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Abstract
We characterize the minimizing geodesics for the Kepler problem endowed with the
Jacobi-Maupertuis metric. We focus on the positive energy case, but do all ener-
gies. The more complicated negative energy case was solved in Jacobi (Crelles J
17:68–82, 1837. https://doi.org/10.1515/crll.1837.17.68), with his work translated
and completed by Todhunter (Researches in the Calculus of Variations, Principally
on the Theory of Discontinuous Solutions. Macmillan and Co., Cambridge, 1871),
and later summarized in Wintner’s book. Our discussion of these old results includes
a new proof for the positive energy case and perspectives coming from metric and dif-
ferential geometry. For the negative energy result we need Lambert’s theorem which
we discuss.

Keywords Jacobi–Maupertuis metric · Minimizing geodesics · Lambert’s theorem ·
Kepler’s problem

1 Introduction and Overview

Solutions of the planar Kepler problem

q̈ = −q/‖q‖3, q ∈ R
2

lie on conics one of whose foci is the origin. Following Albouy [1] , by a “Keplerian
arc” we will mean a finite arc q([a, b]) of such a solution. These include the rectilinear
arcs which lie on degenerate conics: rays or line segments having one endpoint the
origin.

The energy

H = 1

2
|q̇|2 − 1

|q|
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and angular momentum

J = q ∧ q̇

are constant along Keplerian arcs. The arc is rectilinear if and only if J = 0. A
Keplerian arc with energy H = h is, upon reparameterization, a geodesic for the
Jacobi-Maupertuis [JM] metric

ds2h = 2

(
h + 1

|q|
)

|dq|2.

defined on the Hill region {q : h+1/|q| ≥ 0} ⊂ R
2. As such, a Kepler arc of energy h

must extremize the JM length �h(c) = ∫
c dsh among all curves sharing its endpoints,

but may fail to minimize this length.

Question 1 Among the Keplerian arcs of energy h, which are minimizing geodesics?

Theorem 1.1 For positive energy, a non-rectilinear Keplerian arc with endpoints A, B
minimizes the JM length among all curves sharing its endpoints if and only if the origin
is not in the interior of the convex region bounded by the arc and the chord AB.

Definition 1.1 We call the arc “direct” if the origin is not in the interior of its convex
hull and “indirect” otherwise.

With this terminology, the theorem asserts that direct hyperbolic arcs minimize while
indirect ones do not.

1.1 History. Disclaimer. Acknowledgements. Memorium

Theorem 1.1 can be found in section 256 ofWintner’s classic book [11], while sections
254 and 257 deal with the negative and zero energy versions of this theorem. The
negative energy version, Theorem 4.1 below, appears to be due to Jacobi [3], and
was translated by Todhunter [10], section 226, (p 251) which is quite likely where
Wintner learned of it. Jacobi’s description of the minimizers did not include what we
call “turnpike paths”, described in Fig. 4 below, which are paths which make use of
the Hill boundary. Todhunter investigated these alternate, often shorter paths, under
the name ‘discontinuous solutions” in his book [9]. This book contains further details
around Jacobi’s work in sections 179 to 183.

With all this previous work, why restate and reprove the theorems? First, the simple
reflection based proof of half of Theorem 1.1 found below in Sect. 2.1 is not found
in these earlier works. Second, the complete understanding of the minimizers for
the Kepler problem deserves to be widely known. Third, our metric space analysis
perspective on the Jacobi-Maupertuis metric is not in these earlier works. Fourth,
within this general metric context, the question “what are the infinite minimizers?”
is of current interest, and impacts the weak KAM theory as applied to the general
dynamics of the non-negative energy n-body problem. See for example [4] and [5]
and compare results there with Corollary 3.1 below.
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In memory. I would like to express my condolences to the students and family
of Florin Diacu, as well as my thanks to him. Through the force of his personality,
his writing, and his organizational efforts he supported and encouraged many of us
working in mathematical celestial mechanics. He had a particular soft spot for the
N-body problem on curved backgrounds, and I hope that it would have given him an
amused smiled to reflect on the Kepler problem as defining a curved substructure for
the Euclidean plane.

2 Proving the Theorem

2.1 Cut Points: Proving Half of Theorem 1.1

We prove that if the arc is indirect then it fails to minimize. So assume that the origin
is in the interior of the convex hull of the arc. Parameterize the arc by a solution B(t)
with B(0) = A and B(t1) = B for some t1 > 0. Consider the moving chords AB(t).
Since the origin is in the interior of the convex hull , there will be a t∗, 0 < t∗ < t1
such that this chord AB(t∗)passes through the origin. Write B∗ = B(t∗) (Figs. 1, 2).

We claim that B∗ is a cut point along B(t). First, recall the notion of ‘cut point’
along a geodesic σ in Riemannian geometry. As we leave the initial point A = σ(0)
of the geodesic we ask : does the arc σ([0, t]) minimize the JM length between A and
σ(t)? It will minimize for all sufficiently short times t ≤ ε. A “cut point” along the
geodesic is a point B∗ = σ(t∗) such that another distinct geodesic with the same length
as σ([0, t∗]) joins A to B∗. A basic theorem from Riemannian geometery asserts that
if B∗ is a cut point, then the geodesics s([0, t]) fail to minimize for all t > t∗.

We apply these considerations to our geodesic, the curve B(t), reparameterized by
JM arclength. To see that B∗ is a cut point, form the line � = OA and note that it
passes through B∗. Any linear isometry of the plane is an isometry of the JM metric,
and in particular reflection about � is a JM isometry. Applying this reflection to the arc
B([0, t∗]) joining A to B∗ we obtain a distinct geodesic arc (since the original arc is
not rectilinear) joining A to B∗ and having the same JM length as the original.We have
shown that B∗ is a cut point along B(t). Since t1 > t∗ our arc from A to B = B(t1)
fails to minimize. 	


Fig. 1 The moving chord passes through the origin
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Fig. 2 The Gauss construction
of the two hyperbolic branches
passing through A and B. The
empty foci F and F′ are
constructed by intersecting
circles of radius rA = OA + 2a
and rB = OB + 2a about A and
B. The branch for F is direct and
for F’ is indirect

2.2 AMethod of Gauss: Just Two Hyperbolas

To prove the other half of the Theorem 1.1 we use a lemma which is the positive
energy version of a method of Gauss explained in remark 3, section 2 of [1]. See also
Wintner [11].

Lemma 2.1 Let h = 1/2a > 0 and suppose that A, B ∈ R
2 are not collinear with 0.

Then exactly two Kepler arcs with energy h pass through A and B. On of these arcs
is direct, and the other is indirect.

If A, 0, B are collinear with 0 between A and B then exactly two Kepler arcs of
energy h connect A to B. These arcs are related by reflection about line A0 = OB.

If A, B, 0 are collinear with B between A and 0 or with A between B and 0 then
exactly one branch of energy h passes through A and B. This arc is rectilinear.

Proof The proof we present is similar to that found in the 2nd paragraph of section
256 of [11]. If A, B are not collinear with 0 then any branch passing through them is
a hyperbola and not a ray. Hyperbolae have two foci. One of ours is 0. The location of
the other “empty focus” F , together with the value of the energy h = 1/2a, determines
the Kepler branch of such a hyperbola as the locus of points X such that

|XF | − |X0| = 2a, h = 1/2a

(The distance between F and 0 is 2ea where e > 1 is the eccentricity. See exercise
4.1 and formulae in sections 1.4 and 1.5 of [8] ) Since both A and B lie on this alleged
hyperbola we have

|AF | − |A0| = 2a, |BF | − |B0| = 2a (1)
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We view these as equations for F . Rewritten as |AF | = 2a+|OA| and |BF | = 2a+
|OB| they say that F must lie simultaneously on the circle of radius rA := 2a+|OA|
about A and the circle of radius rB := 2a + |OB| about B. Now two circles in the
Euclidean plane intersect in two points if and only if the sum of their radii is greater
than the distance between their centers and neither circle is contained within the other.
In terms of our variables these inequalities, necessary for there to be two intersections,
are

rA + rB > |AB|, rB < |AB| + rA, and rA < |AB| + rB . (2)

In our case rA + rB = 4a + |OA| + |OB| ≥ 4a + |AB| > |AB| while |AB| + rA =
|AB|+ |OA|+2a ≥ |OB|+2a = rB and similarly |AB|+rB ≥ rA. This shows that
the first inequality of the three of inequalties (2 )always holds in its stated strict form,
while the remaining two inequalities may not hold in their strict form but instead may
be equalities. If A, B, O are not collinear then all inequalities in the above reasoning
are strict so that all inequalities of (2) hold and the two circles intersect in exactly
two points, namely our two foci, call them F and F ′. One of these, say F , lies on the
opposite side of the line AB as 0, while the other focus F ′ lies on the same side of
AB as O . One checks that the arc associated to F is direct while the arc associated to
F ′ in indirect.

If A, O, B are collinear with O between A and B then the only possible Keplerian
branches connecting them are again hyperbolas. We again need only check all three
inequalities of (2) are strict to insure exactly two such arcs. We saw that the first
inequality always holds in the strict sense. For the second and third use that |AB| >

|OA|, |OB| so that |AB|+rA = |AB|+|OA|+2a > |AB|+2a > |OB|+2a = rB .
Similarly |AB| + rB > rA. Thus the two circles intersect in two points, our two foci
again. As per the argument of the first half, the hyperbolas defined by these two foci
are related by reflection.

The rectilinear case arises if and only if OA + AB = OB or OB + AB = OA
which is equivalent to rB = |AB| + rA or to rA = |AB| + rB , the case where one
circle contains the other, with the two intersecting tangentially at O . 	


2.3 The Other Half of the Proof of Theorem 1.1

We prove that if the arc is direct then it minimizes the JM length among all curves
joining A to B.

There is a JM minimizer joining A to B, by standard results in the calculus of
variations. Moreover this minimizer cannot contain O in the interior of its arc by the
Maupertuis version of Marchall’s lemma. See Lemma 1 of [6]. It follows that the only
curves competing to be minimizers are the Keplerian arcs.Wemust show our arc is the
shortest among all such arcs. But by Lemma 2.1 there is at most one other competing
arc!

If the endpoints A, B are not collinear with O then, by that lemma, there is exactly
one other arc through A and B having energy h. This other arc is indirect and con-
sequently, by the first half of the theorem, cannot minimize. So our branch is the
minimizer.
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If A, B are collinear with O with O between them, then, according to the lemma
the two branches are related by reflection about the line AB and their energies and JM
lengths are the same. Both are minimizers. This is the cut point case in the proof of
Sect. 2.1.

If A, B are collinear with either B between A and O or A between O and B then
there is a unique branch and it is rectilinear. Necessarily it is the minimizer. (This
minimality can also be established directly using dr2 ≤ dr2 + r2dθ2.) 	


3 Motivation andMetric Spaces

The seed for this paper was the desire to characterize the global minimizers for the
positive energy case.When h ≥ 0 the JMRiemannianmetric ds2h , defined on the entire
plane minus the origin, extends to the origin as a metric, where ‘metric’ now means
distance function. Define the “distance” between two points of the plane R2 to be the
infimum of the JM lengths

∫
dsh among all curves joining them. The rectilinear arc

[A, 0] from a point A ∈ R
2 in the plane to the origin 0 of the plane has finite JM length

and hence 0 is a finite distance from A. In this way we get a distance function on the
entire plane, one which gives it the structure of a complete metric space, Riemannian
everywhere except at 0. At the collision point 0 the metric enjoys a kind of conical
singularity. On anymetric space we have the notion of “length of a path”, “minimizing
geodesics” and “geodesic”. See [2]. On R

2, endowed with the JM distance function
just described, the geodesics which do not pass through the origin are the Keplerian
arcs for this energy. Now let M be a metric space, J ⊂ R an infinite interval, and
σ : J → M a curve parameterized by arclength. Thenσ is called a ‘globalminimizer”,
or synonymously, an “infinite minimizing geodesic”, if its restriction to any compact
subinterval [a, b] ⊂ J is a minimizing geodesic between its endpoints σ(a) and σ(b).
We say that a global minimizer σ is a “maximal global minimizer” if it is impossible to
extend it to a larger interval J ′ ⊃ J in such a way that the extended curve s′ : J ′ → M
remains a global minimizer.

Corollary 3.1 Let σ : R → R
2 be a Kepler hyperbola of energy h. Write L for the

line through the origin parallel to the positive time asymptote of the hyperbola, and
let A∗ = σ(a∗) denote the point of intersection between L and the hyperbola. Then
σ([a∗,∞)) is a maximal global JM minimizer. (See Fig. 3 for an illustration of this
construction.)

Similarly, let L− be the line through the origin parallel to the the negative time
asymptote, and σ(b∗) for the intersection point of L− with the hyperbola. Then
σ((−∞, b∗]) is a maximal global JM minimizer.

Remark If t∗ is the time of apocenter along the hyperbola in the theorem, which is to
say, the time of the hyperbola’s closest approach to the origin, then b∗ < t < a∗.

Proof of Cor. 3.1. We have seen that for finite intervals [a, b], the arc σ([a, b]) min-
imizes if and only if the convex hull Ca,b of this arc does not contain the origin in
its interior. If [c, d] ⊃ [a, b] then Cc,d ⊃ Ca,b. Taking limits as b → ∞ one sees
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Fig. 3 A Kepler hyperbola. Point A∗ = σ(a∗) is the endpoint of the maximal global minimizer subarc of
this hyperbola, unbounded in the positive direction. A∗ is the intersection of the hyperbola with the line L
parallel to the hyperbola’s positive asymptote and passing through the origin

that the convex hull of σ([a,∞) has boundary consisting of two infinite curves, the
arc σ([a,∞)) of the hyperbola and the ray leaving σ(a) and parallel to L . By the
above discussion, we are in the borderline case between minimizing and failing to
minimize if and only if this ray passes through the origin. This borderline case is the
case corresponding to a = a∗ as described in the corollary, the case of the maximal
global minimizer.

The case of the past asymptotic maximal global minimizer proceeds similarly. 	


Remark 3.1 The corollary continues to hold in the parabolic case, h = 0 with essen-
tially the same proof. A quite different proof, based on an isometry from the JMmetric
ds2h=0 to that of a cone over a circle of radius 1/2, can be found in [7].

4 The Negative Energy Case

If h = −1/2a < 0 then the JM metric is defined on the Hill region Dh := {q :
h + 1/|q| ≥ 0} which is the disc of radius 2a centered at the origin. The infinitesimal
distance dsh vanishes on the boundary of this region, which we call the Hill boundary,
and which equals the Euclidean circle of radius 2a centered at the origin. As a result of
this vanishing, any curve lying on the Hill boundary has zero JM length, and hence the
JM distance between any two points on the Hill boundary is zero. Consequently, the
induced metric distance function on the Hill region is not a true distance function, but
rather a pseudo-distance. There is a new type of minimizer which takes advantage of
this zero-cost motion along the Hill boundary. See Fig. 4. Such a minimizer connects
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Fig. 4 A turnpike path from A and B. Here a = 1

points A and B by travelling radially out from A to the Hill boundary, angularly along
the Hill boundary until it reaches the ray through B, and then back inwards radially to
B. We will borrow terminology from economics and refer to these new minimizers as
“turnpike paths”. Todhunter called them “discontinuous minimizers” and investigated
them extensively towards the end of chapter 8 of [9].

Theorem 4.1 For negative energy, a non-rectilinearKeplerian arcwith endpoints A, B
and lying on an ellipse E minimizes JM length among Keplerian arcs if and only if
the convex region bounded by the arc and the chord AB does not contain either the
origin O nor the empty focus F of the ellipse E in its interior.

However, it may happen that the minimizer from A to B is a turnpike path. This
possibility does happen if A and B form the semi-major axis of the ellipse, or any
chord sufficiently close to this axis, i.e, provided that |AB| = 2a − ε for ε = 0 or ε

sufficiently small, where h = −1/2a is the energy.

A Proof of the Half of Theorem 4.1. The proof for h > 0 in 2.1 holds verbatim for h ≤ 0
and shows that an arc whose convex hull contains 0 in its interior fails to minimize.
Paragraph 3 of section 253 of [11] shows that if AB(t∗) passes through F then t∗ is
a conjugate point for B(t), and hence if F is in the interior of the convex hull the arc
fails to minimize.

To show that the arc minimizes among Keplerian arcs if O and F are exterior to
the convex hull described, use the fact that there is at exactly one other Keplerian arc
joining A and B and having energy h. This fact, the elliptic version of Lemma 2.1, is
found in [9] or [11] as above. In addition, if F ′ denotes the empty focus of this other
Keplerian arc, then the convex hull of this other arc will contain O or F ′ in its interior
and hence this other arc does not minimize.

In case F or O lies on the boundary of the convex hull of the given arc we proceed
by cases as follows. If F on the boundary then the Keplerian arc from A to B with
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energy h is unique, and B is the first conjugate point along this arc as it leaves A. If
O on the boundary then, by the reflection principle, as in Sect. 2.1, the other arc is the
reflection of the given arc along line AB, it has the same length as the given arc, and
B is a cut point along the given arc as it leaves A. 	


We will prove the second half of Theorem 4.1 in the next section.

5 Lambert to the Rescue!

We describe Lambert’s theorem, following Albouy [1]. The theorem turns the recti-
linear paths into measuring sticks for JM lengths yielding a proof of the second half
of Theorem 4.1, as well as alternative proofs of all of Theorems 1.1 and 4.1.

We begin with an artifice for extending rectilinear arcs through collision. As a
rectilinear solution q(t) approaches collision, let us agree to continue it through col-
lision by reflecting it off of collision, insisting that it remain a solution, having the
same energy as it had before collision and remaining on the same ray. Thus, if q(t) is
defined for a < t < 0 and limt→0q(t) = 0, we set q(0) = 0 and q(t) = q(−t) for
t > 0 small. In this way any rectilinear solution uniquely extends so as to define a map
q : R → R

2 defined for all time and whose image lies on a single ray. We continue
to call such curves “Keplerian conics” and the restriction of such a curve to any finite
time interval [a, b] a “Keplerian arc”.

Remark 5.1 A rectilinear conic having energy h ≥ 0 has exactly one collision and
tends to infinity in both backwards and forwards time. A rectilinear conic of energy
h = −1/2a < 0 sweeps out a radial interval of length 2a with one endpoint collision,
the other on the ‘Hill boundary’ |q| = 2a, oscillating periodically between these
extremes, taking half a Keplerian period, which is to say, a time πa3/2 to perform the
transit from one endpoint to the other.

Remark 5.2 The C0–closure of the space of non-rectilinear Keplerian arcs consists of
the rectilinear Keplerian arcs in our new extended sense, together with the space of
non-rectilinear Keplerian arcs.

Time translation by t0 ∈ R acts on the space of collinear arcs by sending a solution
arc or extended solution arc q(t) defined on the interval [a, b] to the arc t �→ q(t − t0)
defined on the interval [a + t0, b + t0].
Definition 5.1 We write E for the space of Keplerian arcs, modulo time translation,
with rectilinear arcs, extended as described above through collision, included.

E is a 5-dimensional smooth manifold. One way to parameterize it is to insist that
the time intervals [a, b] parameterizing the arcs starts at a = 0. Then we can use
the initial conditions A, vA at the initial time t = 0 together with the time of flight
�t = b − a = b as coordinates. The extended retilinear arcs correspond to inital
conditions where the velocity vA is parallel to the position A and the flight time �t
is greater than the time to collision. The two endpoints A = q(0), B = q(b), the
energy H , the time-of-flight b = �t and the JM length w = ∫ b

a dsH=h are all smooth
functions on E .
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Theorem 5.1 The JM length w and time of flight �t is constant along any continuous
path in the space E of Keplerian arcs along which the values of |OA| + |OB|, |AB|
and H are constant.

Every Keplerian arc K ∈ E can be connected to a rectilinear arc R ∈ E by a
continuous path λ �→ K(λ) of Keplerian arcs along which |OA| + |OB|, |AB| and
H are constant.

Proof See [1] or references therein.

WhenR andK are as in the second half of the theorem, we will callR a “rectilinear
representative ofK”. The group of rotations acts on E , preserving |OA|+|OB|, |AB|,
and H . Using a rotation we can bring any rectilinear representative so as to lie on the
non-negative x-axis, y = 0, x ≥ 0. We will refer to such a rectilinear arc R as a
‘standard arc”, or a “standard representative” ofK. A standard arc at energy h must lie
in the intersection of the x-axiswith theHill region. If h ≥ 0 this provides no constraint:
the arc can lie anywhere within the ray. If h = −1/2a < 0 then the arc must lie within
the interval 0 ≤ x ≤ 2a. The length of a standard arc is measured using the restriction
of the JM metric to the axis, which is to say, by integrating (

√
1/x + h)dx along the

arc.

Definition 5.2 By the standard model for energy h we will mean the corresponding
domain, (interval [0, 2a] for h = −1/2a, or the or entire axis [0,∞) for h ≥ 0) af the
x-axis, endowed with the metric (

√
1/x + h)dx .

If the endpoints A, B of the Keplerian arc K are distinct then there are exactly two
possible endpoints for any of its standard representatives R. To see this, set

S = |OA| + |OB|
C = |AB|

and let x1, x2 ≥ 0 be possible endpoints. Then x1 + x2 = S while |x1 − x2| = C .
Now the map (x1, x2) �→ (x1 + x2, x1 − x2) is an invertible linear map. If A �= B we
have C �= 0. It follows that there are exactly two solutions to our system of equations,
namely (x1, x2) and (x2, x1) with x1 = (1/2)(S + C), x2 = (1/2)(S − C).

5.1 Proving the Rest of Theorem 4.1

Take AB to be the semi-major axis of a Keplerian ellipse of energy h = −1/2a. We
will show that the length of the corresponding half-ellipse is strictly greater than the
JM length of the turnpike solution connecting A to B.

First we compute the JM length of the half-ellipse to be π
√
a. To do this, observe

that for the semi-major axis we have that C = S = 2a which are the same values that
C and S have for the half-circle of radius a, which is a Keplerian arc of energy h and
endpoints a diameter of this circle. On the semicircle, in polar coordinates, we have
that dsh = √

adθ . Integrating from 0 to π yields the claim.
The length of the turnpike path is

∫ 2a
|0A| f (x)dx + ∫ 2a

|0B| f (x)dx where f (x) =√
2(1/x + h). Since f (x) is monotone decreasing in x , we have

∫ x0+δ

x0
f (x)dx <
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∫ δ

0 f (x)ds for any x0, δ > 0 such that [x0, x0 + δ] ⊂ [0, 2a]. Now use 2a = |OA| +
|OB| and take x0 = |0B|, δ = |OA| to get that

∫ 2a
|0B| f (x)dx <

∫ |OA|
0 f (x)dx . Thus∫ 2a

|0B| f (x)dx + ∫ 2a
|0A| f (x)dx <

∫ |OA|
0 f (x)dx + ∫ 2a

|0A| f (x)dx = ∫ 2a
0 f (x)dx . Now

this last integral equals π
√
a since its endpoints, 0, 2a are those of the standard repre-

sentative of the half-circle, C = S = 2a. Thus we get
∫ 2a
|0A| f (x)dx + ∫ 2a

|0B| f (x)dx <

π
√
a 	


5.2 Alternate Proofs of Theorem 1.1 and 4.1

We finish by showing how to use Lambert’s theorem to give alternative proofs of these
theorems.

Parameterize the energy h conic K by the solution curve B : R → K ⊂ R
2

starting at A, so that B(0) = A. For each t ≥ 0 let Kt ⊂ K denote the arc from A to
B(t) obtained by restricting B to [0, t]. We will prove that Kt minimizes, among all
competing Keplerian arcs, up until the first time that t∗ that the chord AB(t) passes
through either O or F . We then make remarks on the turnpike paths and the difference
between positive and negative energies.

By a basic theorem in Riemannian geometry the Kt are global minimizers for t
small. Use Theorem 5.1 to form the corresponding standard arc R(t) with endpoints
xA(t), XB(t) on the x-axis. Both families Kt ,Rt depends continuously on t , as do
their JM lengths which increase monotonically with t and are equal. The arcR(0) is a
point curve with 0 length and equal endpoints xA(0) = xB(0) = |OA|. As t increases
its endpoints gradually move apart, with the JM length between them continuing to
equal the length of Kt . The arcs R(t) minimize within the standard model as long as
they do not retrace themselves, which is to say, as long as they have not bounced off
of the collision point or Hill boundary. Thus retracing begins at the instant t∗ at which
one of the endpoints hits collision x = 0, or, only possible in the negative energy case,
one endpoint hits the Hill boundary x = 2a. The crucial observation is

• (a) one endpoint of the standard arcRt is the collision point 0 if and only if chord
AB(t) passes through 0.

• (b) one endpoint of the standard arcRt is the Hill boundary point of the standard
ray if and only if the chord AB(t) passes through the empty focus F .

Proof of (a). Having chord AB pass through the origin is characterized by the
equality |A0| + |B0| = |AB|. Otherwise |AO| + |OB| > |AB|. On the other hand,
for a pair of points x1, x2 on the standard ray, having one of them equal to the collision
point x = 0 is characterized uniquely by the equality x1 + x2 = |x2 − x1|. In terms of
chord C and sum S, this equality is C = S. SinceRt and Kt share the same values of
C and S these two events happen simultaneously.

Proof of (b). If the chord passes through the empty focus F we have that |AB| =
|AF |+|FB|. Then |OA|+|OB|+|AB| = |OA|+|AF |+|OB|+|BF | = 2a+2a =
4a = −2/h. On the other hand, if the chord does not pass through the empty focus then
|AB| < |AF |+|FB| and so |OA|+|OB|+|AB| < |OA|+|AF |+|OB|+|BF | =
−2/h. This shows that the event “passing through the empty focus” is characterized
by the equality S + C = −2/h. Now draw the points x1, x2 on the standard line
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segment [0, 2a]. A simple bit of exploration shows that x1 + x2 + |x1 − x2| ≤ 4a
with equality if and only if one or the other of x1, x2 equals the Hill boundary point
x = 2a. Thus ‘hitting the Hill boundary” is characterized in the rectilinear model by
the same equality S + C = −2/h.

Alternate Proof of Theorem 1.1. Hitting the Hill boundary is impossible. And the only
competing paths are other Keplerian arcs. Any other Keplerian arc K̃ between A and
B = B(t) has a rectilinear representative, R̃ whose endpoints xA, xB are the same
as those of Rt . There are only two such rectilinear paths connecting two points on
the standard ray, one which bounces off collision once, and one which does not. The
rectilinear path which does not bounce is theminimizer, and corresponds to the convex
hull described in the theorem excluding the origin from its interior. 	

Alternate Proof of the First Half of Theorem 4.1. Any Keplerian arc K̃ between A and
B = B(t) has a standard representative, R̃ whose endpoints xA, xB are the same as
those ofRt . There are now many such rectilinear paths connecting two points xA, xB
on the standard ray, depending on how many times a path bounce off collision and the
Hill boundary. Only one of these minimizes, the one which does not bounce at all. This
standard representative is characterized by the fact that its corresponding Keplerian
arc has a convex hull as described in the theorem, i.e. one which excluded the origin
and the empty focus from its interior. 	
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