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Abstract
In this article, we present a novel survey of known qualitative features of the isosceles
trapezoidal four-body problem, that has three degrees of freedom, as well as its two
subsystems with two degrees of freedom, namely, the symmetric collinear four-body
problem and the rectangular four-body problem. We use the configurations space to
display the “full picture” that allows us to visualize all admissible configurations on
the reduced space, homeomorphic to a three-sphere, called the shape sphere.

Keywords Four-body problem · Collisions · Regularization · Shape sphere

Mathematics Subject Classification 70F · 58F

1 Introduction

In 1988, R. Moeckel [10] performed a qualitative study of the three-body problem
getting what he called a “big picture”. Following these very inspiring ideas we fulfill
a similar study for the isosceles trapezoidal four-body problem (IT4BP).

The isosceles trapezoidal four-body problem was first introduced by E. Lacomba
in two articles published in 1981 and 1983 ([5] and [6], respectively). Since then,
the attention has been mainly directed to study its two subsystems: the symmetrical
collinear four-body problem (CS4BP) and the rectangular four-body problem (R4BP),
and much information has been obtained from them, see among others [1,2,7,8,12,13,
15]. However, a topic that has been left aside is the way on how to include information
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Fig. 1 Isosceles trapezoidal
configuration
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of the subsystems into the IT4BP in order to have a better picture on the dynamical
behavior in this problem.

This paper deals with the isosceles trapezoidal four-body problem, where two mass
point have equal massesμ, while the remaining two havemasses equal tom, see Fig. 1.
If the particles lie initially at the vertices of an trapezoidwith velocities symmetric with
respect to its axis of symmetry, then they will always keep a symmetric trapezoidal
configuration when moving under the newtonian law of attraction.

The aim of the present article is to give a step forward on the knowledge of the
global dynamics for the IT4BP from its subproblems.

The manuscript is prepared as follows: the isosceles trapezoidal four-body problem
is stated in Sect. 2. The regularization of the binary collision have been per-
formed in Sect. 3. In Sect. 4 we carry out a wide review of the known results
about the IT4BP and its subsystems, while in Sect. 5 the reduced configuration
space is introduced. Finally, we gather from a global perspective all the dynamical
features of the IT4BP, the collinear symmetric and the rectangular four-body prob-
lems.

2 Setting of the Problem

Let x be the semidistance between the upper pair of bodies with masses μ, y the
semidistance between the other twobodies of the trapezoid, bothwithmassesm, and let
z be the signed distance between the centers ofmass of both binaries. These coordinates
x, y, z can be seen as a Jacobi-like system of coordinates. Thus, the positions of the
particles are given by

q1 =
(
x,

m

m + μ
z

)
, q2 =

(
−x,

m

m + μ
z

)
,

q3 =
(
y,− μ

m + μ
z

)
, q4 =

(
−y,− μ

m + μ
z

)
,

(2.1)

where the the center of mass remains fixed at the origin. Consequently, the IT4BP is
a three degrees of freedom problem. Later, this fact will play a key feature.
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Fig. 2 Non total collisions for the isosceles trapezoidal problem.

The equations of motion are

x ′′ = − μ

4x2
− m(x − y)[

(x − y)2 + z2
]3/2 − m(x + y)[

(x + y)2 + z2
]3/2 ,

y′′ = − m

4y2
+ μ(x − y)[

(x − y)2 + z2
]3/2 − μ(x + y)[

(x + y)2 + z2
]3/2 ,

z′′ = − (μ + m)

[
1[

(x − y)2 + z2
]3/2 + 1[

(x + y)2 + z2
]3/2

]
,

(2.2)

where ′ = d
dt .

From [1] we know that the all singularities in the IT4BP are due to collisions.
These are given by total collision, two single binary collisions, those of the upper
binaries (x = 0 with y positive, and no restriction on z) and the collision of the bottom
binary (y = 0 with x positive, and no restriction on z), and two simultaneous binary
collisions, one being symmetric (x = y �= 0 and z = 0) while the second one not
necessarily symmetric with respect to the real line (x = y = 0 and z �= 0). See Fig. 2.

The Hamiltonian of the system is

H(x, y, z, px , py, pz) = p2x
4μ

+ p2y
4m

+ p2z
4M

−U (x, y, z) (2.3)

where px = 2μx ′, py = 2my′ and pz = 2Mz′ are the momenta, M = μm
μ+m and the

potential U is given by

U (x, y, z) = μ2

2x
+ m2

2y
+ 2μm√

(x − y)2 + z2
+ 2μm√

(x + y)2 + z2
. (2.4)

By taking q = (x, y, z), p = (px , py, pz) and A = diag {2μ, 2m, 2M}, the
Hamiltonian (2.3) becomes

H = K (p) −U (q), (2.5)

where K (p) = 1
2 p

T A−1 p is the kinetic energy.
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3 Regularization of the Binary Collision

In order to study the behavior of solutions that eject or go to total collision, or pass close
to total collision, a classical tool is to blow up the singularity associated to the collision
of all particles, which was introduced by McGehee in [9] to study the collinear three-
body problem. This is given by a polar-like change of coordinates in the configuration
space together with a consistent change in the momenta, and a time reparametrization
so that it infinitely slows down the physical time, the new time variable turns out to
be a fictitious time.

We define r = √
qT Aq , such that r2 = I is the momentum of inertia of the

particles. Let

S = {q : r2 = qT Aq = 1}

be the ellipsoid in the configuration space in the norm given by the moment of inertia.
We now consider the McGehee’s set of coordinates

r = √
qT Aq, s = r−1q,

v = r1/2〈p, s〉, w = r1/2
(
A−1 p − 〈p, s〉s) ,

(3.1)

together with the rescaling of time given by dt = r3/2dτ .
We remark that coordinate s gives us the shape of the configuration and q = rs

provides us with all of the configurations that are homothetic to configuration s.
At this stage, we would point out that as mass matrix A allows us to consider a

norm in the configuration space, it also endows the configuration space with the norm
‖w‖2 = wT Aw, see [9].

In McGehee’s coordinates, the motion equations can be written as

ṙ = rv,

v̇ = ‖w‖2 + 1

2
v2 −U (s),

ṡ = w,

ẇ = −1

2
vw − ‖w‖2s + GradU (s), (3.2)

where · = d
dτ
, GradU (s) = U (s)s + A−1∇U (s) is the gradient vector field at s ∈ S

of the restriction of U to S. The energy relation (2.3) becomes

1

2

(
v2 + ‖w‖2

)
−U (s) = rh. (3.3)

By taking r = 0 in the energy relation (3.3) we obtain the set

C =
{
(s, v, w) | 1

2

(
v2 + ‖w‖2

)
= U (s)

}
, (3.4)
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called the total collision manifold, which is a common boundary for all energy mani-
folds [4]. The total collision manifold can be though as the spine of a book and each
sheet corresponds to a fixed level of energy. Straightforward calculations show that if
r = 0, the first equation in (3.2) becomes ṙ = 0, so C is an invariant set under the
flow. Indeed, the set C is also obtained by taking h = 0 in (3.3).

Once we carry out the change to McGehee coordinates, the singularity associated
to the collision of all the particles of the system is replaced by the invariant manifold
C, and the flow has been extended to C, that is, to r = 0. Thus, the singularities for
Eq. (3.2) are associated to the non total collisions.

Lets us denote ŝ1 = 2x the distance between the bodies of the top binary as well as
ŝ2 = 2y the distance between the bodies of the bottom binary. The singularities due
to binary collisions of the isosceles trapezoidal configuration can be regularized.

We show that collision of the upper binary can be regularized. It is well-known,
that simultaneous binary collisions can be regularized [14]. To regularize explicitly
this binary collision we use the change of coordinates associated to the Levi-Civita
regularization method given by

ŝ1 = ξ2, ŵ1 = η

2ξ
, (3.5)

together the time reparametrization given by
dτ

ds
= 4ξ2.

Under the new coordinates, the equations of motion (3.2) transform into

dr

dτ
= rv,

dv

dτ
= μ

2ξ2
(η2 + 1) + 2mw2

2 + 2Mw2
3 + 1

2
v2 + m2

2s2
+ f (ξ2, s2, s3),

dξ

dτ
= η

4ξ2
,

ds2
dτ

= w2,

ds3
dτ

= w3,

dη

dτ
= η2

4ξ2
1

ξ
− vη

4
− ξ

[
μη2

2
+

(
2mw2

2 + 2Mw2
3

)
+ 1

2μ

(
μ2

2

)]
(3.6)

− ξ

[(
μ2

2s2
+ f (ξ2, s2, s3)

)
ξ2 + ∇s1U (ξ2, s2, s3)

]

dw2

dτ
= −1

2
(vw2 + μη2) − 2ξ2

(
mw2

2 + Mw2
3

)

− 1

2m

[
μ2

2
+ ξ2

(
m2

2s2
+ f (ξ2, s2, s3)

)
+ ∇s2U (ξ2, s2, s3)

]
,

dw3

dτ
= −1

2
(vw3 + μη2) − 2ξ2(mw2

2 + Mw2
3)
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− 1

2M

[
μ2

2
+ ξ2

(
m2

2s2
+ f (ξ2, s2, s3)

)
+ ∇s3U (ξ2, s2, s3)

]

and the energy relation (3.3) becomes

rh − 1

2
v2 − mw2

2 − Mw2
3 + m2

2s2
+ f (ξ2, s2, s3) = μ

4ξ2
(η2 − 2μ), (3.7)

where

f (ξ21 , s2, s3) = μm√
(4ξ2 − s2)2 + s23

+ μm√
(4ξ2 + s2)2 + s23

is an analytical function in a neighborhood of the simple binary collision ŝ1 = 0.
Observe that last equations still have singularities at ξ1 = 0. Introducing the new

time coordinate through
dτ

ds
= 4ξ2, the set of Eq. (3.6) are now regular.

The regularization of the below binary collision s2 = 0 is done in a similar way.

We remark that if we multiply (3.7) by
1

4ξ2
, we have that η → √

2μ as ξ → 0.

Another singularity corresponds to the symmetric simultaneous collisions of the
pairs of bodies at the lateral sides of the trapezoid. It occurs when x = y �= 0 and
z = 0.

4 Rectangular and Collinear Symmetric Four-Body Subsystems of the
Isosceles Trapezoidal Problem

In this section review known results concerning the IT4BP as well as its subsystems,
namely, the CS4BP and the R4BP.

Proposition 4.1 [6] For a fixed level of energy, the set of collision orbits in the IT4BP
is given by the union of several submanifolds, two of dimension three corresponding
to convex central configurations, and two of dimension two, associated to the config-
urations of Moulton (collinear), and another manifold of dimension two, related to
total ejection orbits.

The two subsystems of the IT4BP have two degrees of freedom, they are given
by the CS4BP and the R4BP. These subproblems are obtained when the four bodies
always keep a collinear configuration (z = 0) or, when the bodies lie at the vertices
of a rectangle (x = y), see Fig. 1. Observe that, in order to preserve this rectangular
configuration under evolution all the masses must be equal, and for the CS4BP, the
masses of the inner pair have to be equal and the masses of the remaining two particles
are required to be equal in order to preserve the collinear symmetric configuration
under time evolution.

Proposition 4.2 [2,7,8] For the CS4BP and the R4BP, their corresponding total col-
lision manifolds are two-dimensional manifolds, independent of the total energy h,
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invariant under the flow and topologically equivalent to a sphere minus four points.
On each total collision manifold there are two hyperbolic equilibrium points E+ and
E−, which have associated their corresponding stable Ws and unstable manifolds
Wu. For any energy level there is an heteroclinic connection between the equilibria
given by a unique homothetic orbit, that is, an orbit that is contained in the intersection
of the manifolds Wu(E+) ∩ Ws(E−).

For the two subsystems there is more information for invariant negative energy
surfaces. In the case of the R4BP, there are two ways to escape, the binaries to the
left and right of the rectangular configuration go to infinity in a horizontal way, such
binaries may experience simultaneous binary collisions and the heigh of the rectangle
remains bounded, or the top and bottom binaries escape vertically suffering simul-
taneous binary collisions while the width of the rectangle stays bounded. Moreover,

Proposition 4.3 [8] There are two ejecting orbits that reach infinity, one does it
parabolically, while the other reaches infinity in a hyperbolic way.

The authors use this result to prove the following.

Proposition 4.4 [8] For the R4BP and a fixed negative level of energy, there are oscil-
latory trajectories passing close to total collapse and infinity.

These oscillatory orbits are trajectories that pass close to total collision, go to infinity
with rectangular configuration of a infinite height and bounded width, go back close
to total collapse, may repeat this behavior or reach infinity again as a rectangle with
a unbounded width and infinite height and continue its oscillatory motion following
this behavior.

Equally, the CS4BP presents interesting motions as the following results show. In
particular, in [7], the authors proved in an analytical way the existence of a very rich
family of orbits.

Proposition 4.5 [7]For any of negative energy level in the CS4BP, there are orbits that
eject from total collision, perform a finite sequence of non simple collisions, binary
collisions of the inner pair of bodies and/or symmetric double binary collisions to
finally end in total collapse

These orbits can be regarded as heteroclinic connections between the equilibrium
points, points which lie on the total collision manifold.

In addition, for the CS4BP, Alvarez-Ramírez et al. [2] studied analytical and numer-
ically orbits that eject from (or collide to) total collision and escape to infinity or eject
from it. They proved the next analytical result.

Proposition 4.6 [2] There are ejection-direct escape orbits that after being ejected
perform a sequence of only one of the possible non total collisions; that is, binary
collisions of the inner pair or symmetric simultaneous binary collisions.

Besides, for a fixed value of the mass parameter they found numerically orbits that
directly escape to (come from) infinity and show a unique type of non total collisions.
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Moreover, they gave amethod that can be used for any value of themass parameter.We
recall that in this subsystem there are two ways for an orbit to escape: the outer bodies
escape in a symmetric manner while the motion of the inner pair remains bounded and
perhaps performing single binary collisions or all of the particles escape performing
symmetric double binary collisions.

5 The Reduced Configuration Space and the Shape Sphere

5.1 Reduction Through Classical Conserved Quantities

The differential equations that model the n-body problem give rise to a dynamical
system that is high dimensional, it is possible to reduce the problem to a lower number
of dimensions by using the the classical first integrals of motion: the total momentum

p1 + p2 + · · · + pn, (5.1)

the center of mass

1

M (m1q1 + m2q2 + · · · + mnqn) (5.2)

where M = ∑n
i=1 mi , the total angular momentum

ω = q1 × p1 + q2 × p2 + · · · + qn × pn, (5.3)

and the total energy H = K −U .
After these reductions we obtain a space where energy and angular momentum are

constant, whose topology depend on the energy, angular momentum and the masses
of the bodies. Even with this reduction on the number of dimensions, the remaining
number of dimensions is still too many.

5.2 Reduction via McGehee Coordinates and Configuration Space for IT4BP

The adoption of the McGehee coordinates [9] becomes convenient to study our prob-
lem from a geometrical setting. We restrict to the planar four-body problem and
consider the moment of inertia I about the origin, this is plausible since the cen-
ter of mass is set at the origin. In fact, the square root of the moment of inertia r = √

I
measures the size of the configuration and can be seen as the radial component of the
polar-like set of coordinates and r = 0 corresponds to the total collision of all particles.
We use the size of the configuration to normalize the configuration q = (q1, . . . , q4)
formed by the particles. The coordinate s = 1

r q normalizes the positions and gives
a measure of the “angular component” of the configuration. It is immediate to show
that sT As = 1. Thus, the set of all non trivial possible shapes is parametrized by an
ellipsoid, that corresponds to the sphere of unit radius S2 under the metric defined by
the matrix of masses A. By using coordinate s, we miss the size of the configuration
but we keep the shape of the configuration.
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In order to deal in an adequate way with the total energy and angular momentum it
is convenient to make the transformation in the momenta given by z = √

r p, where
p = (p1, p2, p3, p4). In terms of coordinates (s, z) = (s1, s2, s3, s4, z1, z2, z3, z4)
the energy and angular momentum can be written as

hr = H(s, z) = 1

2
zT Az −U (s) and

4∑
i=1

zi × si = 1√
r
ω. (5.4)

Proposition 5.1 In terms of coordinates (s, z) = (s1, s2, s3, s4, z1, z2, z3, z4) the
energy and angular momentum can be written as

hr = H(s, z) = 1

2
zT Az −U (s) and

4∑
i=1

zi × si = 1√
r
ω. (5.5)

The known integrals give rise to invariant sets described in terms of coordinates
r , s, z. Given prescribed values for ω and h for the angular moment and energy,
respectively, we obtain the invariant set

M(ω, h) =
{

(r , s, z) | r ≥ 0,
4∑

i=1

misi = 0 and (5.5)

}
. (5.6)

that is still high dimensional.
There is another way to study our problem, a more geometrical one, where we

take into account the geometry of the shapes of the configurations under study. For
the IT4BP each configuration is associated to a trapezoid, and to rely on this geo-
metric feature is more intuitive than to take also into consideration the behavior of
the momenta. This is a very good reason to direct our attention only to the set of
configurations.

Definition 5.2 The configuration space for the IT4BP is given by

V =
{
(q1, q2, q3, q4) ∈

(
R
2
)4 | μq1 + μq2 + mq3 + mq4 = 0

}
, (5.7)

where the positions are given by (2.1), and the centre of mass is fixed at the origin.

5.3 The Quotient Map and the Shape Sphere

Moeckel [10], Montgomery [11] and Chen [3] used Jacobi-like systems of coordinates
in the planar three-body problem (P3BP) and the parallelogram four-body problem
(P4BP) to reduce the dimensionof the space of configurations to identify the admissible
configurations through the Hopf fibration. Since the IT4BP, P3BP and the P4BP have
three degrees of freedom, we shall follow this approach for the IT4BP.
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Fig. 3 Jacobi-like coordinates
for the isosceles trapezoidal
configuration

q2 q1

q4 q3

z1

z2

Now,we rely on complex coordinates to state Jacobi-like coordinates for the isosce-
les trapezoidal four-body problem and define

(z1, z2) := (q4 − q2, q1 − q2) ∈ C
2. (5.8)

These Jacobi-like coordinates are a convenient way to parametrize the configuration
space V and they are shown in Fig. 3.

The reduced configuration space Ṽ is obtained by identifying (z1, z2) ∈ C
2 with

(z̃1, z̃2) ∈ C
2 if there exists θ ∈ R/Z ∼= S

1 so that (z̃1, z̃2) = eiθ (z1, z2). In
this way, this reduced space is S1-invariant. Let [(z1, z2)] be the equivalence class
associated to (z1, z2) under this equivalence relation. Through this, we identify two
isosceles trapezoidal configurations if they are rotationally equivalent. So, we have
that V /SO(2) ∼= C

2/S1.
Next, we shall identify V /SO(2) with R

3 by means of the Hopf fibration. To do
so, consider the Hopf map

� : C2 → R × C ∼= R
3 (5.9)

defined as

�(z1, z2) = (|z1|2 − |z2|2, 2z1z2). (5.10)

This map takes the unit three sphere S
3 in C

2 into the unit sphere in R
3. Consider

(w1, w2, w3) ∈ R
3, wherew1 = |z1|2 −|z2|2, w2 = Re(2z1z2) andw3 = Im(2z1z2).

If z1 = a + ib and z2 = c + id, then we have that w1 = (a2 + b2) − (c2 + d2),
w2 = 2(ac + bd), w3 = 2(ad − bc). A straightforward computation shows that the
image of S3 in C2 is the unit sphere S2 ⊂ R

3.

We denote by � to the extension of the Hopf map to C
2, that is � : C2 → R

3. It
is worthwhile to observe that � is invariant under the equivalence relation given by
rotations eiθ , that is, �(z1, z2) = �(eiθ z1, eiθ z2).

As a consequence, we have that the dynamics of the evolution of the trapezoids can
be seen as motions of points in the three dimensional space through the compositions
of maps
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(q1, q2, q3, q4) �→ (z1, z2) �→ [(z1, z2)] �→ (w1, w2, w3).

Next, we use spherical coordinates

(w1, w2, w3) = (r2 cosφ cos θ, r2 cosφ sin θ, r2 sin φ) (5.11)

in the reduced space R3. As we vary radius r we obtain different spheres, each con-
taining a full set of equivalence classes of shapes, so we choose the sphere with r = 1
as a model, and refer to it as shape sphere.

5.4 Similarity Classes of Trapezoids

It is a tool that helps us to get another insight on the planar isosceles trapezoidal four-
body problem, where for each point on the shape sphere we associate to it an oriented
similarity class of trapezoids. Next, we give a description of the of the points on the
shape sphere in terms of the possible configurations for a trapezoid.

The shape sphere has several distinguished points, some corresponding to central
configurations and others corresponding to simple collisions. The following observa-
tions give us some geometric features for points on the shape sphere. See Fig. 4.

• The equator of the sphere represents to all the isosceles trapezoidal collinear con-
figurations. This follows from the fact that w3 = 2 Im(z̃1z2) is equal to twice the
area of the parallelogram generated by z1 and z2. So, w3 = 0 means that z1 and z2
are collinear and the four bodies at q1, q2, q3 and q4 form a collinear configuration.

• Observe that 12w2 = ac+bd is the scalar product of z1 = q4−q2 and z2 = q1−q2,
seen as vectors in R

2. So, z1 and z2 are perpendicular when w2 = 0. For this
reason, under condition w2 = 0, the corresponding trapezoids are rectangular
configurations. Hence, the great circle with w2 = 0 corresponds to the set of all
rectangular configurations.

collinear configurations

rectangular configurations

non total collisions

NC1

NC2

SCt,b

SBC

collinear central configurations

E1

E2

w1

w2

w3

Fig. 4 Shape sphere for the isosceles trapezoidal problem.
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• In the equator we must also find the simultaneous double collisions of the top and
bottom binaries, represented by point SCt,b; point SBC in the equator represents
the symmetric simultaneous binary collision of the lateral binaries, see Fig. 5.
Also, the two collinear central configurations E1 and E2 ([6]) lie on this equator
and their positions depend on the values of the masses.

• The trapezoids on the upper hemisphere, that is, havingw3 = 1
2 (ad −bc) positive

and vertices q1, q2, q3, q4 are positively oriented, that is, (q4 − q2) × (q1 − q2) =
z1 × z2 is a positive multiple of the area generated by the canonical vectors e1 and
e2 in the plane, while the trapezoids in the lower hemisphere correspond to the
negatively oriented trapezoids.

• The two non-collinear central configurations, represented by points NC1 and NC2
must lie on the circle w2 = 0 of rectangular configurations, see [6]. The point
NC1 is associated to the configuration of the positively oriented square is found
in the upper hemisphere, while NC2 in the lower hemisphere is associated to the
negatively oriented square. As a square configuration is obtained when ‖z1‖ =
‖z2‖, that is w1 = 0. Hence, NC1 and NC2 correspond the north and south poles,
respectively.

• When considering the two simple binary collisions, where the first one corresponds
to collision of the bodies of the top binary and the second to collision of the bodies
of the bottombinary. These collisions can not be seen on the shape sphere since they
give rise to isosceles triangles associated to degenerate trapezoidal configurations

In polar-like coordinates, the Hill region is determined by restrictions imposed by
the energy relation in (5.5). Since the kinetic energy is non-negative it follows that
U (s) ≥ hr , then for a given shape s0, it is satisfied U (s0)/|h| ≥ r . The geometry of
the Hill region is shown in Fig. 5, it looks like a shirt with several arms.

The reduced configuration space is obtained when we delete the points associated
to non total collision points and has the form (topologically) of a shirt with four
arms or two pants glued by the waist. Each hole corresponds to one of the non total

Fig. 5 Reduced configuration
space
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collisions, the binary collision of the upper binary, collision of the inferior binary,
simultaneous collision of the upper and bottombinary and the symmetric simultaneous
binary collisions of the pairs of bodies to the right and left side of the trapezoidal
configuration.

6 On the Global Dynamics of the IT4BP

Next, we gather together the known information, given in Sect. 4, on the isosceles
trapezoidal problem and its two subsystems in the case of negative energy in order to
have a better understanding on the global dynamical picture for this three degrees of
freedom problem. We use the reduced configuration space, that is, the space that lie
between the shape sphere and the four arms shirt, see Fig. 6. From now on, for our
analysis we shall appeal to it.

Since 1974, McGehee coordinates [9] have been the main tool in the study of
behavior of orbits ejecting, reaching or passing nearby total collision in the N -body
problem, where this singularity is replaced by an invariant manifold. This is precisely
the procedure used by Lacomba in [5] to study of total collision for the IT4BP and
continued in [6]; as we know, orbits ejecting from (or going to) total collision end
at a central configuration. He showed, see Proposition 4.1, that the IT4BP has four
of them, two collinear and two non-collinear, each collinear one has associated one
invariant manifold of dimension two and each non-collinear central configuration has
associated one three dimensional manifold. So, any orbit that starts at (or ends in) total
collapse must belong to any of these manifolds, in our figure we show some of these
orbits.

Concerning both subsystems, from Proposition 4.2, there exist two homothetic
orbits that are ejection-collision orbits that keep their shape unchanged, but not their
size, that grow from zero to a maximum and then go back to total collapse, they can
be viewed as orbits homoclinic to quadruple collision, one is related to the R4BP and
the other to the CS4BP. Thus, these homohetic orbits appear in the figure as four line
segments with one end on the shape sphere, going to the outer surface and living on a
rays passing through the central configuration at which they are associated.

From Proposition 4.3, we know that for the R4BP and a negative energy surface
there are two orbits that escape to infinity after been ejected from total collapse, one
escapes parabolically and the other does it in a hyperbolic way. We see one of them
in the figure, where it ejects from a non collinear central configuration and afterwards
escapes along the lower arm. Also, we see two other orbits, one goes from the shape
sphere to infinity along the upper arm and then goes back close to the shape sphere, and
the second one travels from the upper arm to the lower arm, connecting both infinities
and passing close to the shape sphere. They correspond, respectively, to a homoclinic
and a heteroclinic oscillatory orbits that get close to infinity when escaping in the two
possible ways, either by becoming a very tall and thin rectangle or a very wide and
short one, see Proposition 4.4.

We also see an orbit that is ejected from the collinear central configuration E1
and then goes back to the same central configuration performing, in the meantime,
a sequence of simple binary collisions or symmetric simultaneous binary collisions.
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Fig. 6 Some geometric features on the global dynamics.

The existence of such type of orbits for the CS4BP is assured by Proposition 4.5. In
the same figure we show an orbit of this type as one that ejects from total collapse,
may go along the left arm, reaches a maximum distance from total collision, and then
goes back to total collision.

Finally, on one hand, from Proposition 4.1, there is a manifold of dimension two
consisting of direct escape orbits for the IT4BP, and for the other hand, for the CS4BP
(Proposition 4.6) there are direct escape orbits presenting a sequence of only collisions
of the inner pair of particles or a sequence of simultaneous binary collisions. These
orbits must belong to the manifold of direct escape orbits for the IT4BP. In Fig. 6 we
show an orbit of this kind, emerging from point E2 and escaping along the right arm.

7 Conclusions

A complete understanding of the IT4BP remains as a problem far from being achieved,
the progress accomplished in this direction seems small, we need to have a better
comprehension of the features of its subsystems and to find the way they are connected
in order to get closer to having a “big picture” of what is going on in the full problem.
For instance, are there any connections between the infinities of R4BP and CS4BP?
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