂−
2 X(v) in the first place, no v-trajectory can

reach ∂−
3 X(v), unless the trajectory is a singleton in ∂−

3 X(v), and so on ... In particular,
no v-trajectory through a point of ∂+

1 X(v) can reach ∂−
2 X(v), unless the trajectory is

a singleton which belongs to ∂−
2 X(v) in the first place, no v-trajectory through a point

of ∂+
2 X(v) can reach ∂−

3 X(v), unless the trajectory is a singleton ∂−
3 X(v), and so on.

The claim also follows from Theorem 2.2, [10].
Therefore all the maps {� : ∂−

j X(v)\∂ j+1X(v) → T (v)} j are 1-to-1. So the claim
in the third bullet has been validated.

For a traversally generic v, by Corollary 5.1 from [11], the map � : ∂1X → T (v) is
(n+2)-to-1 at most. Since each trajectory, distinct from a singleton, must exit through
∂−
1 X at a point of an oddmultiplicity, the same argument shows that� : ∂+

1 X → T (v)

is (n+1)-to-1 atmost.Moreover, a generic fiber of� : ∂+
1 X → T (v) is a singleton. For

v ∈ V‡(X), the tangent spaces {T (∂+
j X

◦)} j to the strata {∂+
j X

◦} j along each trajectory
γ must form, with the help of the flow, a stable configuration in the germ of a n-section
S, transversal to γ (see [10], Definition 3.2, which is a more conceptual version of
Definition 2.4). Since dim(Tx (∂

+
j X)) = n + 1− j for every point x ∈ γ ∩ ∂+

j X
◦ and

since the flow-generated images of the spaces {Tx (∂+
j X)}x∈γ∩∂+

j X
◦ must be in general

position in a n-dimensional space S, the cardinality of the set γ ∩∂+
j X

◦ cannot exceed
� n
j−1� = � n

n−k �, provided k < n. The statement in second bullet has been established.



The Ball-Based Origami Theorem and a Glimpse... Page 9 of 15 41

By the second bullet of Theorem 3.4, [10], the smooth topological type of the
stratification {∂ j X(v)} j is stable under perturbations of v within the space B†(X)

of boundary generic fields. The same argument shows that {∂+
j X(v)} j is stable as

well. Thus, for all fields v′, sufficiently close to v, the stratification {∂+
j X(v′)} j will

remain as in (3.1). By Theorem 3.5 from [10], all vector fields, sufficiently close to
a traversally generic vector field, will remain traversally generic. Therefore this fact
gives the desired control of the cardinality for the fibers of the maps � : ∂+

j X(v′) →
T (v′) and of the smooth topology of the stratification {∂+

j X(v′)} j within an open

neighborhood of v in V‡(X). ��
Remark 3.1 Recall that the trajectory space T (v) in the Origami Theorem 3.1 is not
only weakly homotopy equivalent to the manifold X (see [11], Theorem 5.1), but also
carries a n-bundle τ , whose pull-back under � is stably isomorphic to the tangent
bundle T X ([12], Lemma 2.1). As a result, τ and T X share all stable characteristic
classes. So all this information about X is hidden in a subtle way in the geometry of
the origami map � : Dn → T (v). ♦
Definition 3.1 We say that a function h : T (v) → R is smooth, if its pull-back
�∗h : X → R, under the obvious map � : X → T (v), is smooth. ♦

The Origami Theorem 3.1 oddly resembles the Noether Normalization Lemma in
the Commutative Algebra [16], however, with the direction of the ramified morphism
being reversed. Recall that, in its algebro-geometrical formulation, the Normalization
Lemma states that any affine variety is a branched covering over an affine space. In
contrast, in our setting, many trajectory spaces T (v)—rather intricate objects—have
a simple and universal ramified cover—the ball.

To explain this analogy, for a traversally generic field v, consider the Lie derivation
Lv of the algebra C∞(X) of smooth functions on X . Its kernel C∞(T (v))3 is a part
of the exact sequence of vector spaces:

0 → C∞(T (v)) → C∞(X)
Lv−→ C∞(X) → . . .

By definition,C∞(T (v)), the algebra of smooth functions on the space of trajectories,
can be identified with the algebra of all smooth functions on X that are constant along
each v-trajectory.

When a traversally generic v is such that ∂+
1 X(v) is diffeomorphic to Dn , then

employing Theorem 3.1 and with the help of the finitely ramified surjective map

�∂ : Dn = ∂+
1 X(v) ⊂ X

�−→ T (v),

we get the induced monomorphism (�∂)∗ : C∞(T (v)) → C∞(Dn) of algebras,
where the target algebra C∞(Dn) of smooth functions on the n-ball is universal for a
given dimension n.

3 C∞(T (v)) is just a subalgebra of C∞(X), not an ideal.
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Any point-trajectory γ ∈ T (v) gives rise to the maximal ideal mγ � C∞(T (v)),
comprising the smooth functions on T (v) that vanish at γ . On the other hand, if
m � C∞(T (v)) is a maximal ideal and a function h ∈ m does not vanish on the
compact T (v), then the function 1 = ( 1h ) · h ∈ m, so that m = C∞(T (v)). Thus
every maximal ideal m � C∞(T (v)), distinct from the algebra itself, is of the form
mγ .

We already used the fact that themap�∂ is finitely ramifiedwith fibers of cardinality
(n+1) at most ([11], Corollary 5.1). Therefore, for anymaximal idealm�C∞(T (v)),
its �∂ -induced image (�∂)∗(m) is the intersection

⋂
i ni of (n + 1) maximal ideals

ni � C∞(Dn) at most. Also, the image (�∂)∗(m) of a generic maximal ideal m �
C∞(T (v)) is a maximal ideal n � C∞(Dn), since the set T (v, (11)) of trajectories
of the combinatorial type (11) is open and dense in T (v).

One can think of smooth vector fields on X as derivatives of the algebraC∞(X).We
denote the space of such operators by the symbolD(X). Let C+(X) ⊂ C∞(X) denote
the open cone, formed by all strictly positive functions. The gradient-like (traversing)
vector fields v correspond to derivatives Lv ∈ D(X) such that Lv( f ) ∈ C+(X) for
some f ∈ C∞(X).

By Theorem 3.5 from [10], the traversally generic fields form a nonempty open set
V‡(X) in the space of all vector fields and an open and dense set in the space of all
traversing vector fields. Therefore, the previous considerations lead to the following
reformulation of Theorem 3.1.

Corollary 3.1 (The origami resolutionsC∞(Dn) for the kernels of special derivatives
of the algebra C∞(X)) Let C∞(Dn) denote the algebra of smooth functions on the
n-ball.

For any (n + 1)-dimensional smooth connected and compact manifold X with
boundary, there exists an open nonempty subset Der�(X) ⊂ Der(X) of the space of
derivatives L : C∞(X) → C∞(X) that possess the following properties:

• for each L ∈ Der�(X), there exists a function f ∈ C∞(X) such that L( f ) ∈
C+(X), the positive cone,

• for each L ∈ Der�(X), there exists a monomorphism of algebras4

(�∂)∗ : ker(L) → C∞(Dn)

such that, for anymaximal idealm� ker(L), the image (�∂)∗(m) is an intersection⋂
i ni of n + 1 maximal ideals ni � C∞(Dn) at most. For any maximal ideal m

from an open in Zariski topology set in the spectrum Spec(ker(L)), the image
(�∂)∗(m) is a maximal ideal. ��
We would like very much to learn the answer to the following question:

Question 3.1 Let X be a compact connected smooth manifold with boundary. Let v

be a traversing and boundary generic vector field on X.
Describe the image, under the restriction map induced by the inclusion ∂X ⊂ X,

of the algebra ker(Lv) in the algebra C∞(∂X). ��
4 that is induced by the origami map � : Dn → T (v)
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4 A Glimpse of Holography

Wedevote this section to the fundamental phenomenon of the holography of traversing
flows. Recall that we are concerned with the ability to reconstruct the manifold X
and the traversing flow v on it (or rather, the 1-dimensional oriented foliation F(v),
generated by v) in terms of some data, generated by the flow on the boundary ∂X . This
kind of problem is in the focus of an active research in Differential Geometry, where it
is known under the name of geodesic inverse scattering problem (see [1–4], [17–21]).
In this context, we are motivated by the idea is to apply the holography principle to the
geodesic flow on the tangent spherical bundle of a given Riemannian manifold with
boundary. On many special occasions, this application allows for a reconstruction of
the manifold and the metric from the scattering data [13].

The main result of this section, Theorem 4.1, describes some boundary data, suffi-
cient for a reconstruction of the pair (X ,F(v)), up to a homeomorphism. The reader
interested in further developments of these ideas may glance at the paper [12,13], and
the forthcoming book [14].

First, we introduce one basic construction (see Fig. 2) which will be very useful
throughout our investigations below.

Lemma 4.1 Consider a traversing vector field v on a compact smooth connected man-
ifold X with boundary and a Lyapunov function f : X → R, d f (v) > 0.

Any such pair (v, f ) generates an embedding α(v, f ) : X ⊂ T (v) × R, where
T (v) denotes the trajectory space.

For any smooth5 map β : T (v) → R
N , the composite map

A(v, f ) : X α−→ T (v) × R
β×id−→ R

N × R

is smooth.
Any two embeddings,α( f1, v) andα( f2, v), are isotopic through homeomorphisms,

provided that d f1(v) > 0, d f2(v) > 0.

Proof Since f is strictly increasing along the v-trajectories, any point x ∈ X is deter-
mined by the v-trajectory γx through x and the value f (x). Therefore, x is determined
by the point γx × f (x) ∈ T (v) × R. By the definition of the quotient topology in
T (v), the correspondence α( f , v) : x → γx × f (x) is a continuous map.

In fact, α( f , v) is a smooth map in the spirit of Definition 3.1: more accurately,
for any map β : T (v) → R

N , given by N smooth functions on T (v), the composite
map A(v, f ) : X → R

N ×R is smooth. The verification of this fact is on the level of
definitions.

For a fixed v, the condition d f (v) > 0 defines an open convex cone C+(v) in the
space C∞(X). Thus, f1 and f2 can be linked by a path in C+(v), which results in
α( f1, v) and α( f2, v) being homotopic through homeomorphisms. ��
Remark 3.1 By examining Fig. 2, we observe an interesting phenomenon: the embed-
ding α : X ⊂ T (v)×R does not extend to an embedding of a larger manifold X̂ ⊃ X ,

5 see Definition 3.1.
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where X̂\X ≈ ∂1X × [0, ε). In other words, α(∂1X) has no outward “normal field”
in the ambient T (v) × R. In that sense, α(∂1X) is rigid in T (v) × R! ��
Corollary 4.1 For n ≥ 2, any compact connected smooth (n + 1)-manifold X with
boundary admits an embedding α : X → T × R, were T is a CW-complex which is
the image of the n-ball Dn under a continuous map, whose fibers are of the cardinality
n+1 at most and whose generic fiber is of the cardinality 1. Moreover, α is a homotopy
equivalence.

Proof We combine the Origami Theorem 3.1 with Lemma 4.1 to validate the first
claim of the lemma.

Since � = p ◦ α, where p : T × R → T is the obvious projection, and � is a
homotopy equivalence by Theorem 5.1 from [11], so is the map α. ��
Corollary 4.2 Let v be a traversing vector field on a compact smooth connected man-
ifold X with boundary and f : X → R its Lyapunov function. Let X◦ denote the
interior of X.

Then the embedding

α( f , v) : ∂1X −→ (
T (v) × [0, 1])\α( f , v)(X◦)

is a homology equivalence. As a result, the space

(
T (v) × [0, 1])\α( f , v)(X◦)

is a Poincaré complex of the formal dimension dim(X) − 1.

Proof Put α =def α( f , v). Let us compare the homology long exact sequences of the
two pairs:

X ⊃ ∂1X and T (v) × [0, 1] ⊃ (T (v) × [0, 1])\ α(X◦).

They are connected by the vertical homomorphisms that are induced by α. Using the
excision property,

α∗ : H∗(X , ∂1X) → H∗
(
T (v) × [0, 1], (T (v) × [0, 1])\α(X◦)

)

are isomorphisms. On the other hand, since by Theorem 5.1, [11], � : X → T (v)

is a homology equivalence, α∗ : H∗(X) → H∗(T (v) × [0, 1]) are isomorphisms.
Therefore by the Five Lemma,

α∗ : H∗(∂1X) → H∗((T (v) × [0, 1])\α(X◦))

must be isomorphisms as well. Since ∂1X is a closed n-manifold, it is a Poincaré
complex of formal dimension n, and thus so is the space (T (v)×[0, 1])\α( f , v)(X◦).

��
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Definition 4.1 Let v be a traversing vector field on X . Given two points x, y ∈ ∂1X ,
we write y �v x if both points belong to the same v-trajectory γ ⊂ X and, moving
from x in the v-direction along γ , we can reach y.

The relation y �v x introduces a partial order �v in the set ∂1X . ♦
Adding an extra ingredient to the partial order �v (equivalently, to the origami

construction), allows for a reconstruction of the topological type of the pair (X ,F(v))

from theflow-generated information, residing on the boundary ∂X . The new ingredient
is the restriction of the Lyapunov function f : X → R to the boundary.

Theorem 4.1 (Topological Holography of Traversing Flows) Let v be a traversing
vector field v on a compact connected smooth manifold X with boundary, and let
f : X → R be its Lyapunov function.
Then the partial order �v on ∂1X, together with the restriction f ∂ : ∂X → R of a

Lyapunov function f : X → R, allows for a reconstruction of the topological type of
the pair (X ,F(v)).

Proof The validation of the theorem is based on Lemma 4.1. First, we observe that
the partial order �v allows for a reconstruction of the trajectory space T (v) and of
the quotient map �∂ : ∂1X → T (v). Indeed, we declare two points x, y ∈ ∂1X
equivalent if y �v x or x �v y. This equivalence relation ∼v produces the quotient
map �∂ : ∂1X → (∂1X)\ ∼v . Its target may be identified with the space T (v) since,
for a traversing v, every trajectory γ is determined by its intersection γ ∩ ∂1X .

As in Lemma 4.1, using f ∂ , we construct an embedding

α∂ = α(v, f ∂ )| : ∂X ⊂ T (v) × R.

Then α∂(∂X) divides T (v) × R into two domains, one of which is compact. That
compact domain X is α(v, f )(X). Since α(v, f ) : X → X is a homeomorphism, we
managed to reconstruct the topological type of X from the boundary data (�v, f ∂ )

(in the end, from (�∂, f ∂ )).
Evidently,X is equippedwith a 1-dimensional foliationG, generated by the product

structure in the ambient T (v) × R.
By its construction, the homeomorphism α(v, f ) maps each leaf of F(v) to a leaf

of G, while preserving their orientations. Thanks to α(v, f ), the pair (X ,G), which
we have recovered from the boundary data (�v, f ∂ ), has the same topological type as
the original pair (X ,F(v)).

Note that, for a given pair (�v, f ∂ ), the homeomorphism α(v, f ) is far from being
unique. Even, for a fixed pair (X , v), we may vary the Lyapunov function f , while
keeping f ∂ fixed. However, the space Lyap(v, f ∂ ) of such Lyapunov functions f
is convex, and thus contractible. Therefore, for any two f1, f2 ∈ Lyap(v, f ∂ ), the
embeddings α(v, f1) and α(v, f2) are homotopic through homeomorphisms that map
F(v) to G. ��
Example 4.1 Let Y be a closed surface of genus g. Let X be obtained from Y by
deleting an open 2-ball. Consider a traversally generic vector field v on the surface
X together with its Lyapunov function f : X → R (such a pair (v, f ) does exist).
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Then Theorem 4.1 claims that the order relation �v on the circle ∂X , together with
the function f ∂ : ∂X → R, is sufficient for a reconstruction of the pair (X ,F(v)), up
to a homeomorphism which is the identity on ∂X . In particular, the genus g may be
reconstructed from the boundary data (�v, f ∂ ). ♦
Example 4.2 LetY be a closed surface, equippedwith a smoothvector fieldw. Consider
the product X̂ =def Y×R. Let v̂ be a vector field on X̂ , whoseY -component is the given
w and whoseR-component is 1. Evidently, v̂ admits a Lyapunov function T : X̂ → R,
defined by the obvious projection.

Let X ⊂ X̂ be a compact connected domain with a smooth boundary. Thanks to T ,
the v̂-flow is traversing on the 3-fold X and defines the partial order �v̂ on the surface
∂X . We denote by v the restriction of v̂ to X .

Then Theorem 4.1 claims that the order relation �v on the surface ∂X , together
with the function f ∂ : ∂X → R, allows for a reconstruction of the pair (X ,F(v)), up
to a homeomorphism which is the identity on ∂X .

If we treat T as time and Y as space, it is natural to interpret �v as the causality
relation between the events-points on the boundary ∂X . ♦
Remark 4.1 The question whether the data (�v, f ∂ ) are sufficient for a reconstruction
of the differentiable or even smooth topological type of the pair (X ,F(v)) seems to
be much more delicate. We suspect that the positive answer to it will depend on our
ability to answer Question 3.1.

Under certain assumptions about v (such as some restrictions on the combinatorial
types of v-trajectories), the answer is positive [12]. ��
Corollary 4.3 Let a traversally generic vector field v on X be such that ∂+

1 X(v) ≈ Dn.6

Then the origami map �∂ : Dn → T (v), together with the restriction f ∂+ : Dn → R

of the Lyapunov function f : X → R, allow for a reconstruction of the topological
type of the pair (X ,F(v)).

Proof To validate the claim of the theorem, we combine Theorems 3.1 and 4.1.
Given a traversing v and a function f ∂+ : ∂+

1 X(v) → R, let Lyap(v, f ∂+) be the space
of Lyapunov functions f : X → R such that f |∂+

1 X(v) = f ∂+. Again, Lyap(v, f ∂+) is
a convex contractible space.

We assume that the function f ∂+ is known and is generated by some (unknown)
f ∈ Lyap(v). By the properties of the Lyapunov function f , we may assume that
f ∂+ extends to a function f ∂ : ∂1X → R so that, for any x, y ∈ ∂1X , y �v x , the
inequality f (x) < f (y) is valid.

By Theorem 3.1, the image �∂(Dn) of the Origami map �∂ is the trajectory space
T (v), and the fibers of �∂ may be identified with the (∼v)-equivalence classes of
points in Dn . Moreover, since v is traversally generic, by Theorem 5.1 from [11],
T (v) is a compact CW -complex.

Now, as in Lemma 4.1, using f ∂ , we construct an embedding α(v, f ∂ ) : ∂X ⊂
T (v) × R. The rest of the argument is similar to the argument we used to prove
Theorem 4.1. ��
6 By Theorem 4.1, such vector field exists.
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