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Abstract
We introduce and study here the notion of distributional chaos on uniform spaces. We
prove that if a uniformly continuous self-map of a uniform locally compact Hausdorff
space has topological weak specification property then it admits a topologically dis-
tributionally scrambled set of type 3. This extends result due to Sklar and Smítal (J
Math Anal Appl 241:181–188, 2000). We also justify through examples necessity of
the conditions in the hypothesis of the main result.

Keywords Uniform space · Distributional chaos · Topological weak specification
property

Mathematics Subject Classification 37B20 · 54H20

1 Introduction

The termchaos in connectionwith amapwasfirst used byLi andYorke [15]. Since then
various definitions of chaos have been introduced and extensively studied. A common
idea of all of them is to show the complexity and unpredictability of behavior of
the orbits of a system. Study of implications among various definitions of chaos has
attracted a lot of researchers in recent times. For recent development in chaos theory
one can refer to [14].
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In [1], authors have studied the notion of topological entropy for a continuous self-
map of a compact topological space. A dynamical system is called deterministic if its
topological entropy vanishes [11]. In a similar way positive topological entropy can
be related to randomness and chaos. Schweizer and Smítal introduced the concept of
distributionally chaotic pair based on the asymptotic measure of the distance between
the trajectories of the points [17]. In the case of continuous maps defined on a unit
interval, class of distributionally chaotic maps coincide with the class of functions
with positive topological entropy [16]. Distributional chaos implies Li–Yorke chaos
for maps on intervals.

Distributional chaos was later divided into three types, DC1, DC2 and DC3 [4,21]
It is obvious that DC1 implies DC2 and DC2 implies DC3. It is well known that these
three notions are equivalent for continuous maps defined on an interval [17]. However,
in general this is not true. Another notion of chaos (much stronger than Devaney’s
definition or positive topological entropy) is the specification property which was
introduced by Bowen in [6]. In [20], Sklar and Smítal has related weakened versions
of the specification property with the existence of a two point scrambled set consisting
of DC3 chaotic pair.

The metric notions of chaos were extended to uniform spaces and to general topo-
logical spaces in [3,22]. In [10], second author and others have extended the metric
notions of expansivity and shadowing to the general topological spaces. We have
extended the notion of specification to uniform spaces in [18] and we could relate
it with the notions of expansivity and shadowing on uniform spaces. We have also
obtained relation of topological specification property with topological entropy in
[19]. Recently, T. Arai gave a definition of chaos in the sense of Li–Yorke for an
action of a group on a uniform space [2].

As discussed above, there is a natural relation between specification and distri-
butional chaos, distributional chaos and Li–Yorke chaos, distributional chaos and
entropy. With this motivation we try to extend the definition of distributional chaos
for uniform spaces. Our aim in this paper is to extend Sklar and Smítal’s result
[20] in case of uniformly continuous maps defined on a uniformly locally compact
space.

Let (X ,U) be a uniform Hausdorff space and let f : X → X be a uniformly
continuous map. In this paper we extend the notion of distributional chaos to uniform
spaces that are not necessarily compact metrizable. In this paper there are four sec-
tions. In Sect. 2, we introduce the basic definitions and terminologies required for the
development of the paper. In Sect. 3, for a map f , we define the notions of topolog-
ically distributionally chaotic of type k (abbreviated as T DCk), where k ∈ {1, 2, 3}.
We prove that if f is T DC1 or T DC2 then it is Li–Yorke chaotic. Moreover we
show that these notions are preserved under topological conjugacy and f is T DC1
if and only if f N is T DC1. In Sect. 4, we obtain that a uniformly continuous map
with topological weak specification property defined on a uniformly locally compact
space having a distal pair admits a topologically distributionally scrambled set of
type 3. In the end, we give an example to support our main theorem and we also
give examples to justify the necessity of conditions in the hypothesis of the main
result.
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2 Preliminaries

For completion we give the metric definitions of Li–Yorke chaos and distributional
chaos.

2.1 Li–Yorke Chaos

Let f : X → X be a continuous map of a compact metric space (X , d). A set D ⊂ X
containing at least two points is called a Li–Yorke scrambled set if for any two distinct
points x, y ∈ D, we have

lim inf
n→∞ d( f n(x), f n(y)) = 0 and lim sup

n→∞
d( f n(x), f n(y)) > 0.

The function f is said to be chaotic in the sense of Li–Yorke if there exists an
uncountable Li–Yorke scrambled set [5].

2.2 Distributional Chaos

The notion of distributional chaos was initially defined for interval maps and then
extended for compact metric spaces. Define distribution function F (n)

xy (t) by

F (n)
xy (t) = 1

n
#{0 ≤ i < n|d( f i (x), f i (y)) < t},

where #A denotes the cardinality of the set A. Clearly, F (n)
xy (t) is a non-decreasing

function, F (n)
xy (t) = 0, for t ≤ 0 and F (n)

xy (t) = 1, for t greater than the diameter of X .
Using these functions we can rewrite the lower and upper distribution functions as

Fxy(t) = lim inf
n→∞ F (n)

xy (t),

F∗
xy(t) = lim sup

n→∞
F (n)

xy (t).

Definition 1 If there exists a pair of points x, y ∈ X such that

(i) F∗
xy ≡ 1 and Fxy(t) = 0, for some t > 0, then f is said to be distributionally

chaotic in the strict sense (or distributionally chaotic of type 1, abbreviated as
DC1) [17].

(ii) F∗
xy ≡ 1 and Fxy < F∗

xy , then f is said to be distributionally chaotic in the wider
sense (or distributionally chaotic of type 2, abbreviated as DC2) [21].

(iii) Fxy < F∗
xy , then f is said to be distributionally chaotic of type 3 (abbreviated as

DC3) [4].

2.3 Uniform Spaces

Let X be a non-empty set and let 	X = {(x, x)|x ∈ X}, called as the diagonal of
X × X . A subset M of X × X is said to be symmetric if M = MT , where MT =
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{(y, x)|(x, y) ∈ M}. The composite U ◦ V of two subsets U and V of X × X is
defined to be the set {(x, y) ∈ X × X | there exists z ∈ X satisfying (x, z) ∈ U and
(z, y) ∈ V }. We denote U ◦ U by U 2.

Definition 2 [13] Let X be a non-empty set. A uniform structure on X is a non-empty
set U of subsets of X × X satisfying the following conditions:

(i) if U ∈ U then 	X ⊂ U ,
(ii) if U ∈ U and U ⊂ V ⊂ X × X then V ∈ U ,
(iii) if U ∈ U and V ∈ U then U ∩ V ∈ U ,
(iv) if U ∈ U then U T ∈ U ,
(v) if U ∈ U then there exists V ∈ U such that V ◦ V ⊂ U .

The elements of U are then called the entourages of the uniform structure and the pair
(X ,U) is called a uniform space.

By a space (X ,U)wemean a uniformHausdorff space without isolated points with
uniformity U and by a map f we mean a uniformly continuous map f : X → X . If
U is a neighborhood of 	X , then U ∩ U T is a symmetric neighborhood of 	X , thus
we can often work with symmetric neighborhoods without loss of generality. Note
that the fact that points x and y are close (in terms of distance) in a metric space
X is equivalent to the fact that point (x, y) is close to the diagonal 	X of X × X
in a uniform space (X ,U). If (X ,U) is a uniform space, then there is an induced
topology on X characterized by the fact that the neighborhoods of an arbitrary point
x ∈ X consists of the sets U [x], where U varies over all entourages of X . The set
U [x] = {y ∈ X |(x, y) ∈ U } is called the cross section of U at x ∈ X . A space X
with uniformity U is said to be uniformly locally compact if there exists U ∈ U such
that U [x] is compact for each x ∈ X [12].

3 Topological Distributional Chaos: Definitions and Basic Properties

In this section we extend the definition of distributional chaos for uniform spaces and
study its basic properties. Let (X ,U) be aHausdorff uniform space and let f : X → X
be a uniformly continuous map. We denote the map f × f by F .

For any positive integer n, points x, y ∈ X and E ∈ U , define

F (n)
xy (E) = 1

n
#{i |Fi (x, y) ∈ E, 0 � i < n},

Fxy(E) = lim inf
n→∞ F (n)

xy (E),

F∗
xy(E) = lim sup

n→∞
F (n)

xy (E).

Note that the function Fxy and F∗
xy are non-decreasing and Fxy(E) = 1 = F∗

xy(E),
if E = X . Clearly, Fxy � F∗

xy , for all E ∈ U .
In particular for y = x , we have

Fxx (E) = F∗
xx (E) = 1,
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for all E ∈ U .
Definition 3 A pair of points x, y in X is called topologically distributionally chaotic
of type 1 if

(i) Fxy(E) = 0, for some E ∈ U , and
(ii) F∗

xy(E) = 1, for all E ∈ U .
Definition 4 A pair of points x, y in X is called topologically distributionally chaotic
of type 2 if

(i) Fxy(E) < F∗
xy(E), for some E ∈ U , and

(ii) F∗
xy(E) = 1, for all E ∈ U .

Definition 5 A pair of points x, y in X is called topologically distributionally chaotic
of type 3 if Fxy(E) < F∗

xy(E), for some E ∈ U .
Definition 6 A set containing at least two points is called a topologically distribution-
ally scrambled set of type k for f if any pair of its distinct points is topologically
distributionally chaotic of type k, where k ∈ {1, 2, 3}.
Definition 7 Let f : X → X be a uniformly continuous map of a uniform space
X . Then we say that f is topologically distributionally chaotic of type k (T DCk) if
there exists an uncountable topologically distributionally scrambled set of type k for
f , where k ∈ {1, 2, 3}.
Remark 1 If we consider the uniform space (X ,U), where (X , d) is a metric space
and U is the natural uniformity generated by the family {d−1[0, ε]|ε > 0}, then every
entourage E contains Eε = d−1[0, ε], for some ε > 0 and any Eε is an entourage.
Therefore, in this case, the above topological notions of T DC1, T DC2 and T DC3
coincide with the corresponding metric notions of DC1, DC2 and DC3, respectively.
By definition, we have the following implications

T DC1 �⇒ T DC2 �⇒ T DC3

In [2], author has introduced the notion of Li–Yorke chaos for an action of a group
on a uniform space. In view of that we define the following terms necessary for the
definition of Li–Yorke chaos for a uniformly continuousmap f : X → X on a uniform
space X . A pair of points x, y ∈ X is said to be asymptotic with respect to f , if for
any U ∈ U there exists k ∈ N such that Fi (x, y) ∈ U , for each i ≥ k. We denote by
AR the collection of all pairs of asymptotic points with respect to f . A pair of points
x, y ∈ X is said to be proximal with respect to f , if for any U ∈ U , there exists j ∈ N

such that F j (x, y) ∈ U . We denote by P R the collection of all pairs of proximal pairs
with respect to f . If points are not proximal, then we say they are distal. A uniform
space (X ,U) is said to be distal if for every pair of distinct points x, y there exists
U ∈ U , such that Fi (x, y) /∈ U , for all i ∈ N. A subset S of a uniform space X is a
scrambled set for f if (x, y) ∈ P R\AR, for any distinct elements x and y of S. A
map f : X → X is called Li–Yorke chaotic if there exists an uncountable scrambled
set for f . We denote by LY R the set P R\AR.



4 Page 6 of 13 S. Shah et al.

Proposition 1 Let (X ,U) be a uniform Hausdorff space and let f : X → X be a
uniformly continuous map. If f is T DCk, k ∈ {1, 2}, then f is Li–Yorke chaotic.

Proof Let S be an uncountable scrambled set of type k, k ∈ {1, 2}. Then for every
x, y ∈ S, x �= y, we have F∗

xy(U ) = 1, for all U ∈ U . This implies that for each
U ∈ U , there exists some j ∈ N such that F j (x, y) ∈ U . Thus (x, y) ∈ P R. Note
that (x, y) /∈ AR. For if (x, y) ∈ AR, then for any U ∈ U , there exists l ∈ N such
that Fi (x, y) ∈ U , for all i ≥ l. Let jl = i − l ≥ 0. Then F jl (x, y) = Fi−l(x, y) ∈
U , for each jl ≥ 0. This implies that for each U ∈ U , Fxy(U ) = 1 = F∗

xy(U ),
which contradicts that f is T DCk, k ∈ {1, 2}. This proves that (x, y) ∈ LY R and
uncountability of the set S implies LY R is also uncountable. Thus f is Li–Yorke
chaotic. ��

Let δ
(n)
xy ( f , U ) = #{i |Fi (x, y) /∈ U , 0 � i < n} and let ξ

(n)
xy ( f , U ) =

#{i |Fi (x, y) ∈ U , 0 � i < n}. In the following two results, for N > 0, we denote
F N = f N × f N by G. Proof for the following two propositions is similar to that
given in [23] for a compact metric space. We present the proofs here for completion.

Proposition 2 Let (X ,U) be a uniform Hausdorff space and let f : X → X be a
uniformly continuous map. For x, y ∈ X, N > 0 and U ∈ U ,

(i) if Fxy(U ) = 0 then Gxy(U ) = 0.
(ii) if F∗

xy(U ) = 1 then G∗
xy(U ) = 1.

Thus, if f is T DC1 then so is f N .

Proof (i) If Fxy(U ) = 0 then there is an increasing sequence {nk} of positive integers
such that F (nk)

xy (U ) → 0 as k → ∞. Put mk = [ nk
N ], where [x] denotes the integral

part of the real number x . For each k, ξ
(mk)
xy ( f N , U ) � ξ

(nk)
xy ( f , U ). Then using

this inequality and the fact that F (nk)
xy → 0 as k → ∞, we get that G(mk )

xy (U ) → 0
as k → ∞. Hence Gxy(U ) = 0.

(ii) If F∗
xy(U ) = 1 then there is an increasing sequence {nk} of positive integers

such that F (nk)
xy (U ) → 1 as k → ∞. Then 1

nk
δ
(nk )
xy ( f , U ) → 0 as k → ∞. Put

mk = [ nk
N ]. Then as argued earlier, 1

mk
δ
(mk )
xy ( f N , U ) → 0 as k → ∞. Using

1
mk

ξ
(mk)
xy ( f N , U ) + 1

mk
δ
(mk )
xy ( f N , U ) = 1, we get that 1

mk
ξ

(mk)
xy ( f N , U ) → 1 as

k → ∞. Hence G∗
xy(U ) = 1.

��
Proposition 3 Let (X ,U) be a uniform Hausdorff space and let f : X → X be a
uniformly continuous map. For x, y ∈ X and N > 0, we have the following:

(i) If for U ∈ U , Gxy(U ) = 0, then there exists V ∈ U such that Fxy(V ) = 0.
(ii) If G∗

xy(U ) = 1, for all U ∈ U , then F∗
xy(V ) = 1, for all V ∈ U .

Thus, if f N is T DC1 then so is f .

Proof (i) If for U ∈ U , Gxy(U ) = 0 then there exists an increasing sequence {nk}
of positive integers such that 1

nk
ξ

(nk)
xy ( f N , U ) → 0 as k → ∞. For each i =
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1, 2, . . . , N by uniform continuity of F , there exists Vi such that Fi (Vi ) ⊂ U . Let
V = ∩N

i=1Vi . Then for each i = 1, 2, . . . , N , V ⊂ Vi and Fi (V ) ⊂ U . Hence
(x, y) ∈ V implies that Fi (x, y) ∈ U , for each i = 1, 2, . . . , N implying that
if G(x, y) = F N (x, y) /∈ U then Fi (x, y) /∈ V , for all i = 0, 1, 2, . . . , N − 1.
Thus,

N (δ(nk)
xy ( f N , U ) − 1) � δ(Nnk)

xy ( f , V )

�⇒ N (nk − ξ (nk)
xy ( f N , U )) − N � Nnk − ξ (Nnk)

xy ( f , V )

�⇒ ξ (Nnk)
xy ( f , V ) � Nξ (nk)

xy ( f N , U ) + N

Taking Nnk = mk we get

1

mk
ξ (mk)

xy ( f , V ) � 1

nk
ξ (nk)

xy ( f N , U )) + 1

nk
.

Since 1
nk

ξ
(nk)
xy ( f N , U ) → 0 as k → ∞, we have 1

mk
ξ

(mk)
xy ( f , V ) → 0 as k → ∞.

Thus Fxy(V ) = 0.
(ii) Suppose G∗

xy(U ) = 1, for allU ∈ U . Fix V ∈ U . For each i = 0, 1, . . . , N −1, by

uniformcontinuity of Fi , there existsUi such that Fi (Ui ) ⊂ V . LetU = ∩N−1
i=0 Ui .

Then for each i = 0, 1, . . . , N − 1, U ⊂ Ui and Fi (U ) ⊂ V . Thus (x, y) ∈ U
implies Fi (x, y) ∈ V , for each i = 0, 1, . . . , N −1. For thisU , by assumptionwe
have G∗

xy(U ) = 1. Therefore there exists an increasing sequence {nk} of positive
integers such that G(nk )

xy (U ) → 1 as k → ∞. Hence

N (ξ (nk)
xy ( f N , U ) − 1) � ξ (Nnk)

xy ( f , V )

Taking Nnk = mk we get

G(nk)
xy (U ) = 1

nk
ξ (nk)

xy ( f N , U ) � 1

mk
ξ (mk)

xy ( f , V ) + 1

nk
.

Since G(nk )
xy (U ) → 1 as k → ∞, we have F (mk)

xy (U ) → 1 as k → ∞. Since V is
arbitrary, it follows F∗

xy(V ) = 1, for all V ∈ U .
��

Definition 8 A set S ⊆ N is syndetic if there exists a positive integer a such that
{i, i + 1, . . . , i + a} ∩ S �= φ, for any i ∈ N. A pair of points x, y ∈ X is syndetically
proximal if for every entourage U ∈ U , the set AU

xy = { j ∈ N|F j (x, y) ∈ U } is
syndetic.

Proposition 4 Let (X ,U) be a uniform Hausdorff space and let (x, y) be a synde-
tically proximal pair with respect to f then such a pair cannot be a topologically
distributionally chaotic of type 1.
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Proof Let U ∈ U . Then (x, y) is a syndetically proximal pair implies that the set AU
xy

is syndetic. Therefore there exists a positive integer m such that {i, i +1, . . . , i +m}∩
AU

xy �= φ, for every i ∈ N. Now, m · [ n
m ] � n � (m + 1)[ n

m ], for every n ∈ N. We
have

F (n)
xy (U ) = 1

n
#{i |Fi (x, y) ∈ U , 0 � i < n}

≥ 1

n
[ n

m
]

≥ 1

m + 1
> 0,

which implies F (n)
xy (U ) > 0, for any U ∈ U . ��

Proposition 5 Let (X ,U) and (Y ,V) be uniform Hausdorff spaces. Suppose f : X →
X and g : Y → Y are topologically conjugate. Then f is T DCk implies g is T DCk,
k ∈ {1, 2, 3}.
Proof Maps f and g are topologically conjugate implies that there exists a uniform
homeomorphism h : X → Y such that h f = gh and suppose f is T DCk, k ∈
{1, 2, 3}. Then f is T DCk implies that f has an uncountable scrambled set S of type
k, k ∈ {1, 2, 3}. Let x1, x2 ∈ S, y1 = h(x1), y2 = h(x2). Let U ∈ U . Then h is a
uniform homeomorphism implies that V = h(U ) ∈ V . Now

G(n)
y1y2(V ) = 1

n
#{i |Gi (y1, y2) ∈ V , 0 � i < n}

= 1

n
#{i |(gi h(x1), gi h(x2)) ∈ V , 0 � i < n}

= 1

n
#{i |(h f i (x1), h f i (x2)) ∈ h(U ), 0 � i < n}

= 1

n
#{i |(hFi (x1, x2) ∈ h(U ), 0 � i < n}

= 1

n
#{i |(Fi (x1, x2) ∈ U , 0 � i < n}

= F (n)
x1x2(U ) (∗)

Thus, h being a uniform homeomorphism, using (∗) we have f is T DCk implies
g is T DCk, k ∈ {1, 2, 3}. ��

4 Topological Weak Specification Property and Topological
Distributional Chaos

The specification property for homeomorphisms on a compact metric space has turned
out to be an important notion in the study of dynamical systems. It was first introduced
by Bowen to give the distribution of periodic points for AxiomA diffeomorphisms [6].
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Informally the specification property means that it is possible to shadow two distinct
pieces of orbits which are sufficiently apart in time by a single orbit.

A continuous self-map f on a uniform space X is said to have topological spec-
ification property if for every symmetric neighborhood U of the diagonal 	X there
exists a positive integer M such that for any finite sequence of points x1, x2, . . . , xk

in X , any integers 0 = a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk with a j − b j−1 ≥ M
(2 ≤ j ≤ k) and any p > M + (bk −a1), there exists x ∈ X such that f p(x) = x and
Fi (x, x j ) ∈ U , a j ≤ i ≤ b j , 1 ≤ j ≤ k [19]. If we drop the periodicity condition in
the definition of topological specification property then such a map is said to satisfy
topological weak specification property [8]. We now prove our main result.

Theorem 1 Let (X ,U) consisting of closed entourages be a uniformly locally compact
Hausdorff space without isolated points having a distal pair and let f be a uniformly
continuous map of X onto itself having topological weak specification property then
f admits a topologically distributionally scrambled set of type 3.

Proof Let y, z ∈ X be a distal pair. Then there exists U1 ∈ U such that Fi (y, z) /∈ U1,
for all i ∈ N ∪ {0}. Also, X is uniformly locally compact space implies that there
exists U2 ∈ U such that U2[t] is compact for each t ∈ X .
Step 1 Let U = U1 ∩ U2 ∈ U and let U0 be such that U 4

0 ⊂ U . For V0 = U0 ∈ U ,
choose a positive integer M(V0) as in the definition of topological weak specification
property. For x1 = y, x2 = z, choose integers a1 = 0, b1, a2 = b1 + M(V0),
b2 = qa2 = l1, where q ≥ 2. By definition of topological weak specification property
there exists y1 ∈ X such that

Fi (y1, x j ) ∈ V0, a j � i � b j , j ∈ {1, 2}.

Note that (y1, x1) = (y1, y) ∈ V0, which implies that y ∈ V0[y1]. By uniform
continuity of f , we get that V1 = ∩ j=1,2 ∩a j �i�b j F−i (V0) ∈ U . Then V1 ⊂ V0 and
hence V1[y1] ⊂ V0[y1] = U0[y1] ⊂ U2[y1]. Since U2[y1] is compact, it follows that
V1[y1] and V0[y1] are compact sets.

Let w ∈ V1[y1]. Then (y1, w) ∈ V1 implies that Fi (y1, w) ∈ V0, for a1 � i � b1
and a2 � i � b2. This further implies

Fi (w, x j ) ∈ V 2
0 , a j � i � b j , j ∈ {1, 2} (1)

Thus, each point w ∈ V1[y1] satisfies (1). This completes step 1.
Step 2 For V1 ∈ U , choose a positive integer M(V1) as in the definition of topological
weak specification property. For x1 = y1, x2 = y, integers a1 = 0, b1 = l1, a2 =
b1 + M(V1), b2 = q2a2 = l2, by definition of topological weak specification property
there exists y2 ∈ X such that
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Fi (y2, x j ) ∈ V1, a j � i � b j , j ∈ {1, 2}.

Now (y2, y1) ∈ V1, which implies y2 ∈ V1[y1]. As argued earlier, let V
′
2 =

∩ j=1,2 ∩a j �i�b j F−i (V1) and let V
′′
2 ∈ U be such that V

′′
2 [y2] ⊂ V1[y1]. Let

V2 = V
′
2 ∩ V

′′
2 . Note that each w ∈ V2[y2] satisfies

Fi (w, x j ) ∈ V 2
1 , a j � i � b j , j ∈ {1, 2} (2)

Continuing like this, after (n − 1)-steps we have Vn−1 ∈ U , a point yn−1 and a
positive integer ln−1.
Step n For Vn−1 ∈ U , choose a positive integer M(Vn−1) as in the definition of
topological weak specification property. For x1 = yn−1, x2 = y, if n is even otherwise
choose x2 = z, integers a1 = 0, b1 = ln−1, a2 = b1 + M(Vn−1), b2 = qna2 = ln , by
definition of topological weak specification property there exists yn ∈ X such that

Fi (yn, x j ) ∈ Vn−1, a j � i � b j , j ∈ {1, 2}.

Now (yn, yn−1) ∈ Vn−1, which implies yn ∈ Vn−1[yn−1]. Let

V
′
n = ∩ j=1,2 ∩a j �i�b j F−i (Vn−1)

and let V
′′
n ∈ U be such that V

′′
n [yn] ⊂ Vn−1[yn−1]. Let Vn = V

′
n ∩ V

′′
n . Note that each

w ∈ Vn[yn] satisfies

Fi (w, x j ) ∈ V 2
n−1, a j � i � b j , j ∈ {1, 2} (3)

So we get a nested sequence of non-empty compact sets {Vn[yn]} of X with
∩n∈NVn[yn] �= φ. Let x ∈ ∩n∈NVn[yn]. Then x ∈ Vn[yn], for each n ∈ N. Therefore,
if n is even then by (3),

Fi (x, y) ∈ V 2
n−1, (ln−1 + M(Vn−1)) � i � ln . (4)

Hence for n even,

F j+ln−1+M(Vn−1)(x, y) ∈ V 2
n−1, 0 � j � (ln − ln−1 − M(Vn−1)). (5)

It follows that for n even,

F (ln−ln−1−M(Vn−1))
xy (V 2

n−1) = 1. (6)

Note that for n = 2k + 1,

Fi (x, z) ∈ V 2
2k, (l2k + M(V2k)) � i � l2k+1.

For if,
Fi (x, y) ∈ V 2

2k, (l2k + M(V2k)) � i � l2k+1,
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then we have

Fi (z, y) ∈ V 4
2k, (l2k + M(V2k)) � i � l2k+1,

which implies that

Fi (z, y) ∈ V 4
2k ⊂ U 4

0 ⊂ U1, (l2k + M(V2k)) � i � l2k+1,

a contradiction.
Hence for odd n,

F (ln−ln−1−M(Vn−1))
xy (V 2

n−1) → 0. (7)

Thus, Fxy �= F∗
xy . Hence f has a topologically distributionally scrambled set of

type 3. ��
Corollary 1 Let (X ,U) be a uniformly locally compact, totally bounded Hausdorff
space and let f : X → X be a uniformly continuous map having topological specifi-
cation property then f admits a topologically distributionally scrambled set of type 3.

In [10], the second author and others have extended Smale’s spectral decomposition
theorem [7] to those spaces which are not necessarily metrizable and not necessarily
compact. They have obtained the following result.

Theorem 2 [10] Let X be a first countable, locally compact, paracompact, Hausdorff
space and f : X → X an expansive homeomorphism with the shadowing property.
Then the non-wandering set �( f ) can be written as a union of disjoint closed invariant
sets (called as basic sets for f ) on which f is topologically transitive. If X is compact
then this decomposition is finite.

We have proved the following result in [9].

Theorem 3 [9] Let X be a first countable, locally compact, paracompact, Hausdorff
space and f : X → X be an expansive homeomorphism with the shadowing property.
Then there exists a subset S of a basic set R and k > 0 such that f k(S) = S,
S ∩ f j (S) = φ (0 < j < k), f k |S is topologically mixing and R = ∪k−1

j=0 f j (S).

We present here an interesting corollary of the above theorem, which will provide
us of an example to support our main theorem.

Corollary 2 Let X be a first countable, locally compact, paracompact, Hausdorff space
and f : X → X be an expansive homeomorphism with the shadowing property.
Suppose (�( f ), f ) is topologically transitive and has a fixed point. Then (�( f ), f )

is mixing.

Remark 2 If in addition X is totally bounded and f |�( f ) has shadowing property then
f |�( f ) has topological specification property [18]. Hence f |�( f ) admits a topologi-
cally distributionally scrambled set of type 3.

The following example justifies that the condition of topological weak specification
property is necessary in Theorem 1.
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Example 1 Let f : R → R be defined by f (x) = 2x , where R equipped with the
usual uniformity is a uniformly locally compact space. The map f does not have
the topological weak specification property [8]. Note that for any two distinct points
x, y ∈ R, Fxy = F∗

xy . Thus f does not admit any T DC1 pair.

Remark 3 Note that the entropy of the map f in the above example is h( f ) = log2
[19] but f is not T DCk for any k = 1, 2, 3. Thus positive topological entropy need
not imply T DCk.

The following example justifies that Theorem 1 need not be true if the underlying
space is not Hausdorff.

Example 2 Let f : S1 → S1 be defined by f (eiθ ) = e2iθ , where S1 is equipped with
the cofinite topology. Then S1 is uniformly locally compact but not Hausdorff. Note
that f has topological specification property and hence topological weak specification
property but f does not have any T DC1 pair. In fact, for any two distinct points
x, y ∈ S1, Fxy = F∗

xy .

Acknowledgements Authors are thankful to the referee for his/her valuable comments and suggestions.
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