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Abstract
Normal forms of Hamiltonian are very important to analyze the nonlinear stability
of a dynamical system in the vicinity of invariant objects. This paper presents the
normalization of Hamiltonian and the analysis of nonlinear stability of triangular
equilibrium points in non-resonance case, in the photogravitational restricted three
body problem under the influence of radiation pressures and P–R drags of the radiating
primaries. The Hamiltonian of the system is normalized up to fourth order through
Lie transform method and then to apply the Arnold–Moser theorem, Birkhoff normal
form of theHamiltonian is computed followed by nonlinear stability of the equilibrium
points is examined. Similar to the case of classical problem, we have found that in the
presence of assumed perturbations, there always exists one value of mass parameter
within the stability range at which the discriminant D4 vanish, consequently, Arnold–
Moser theorem fails, which infer that triangular equilibrium points are unstable in
nonlinear sense within the stability range. Present analysis is limited up to linear effect
of the perturbations, which will be helpful to study the more generalized problem.
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1 Introduction

Since the time of Poincaré, invariant objects are very much important to understand
the behavior of a dynamical system, especially, phase space.Moreover, there are many
possible approaches to find the invariant objects, whereas the normal forms (truncated)
are very useful because these can give integrable approximations to the dynamics
under appropriate hypothesis [15]. Because of the approximation of true dynamics
by the normal forms, invariant objects of the initial system get approximated also,
accordingly [17,36]. The approximate first integrals are those quantities, which are
almost preserved through the system’s flow. This shows that the surface levels by the
flow are almost invariant. Some informations about the dynamics can be obtained
through this property. To minimize the overflow and complexity in the computations,
an appropriate approach is to use of power series or Fourier sires, or a combination of
both to represent the object. Because in many cases they needed only a few numbers of
terms tomaintain the good accuracy. Some other approach can also be found in Gómez
et al. [10], Jorba and Masdemont [16], in which trigonometric series is used. The
normal forms of the Hamiltonian system up to some finite order is necessary to study
the nonlinear stability of the equilibrium points using Arnold–Moser theorem in non-
resonance case. They also help to know the behavior of dynamics in the neighborhood
of the invariant objects. Many researchers have described the different method to find
the normal forms of the Hamiltonian of the dynamical system [2,6,8,15,19,29,39].
In the normal forms, the central idea is to find suitable transforms of the phase co-
ordinates, which can convert the Hamiltonian system in its simplest form up to a finite
order of accuracy.Normalization ofHamiltonian is obtained to change theHamiltonian
into its simplest form using the method of Lie transforms [6,15].

Because of radiating primary in the present problem under the analysis, force due
to radiation pressure came into existence [32,35], which acts in opposite direction
to the gravitational attraction force of the primary. Concept of Poynting–Roberston
drag is came into the picture when, Poynting [30] investigated the effect of radiation
pressure on the moving particle in interplanetary space and Robertson [34] modified
the Poynting’s theory through the principle of relativity. In the analysis of Roberston,
he considered only first order terms in the expression related to the ratio of velocity
of the particle to that of the light. The radiation force is expressed as

�F = Fp

( �R
R

− �V . �R �R
cR2 − �V

c

)
, (1)

where Fp is the radiation pressure force due to radiating primary; �R is the position
vector of the particle relative to the radiating primary; �V is the velocity of the particle;
and c is the speed of the light. First term of the Eq. (1) denotes the radiation pressure,
second term represents the Doppler shift due to the motion of the particle, whereas
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third term corresponds to the absorption and subsequent re-emission part of induced
radiation. The combined form of the last two terms of the Eq. (1) known as Poynting–
Robertson (P–R) drag. Chernikov [4] analyzed the photogravitational restricted three
body problem (RTBP) with P–R drag under the frame of Sun-planet-particle system
and found that non-collinear (triangular) equilibrium points are unstable. Effect of P–R
drag including radiation pressure is described by Schuerman [35]. A similar analysis
is presented by Murray [28] and Ragos and Zafiropoulos [31] to observed the effect
of P–R drag in the context of existence and stability of the equilibrium points. Kush-
vah et al. [20] examined the nonlinear stability in the generalized photogravitational
RTBP with P–R drag of first primary and oblateness of secondary and found that
triangular equilibrium points are unstable, whereas Mishra and Ishwar [27] investi-
gated about the stability of non-collinear equilibrium points in the photogravitational
elliptic RTBP with P–R drag. Kushvah et al. [21] and Kishor and Kushvah [18] have
analyzed the effect of radiation pressure force on the existence and linear stability of
the equilibrium points in the generalized photogravitational Chermnykh-like problem
with a disc. They found that the effect of perturbation factors are significant. In litera-
ture, many researchers have analyzed the photogravitational RTBP in nonlinear sense
by considering one or two perturbations at a time [1,13,22,24,38], but very few of
them have considered the problem under the combined influence of few perturbations
[19,20]. Ishwar and Sharma [14] have discussed about the nonlinear stability of out of
plane equilibrium points in the RTBP with oblate primary and found that L6 point is
stable in nonlinear sense. Raj and Ishwar [33] have obtained diagonalized form of the
Hamiltonian with P–R drag. Kishor and Kushvah [19] have studied nonlinear stability
of triangular equilibrium points in the Chermnykh-like problem, in the presence of
radiation pressure, oblateness and a disc. They found that these perturbations affect
the numerical results significantly.

Due to above reasons in addition towide applications of theRTBP inmission design,
we are motivated to study the problem under the influence of the radiation pressures
and P–R drags of both primary and secondary. In the present study, we are interested
to compute the fourth order normalized Hamiltonian and utilizing them to analyze the
nonlinear stability of triangular equilibrium points using Arnold–Moser theorem in
non-resonance case. Because of both primary and secondary radiating, the problem
under analysis includes the four perturbing parameters in the form of mass reduction
factors q1, q2 due to the radiation pressures of the primaries and P–R drags W1, W2
of both the primaries, respectively. The paper is organized as follows: In Sect. 2, we
have formulated the problem and found the equations of motion. Section 3 presents
the second order normalized Hamiltonian of the problem under analysis. Nonlinear
stability analysis is discussed in Sect. 4. Section 5 is devoted to Birkhoff normal
form and application of Arnold–Moser theorem in non-resonance case. Results are
concluded in Sect. 6. For algebraic and numerical computations, Mathematica®[40]
software package is used. The results of this study may be used to describe more
generalized problem under the influence of other perturbations such as albedo, solar
wind drag, Stokes drag etc. [12,37].
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2 Mathematical Formulation

Weconsider the photogravitational restricted three bodyproblemwithP–Rdrag,which
consists ofmotion of an infinitesimalmass under the influence of gravitational field and
radiation effect of twomassive and radiating bodies ofmassesm1 andm2, (m1 > m2),
respectively, called primaries. Forces, which govern the motion of infinitesimal mass
are gravitational attractions, radiation pressures and P–R drags of both the primaries,
respectively. It is assumed that gravitational effect of infinitesimal mass on the system
is negligible. Units are normalized such as units of mass and distance are taken as
the sum of the masses of both the primaries and separation distance between them,
respectively, whereas unit of time is the time period of the rotating frame. We suppose
that the coordinate of the primaries are (−μ, 0), (1− μ, 0), respectively and that of
infinitesimal mass is (x, y), then the equations of motion [33] are

ẍ − 2 ẏ = ∂U

∂x
, (2)

ÿ − 2ẋ = ∂U

∂ y
, (3)

where

∂U

∂x
= x − q1(1 − μ)(x + μ)

r31
− q2(1 − μ)(x + μ − 1)

r32

−W1S1
r21

− W2S2
r22

, (4)

∂U

∂ y
= y − q1(1 − μ)y

r31
− q2(1 − μ)y

r32
− W1S3

r21
− W2S4

r22
, (5)

and further

S1 = (x + μ){(x + μ)ẋ + y ẏ}
r21

+ ẋ − y,

S2 = (x + μ − 1){(x + μ − 1)ẋ + y ẏ}
r22

+ ẋ − y,

S3 = y{(x + μ)ẋ + y ẏ}
r21

+ ẏ + x + μ,

S4 = y{(x + μ − 1)ẋ + y ẏ}
r22

+ ẏ + x + μ − 1

with qi = 1 − Fpi/Fgi , i = 1, 2 as mass reduction factors of both the primaries,
respectively; Fpi , Fgi , i = 1, 2 are the forces of radiation pressure and gravitational
attraction of the respective primaries; W1 = [(1 − q1)(1 − μ)]/cd and W2 = [(1 −
q2)μ]/cd as P–R drags of both the primaries, respectively; cd is the speed of light
in non-dimensional form; r1, r2 are distances of infinitesimal mass from the first and
second primary, which are given as
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r21 = (x + μ)2 + y2, r22 = (x + μ − 1)2 + y2. (6)

The co-ordinates (x0, ±y0) of triangular equilibrium points L4,5 are obtained on
similar basis as in Raj and Ishwar [33]. To overcome the complexity in the analysis,
co-ordinates x0 and y0 are linearized with respected to W1, W2, ε1, ε2, keeping in
mind that the perturbing parameters lie in (0, 1) so, take q1 = 1 − ε1, q2 = 1 − ε2,
where ε1, ε2 are very small. The linearized co-ordinates x0 and y0 are

x0 = 1

2
− μ − 4W1(2 − μ)

3
√
3

− 4W2(1 + 2μ)

3
√
3

− ε1

3
+ ε2

3
, (7)

y0 = ±
[√

3

2
+ 4W1(2 − 3μ)

9
+ 4W2(1 − 3μ)

9
− ε1

3
√
3

− ε2

3
√
3

]
. (8)

The plus sign corresponds to L4, whereas minus sign corresponds to L5. The Hamil-
tonian function of the problem is written as

H = px ẋ + py ẏ − ẋ2 + ẏ2

2
− x2 + y2

2
− x ẏ

+ẋ y − (1 − μ)q1
r1

− μq2
r2

− W1S5 − W2S6, (9)

where

S5 = (x + μ)ẋ + y ẏ

2r21
− arctan

(
y

x + μ

)
,

S6 = (x + μ − 1)ẋ + y ẏ

2r21
− arctan

(
y

x + μ − 1

)
.

The conjugatemomenta px , py corresponding to generalized co-ordinate x, y respec-
tively, are given as

px = ẋ − y + W1(x + μ)

2r21
+ W2(x + μ − 1)

2r22
, (10)

py = ẏ + x + W1y

2r21
+ W2y

2r22
. (11)

3 Second Order Normal Form of the Hamiltonian

In the present analysis only the stability of L4 is analyzed, because the dynamics
of L5 is similar to that of L4. Only first order terms in the perturbing parameters
W1, W2, q1, q2 are considered for simplifying the complex calculations involved in
the problem through out the analysis. The second order normal formof theHamiltonian
of the problem under analysis is obtained inRaj and Ishwar [33] and for self sufficiency
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of this paper, we have taken some necessary expressions in appropriate form there to
use under this section. Shifting the origin to the triangular equilibrium point L4 using
simple transformations as

x∗ = x − x0, y∗ = y − y0,

px
∗ = px + y0, py

∗ = py − x0.

Substituting these variables in Hamiltonian (9), we get new Hamiltonian H∗. Now,
expanding the new Hamiltonian using Taylor’s series about the origin, which is now,
the triangular equilibrium point, H∗ can be written as

H∗ = H∗
0 + H∗

1 + H∗
2 + H∗

3 + · · · + H∗
n + · · · , (12)

where

H∗
n =

∑
Hi jkl x

∗i y∗ j px
∗k py∗l , (13)

such that i + j + k + l = n. Since, the origin is the triangular equilibrium point, H∗
1

must vanish, whereas H∗
0 is constant, and hence, it can be dropped out as it is irrelevant

to the dynamics. The quadratic Hamiltonian H∗
2 , which is to be normalized first and

then to be used for higher order normalization, is given as

H∗
2 = px∗2 + py∗2

2
+ y∗ px∗ − x∗ py∗ + Ex∗2 + Gx∗y∗ + Fy∗2, (14)

where

E = 1

8
+ 4W1√

3
+ 2W1√

3
+ ε1

4
− ε2

2
, (15)

F = −5

8
− 4W1√

3
− 2W1√

3
− ε1

4
+ ε2

2
, (16)

G = −γ

(
1 − 32W1

9
√
3

− 16W1

9
√
3

− 2ε1
9

+ 4ε2
9

)
, (17)

with γ = 3
√
3

4
(1 − 2μ). (18)

In the present study, the problem is dealt with four perturbation parameters in the form
of P–R drag and radiation pressure of both the primaries. Hence, the coefficient Hi jkl

for i, j, k, l = 0, 1, 2, 3, 4 such that i + j +k+ l = 4 in (13) can be bifurcated into
five parts such as Hi jkl1, Hi jkl2, Hi jkl3, Hi jkl4, and Hi jkl5, which corresponds to the
terms in classical case, terms with P–R drag of first primary W1, P–R drag of second
primary W2, radiation pressure of first primary ε1 = 1 − q1 and radiation pressure of
second primary ε2 = 1 − q2, respectively. Thus,

Hi jkl = Hi jkl1 + Hi jkl2 + Hi jkl3 + Hi jkl4 + Hi jkl5. (19)
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Fig. 1 Variation of critical mass
ratio μc with respect to a W1, b
W2, c ε1 and d ε2
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It is noted that if there is no perturbations in the system, i.e.W1 = W2 = ε1 = ε2 = 0,
then Hi jkl = Hi jkl1, which is nothing but the coefficient of theHamiltonian in classical
case.

Hamiltonian equations of motion of the infinitesimal mass in matrix form is written
as

⎡
⎢⎢⎣

ẋ∗
ẏ∗
˙px∗
˙py∗

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 1 0
−1 0 0 1

−2E −G 0 1
−G −2F −1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x∗
y∗
px∗
py∗

⎤
⎥⎥⎦ . (20)

The characteristic equation of the system (20) is

λ4 + 2(E + F + 1)λ2 + (4EF − G2 − 2E − 2F + 1) = 0. (21)

Solving the simplified discriminant of the characteristic equation (21) as

(E + F + 1)2 − (4EF − G2 − 2E − 2F + 1) = 0, (22)

we have the value of critical mass ratio 0 < μc ≤ (1/2) as

μc = 0.0385209 + 0.0823761W1 + 0.0823761W2 + 0.0178349ε1 − 0.356699ε2,

(23)

which is similar to that of Kushvah et al. [20] and Kishor and Kushvah [18] and agree
with the classical value μc = 0.0385209. Figure1a–d shows the variations of critical
mass ratio μc with respect to perturbing parameters W1, W2, ε1 and ε2, respectively.
We observed that the effects of the perturbations in question are significant. As, system
will be stable when four roots of the characteristic equation (21) are pure imaginary,
which is possible when the mass parameter μ satisfy the condition 0 < μ < μc.
Since, we are analyzing the nonlinear stability within the range of linear stability
0 < μ < μc, it is obvious to assume that roots of the characteristic equation (21) are
pure imaginary. Suppose, the roots of the characteristic equation (21) are ±iω1 and
±iω2, where ω1, ω2 can be obtained by solving the equation

ω4 − 2(E + F + 1)ω2 + (4EF − G2 − 2E − 2F + 1) = 0. (24)

Motion corresponds to frequencies ω1, ω2 ∈ R are known as long and short periodic
motion of infinitesimal mass at L4 with periods of 2π/ω1 and 2π/ω2, respectively.
Frequencies ω1, ω2 corresponding to the long and short periodic motion are related
to each other by the relations

ω2
1 + ω2

2 = 2E + 2F + 2, (25)

ω2
1ω

2
2 = 4EF − G2 − 2E − 2F + 1. (26)
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Substituting the values of E, F and G from Eqs. (15–17), we get

ω2
1 + ω2

2 = 1, (27)

ω2
1ω

2
2 = 27

16
γ 2 − 4

√
3W1 − 2

√
3W2 − 2ε1

3
+ 3ε2

4
, (28)

where the values of ω1 and ω2 are

ω1 =
√

−1 + √
1 − 4δ, ω2 =

√
−1 − √

1 − 4δ, (29)

with

δ = 27

16
− γ 2 − 4

√
3W1 − 2

√
3W2 − 3ε1

4
+ 3ε2

2
. (30)

The real normalized Hamiltonian of the Hamiltonian (14) up to second order is
given as [33]

H2 = ω1
x2 + p2x

2
+ ω2

y2 + p2y
2

, (31)

which is complexified by using the co-ordinate transformations

x = X + i PX√
2

, (32)

y = −Y + i PY√
2

, (33)

px = i X + PX√
2

, (34)

py = iY − PY√
2

(35)

and changed as

H2 = iω1X PX − iω2Y PY , (36)

Finally, symplectic matrix C of the symplectic transformations, which are used to
obtain the complex normal form of Hamiltonian is given as [33]

C = [
si j

]
, 1 ≤ i, j ≤ 4 (37)

with

s11 = 0 = s12, s13 = 1 − 2F + ω2
1√

d(ω1)
,
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s14 = 1 − 2F + ω2
1√

d(ω2)
, s21 = 2ω1√

d(ω1)
,

s22 = 2ω1√
d(ω2)

, s23 = G√
d(ω1)

,

s24 = G√
d(ω2)

, s31 = ω3
1 − (2F + 1)ω1√

d(ω1)
,

s32 = ω3
2 − (2F + 1)ω2√

d(ω2)
, s33 = −G√

d(ω1)
,

s34 = −G√
d(ω2)

, s41 = Gω1√
d(ω1)

, s42 = Gω2√
d(ω2)

,

s43 = 1 − 2F − ω2
1√

d(ω1)
, s44 = 1 − 2F − ω2

2√
d(ω2)

,

where d(ωi ) for i = 1, 2 is obtained from the following equation

d(ω) = ω
[
ω4 − (2E + 6F)ω2 + (4EF + 4F2 − 2E + 2F − 2)

]
. (38)

4 Nonlinear Stability in Non-resonance Case

Nonlinear stability of the equilibrium points can be described in two cases, one as reso-
nance case and other as non-resonance case. For resonance case, the nonlinear stability
is studied through the theorems of Markeev and Sokolskii [23] as in Goździewski [11]
and for non-resonance case, it is analyzed through the Arnold–Moser theorem. In the
present analysis the nonlinear stability of the perturbed triangular equilibrium point
in non-resonance case will be studied through Arnold–Moser theorem [25,26], which
is described as follows:

Consider the Hamiltonian expressed in action variables I1, I2 and angles variables
φ1, φ2 as,

K = K2 + K4 + · · · + K2m + K2m+1, (39)

in which: (i) K2m is homogeneous polynomial of degree m in action variables I1, I2
and K2m+1 is higher degree polynomial than m (ii) K2 = ω1 I1 − ω2 I2 with ω1,2 as
positive constants (iii) K4 = −(AI 21 + BI1 I2+C I 22 ), where A, B, C are constants to
be determined. Since, K2, K4, . . . , K2m are functions of I1 and I2, the Hamiltonian
(39) follows the Birkhoff normal form [2] up to the termsm. This can be obtained with
some non-resonance condition on the frequencies ω1, ω2. To state the Arnold–Moser
theorem, we assume that K is in the required form.

Arnold–Moser Theorem: The origin is stable for the system whose Hamiltonian is
(39) provided for some ν, 2 ≤ ν ≤ m, D2ν = K2ν(ω2, ω1) �= 0.

Since, for Arnold–Moser theorem, Birkhoff normal form of the Hamiltonian
is necessary and for Birkhoff normal form, assumption of non-resonance on fre-
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quencies is required. The non-resonance condition of frequencies as in Deprit and
Deprit-Bartholome [9], Kishor and Kushvah [19] is that if ω1, ω2 are frequencies of
infinitesimal mass in linear dynamics and σ ∈ Z such that σ ≥ 2, then

σ1ω1 + σ2ω2 �= 0 (40)

for all σ1, σ2 ∈ Z satisfying |σ1| + |σ2| ≤ 2σ . This is also, called as condition of
irrationality, which insures that there exists a symplectic normalizing transformation
which transform the Hamiltonian (12) in the form of Hamiltonian (39). Coefficients
of the normalized Hamiltonian are independent on the integer σ as well as to the
transformation obtained. In specific

det

∣∣∣∣∣∣∣∣∣

∂2K
∂ I 21

∂2K
∂ I1∂ I2

∂K
∂ I1

∂2K
∂ I2∂ I1

∂2K
∂ I 22

∂K
∂ I2

∂K
∂ I1

∂K
∂ I2

0

∣∣∣∣∣∣∣∣∣
I1,I2=0

(41)

is invariant of the Hamiltonian (39) with respect to the symplectic transformation con-
sidered. The nonlinear stability of perturbed triangular equilibrium points is analyzed
through the Arnold–Moser theorem under these conditions. In classical case frequen-
cies ω1, ω2 satisfy the condition 0 < ω2 < (1/

√
2) < ω1 < 1. Therefore, if σ = 2,

then irrationality condition (40) fails for following pairs of integers σ1 = 1, σ2 = −2,
σ1 = −1, σ2 = 2, σ1 = 1, σ2 = −3 and σ1 = −1, σ2 = 3. First, two pairs of
integers with condition (40) yield (ω1/ω2) = (1/2) and last two pairs of integers give
(ω1/ω2) = (1/3), which are also known as second and third order resonance of the
frequencies respectively. If (ω1/ω2) = (1/2) or ω1 = 2ω2, then from Eqs. (27–28),
we get

4

25
= 27

16
γ 2 − 4

√
3W1 − 2

√
3W2 − 2ε1

3
+ 3ε2

4
. (42)

Simplifying Eq. (42), we have a quadratic equation in μ as

27

16
μ2 − 27

16
μ +

(√
3W1 +

√
3W2

2
+ 3ε1

16
− 3ε2

8
+ 1

25

)
= 0. (43)

The solution μ = μc1 of Eq. (43) within the stability range 0 < μ < μc is

μc1 = 0.0242939 + 1.078820W1 + 0.539409W2 + 0.116785ε1 − 0.233571ε2.

(44)

This means, Arnold–Moser theorem fails at μc1 ∈ (0, μc). If (ω1/ω2) = (1/3) or
ω1 = 3ω2, then proceeding on similar basis, we find that Arnold–Moser theorem fails
at μ = μc2, where

μc2 = 0.013516 + 1.054920W1 + 0.527459W2 + 0.114198ε1 − 0.228396ε2.

(45)
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Table 1 μc1 and μc2 at different
values of perturbing parameters

W1 W1 ε1 ε2 μc1 μc2

0.000 0.0000 0.000 0.00 0.024294 0.013516

0.005 0.0000 0.000 0.00 0.029688 0.018791

0.010 0.0000 0.000 0.00 0.035082 0.024065

0.015 0.0000 0.000 0.00 0.040476 0.029340

0.000 0.0040 0.000 0.00 0.026452 0.015626

0.000 0.0045 0.000 0.00 0.026721 0.015890

0.000 0.0050 0.000 0.00 0.026991 0.016153

0.000 0.0000 0.001 0.00 0.024411 0.013630

0.000 0.0000 0.002 0.00 0.024528 0.013744

0.000 0.0000 0.003 0.00 0.024644 0.013859

0.000 0.0000 0.000 0.01 0.021958 0.011232

0.000 0.0000 0.000 0.02 0.019623 0.008948

0.000 0.0000 0.000 0.03 0.017287 0.006664

0.005 0.0040 0.001 0.01 0.029627 0.018731

Equations (44–45) are similar to that of the results inDeprit andDeprit-Bartholome [9],
Kishor and Kushvah [18] and agree with classical result in the absence of perturbing
parameters. To see the effects of perturbing parameters on μc1 and μc2, its numerical
values are computed and presented in Table1. From Table1, it is clear that the values
of μc1 and μc2 are very much affected from radiation pressures and P–R drags of the
primaries.

5 Fourth Order Normalized Hamiltonian

Since, Birkhoff’s normal form up to fourth order of the Hamiltonian is necessary to
apply the Arnold–Moser theorem, which is computed from second order normalized
Hamiltonian (13) using Lie transform method described in Coppola and Rand [5,7],
Jorba [15], Celletti [3], Kishor and Kushvah [19]. As, in the paper of Coppola and
Rand [7] as well as in the book of Celletti [3], higher order normalized Hamiltonian
is

K = K2 + K3 + K4 + · · · + Kn + · · · , (46)

where

Kn =
∑

Ki jkl X
iY j PX

k PY
l (47)

such that i + j + k + l = n. Quadratic part of K is K2 = H2, whereas Kn through
the nth step of Lie transform is given as

Kn = 1

n
{H2, Gn} + (known terms), (48)
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where Lie bracket of normalized quadratic Hamiltonian H2 and generating function
Gn is defined as

{H2, Gn} = ∂H2

∂X

∂Gn

∂PX
− ∂H2

∂PX

∂Gn

∂X
+ ∂H2

∂Y

∂Gn

∂PY
− ∂H2

∂PY

∂Gn

∂Y
. (49)

Using H2 from Eq. (13), it reduces to

{H2, Gn} = iω1

(
PX

∂Gn

∂PX
− X

∂Gn

∂X

)
+ iω2

(
PY

∂Gn

∂PY
− Y

∂Gn

∂Y

)
. (50)

The choice of generating functionGn is such that the above partial differential operator
on Gn remove large possible number of terms from the expression of Kn . As, each
termsof the Kn is of the formαXiY j PX

k PY l ,whereα is constant,we can assume terms
in Gn of the form βXiY j PX

k PY l , where constant β is to be determined. Therefore,
we obtain that

{H2, Gn}
n

= iβ
n

[(k − i)ω1 − (l − j)] XiY j PX
k PY

l , (51)

and hence,

β = iα
[(k − i)ω1 − (l − j)]

, i + j + k + l = n. (52)

This shows that even in the non-resonance case, the term of the form XiY j PX
i PY j

in Kn can not be deleted because of vanishing denominator in (52) at i = k, j = l,
whereas in the resonance case some additional non-removable terms occur while
solving the generating function Gn . Hence, in non-resonance case, the Hamiltonian
of the present problem can be written in the form of (46), in which

K2 = iω1X PX − iω2Y PY , (53)

K3 = 0, (54)

K4 = AX2P2
X + BX PXY PY + CY 2P2

Y

2
, (55)

where A = 2K2020, B = 2K1111, and C = 2K0202. Using action variables I1 =
i X PX and I2 = iY PY in Eqs. (53–55), we get

K2 = ω1 I1 − ω2 I2, (56)

K3 = 0, , (57)

K4 = −
(
AI 21 + BII12 + C I 22

)
. (58)

Thus, normalized Hamiltonian up to fourth order is
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K (I1, I2) = K2 + K3 + K4

= ω1 I1 − ω2 I2 − K2020 I
2
1 + K1111 II12 + K0202 I

2
2 , (59)

which agree with that of Deprit andDeprit-Bartholome [9], Kushvah et al. [20], Kishor
and Kushvah [19].

Form Eq. (59), it is clear that fourth order normalized Hamiltonian is the function
of only action variables I1, I2, which shows that these are in Birkhoff normal form.
The coefficients Ki jkl used in the Eq. (55 or 58) can be written into 5 parts such
as Ki jkl1, Ki jkl2, Ki jkl3, Ki jkl4 and Ki jkl5 for i, j, k, l = 0, 1, 2, 3, 4 such that
i + j + k + l = 4. These coefficients corresponds to the term of classical part, terms
with P–R dragsW1 andW2 of first and second primary, radiation pressures ε1 = 1−q1
and ε2 = 1−q2 of first and second primary, respectively. In the absence of perturbing
parameters i.e. forW1 = W1 = ε1 = ε2 = 0, Ki jkl = Ki jkl1. Therefore, K2020, K1111
and K0202 become

K2020 = K20201 + K20202 + K20203 + K20204 + K20205, (60)

K1111 = K11111 + K11112 + K11113 + K11114 + K11115, (61)

K0202 = K02021 + K02022 + K02023 + K02024 + K02025. (62)

The algebraic expressions of above 15 coefficients on right hand sides of Eqs. (60–62)
are too complicated and huge to be placed here hence, we avoid to present in the
paper. These are utilized to compute the determinant D4 = K4(ω2, ω1) for applying
the Arnold–Moser theorem. For the simplicity, D4 is expressed as

D4 =
(
A1

B1

)
+

(
A2

B2

)
W1 +

(
A3

B3

)
W2 +

(
A4

B4

)
ε1 +

(
A5

B5

)
ε2, (63)

where Ai , Bi , i = 1, 2, 3, 4, 5 are numerator and denominator of the coefficients,
which correspond to classical part, P–R drags W1 and W2 of the primaries, radiation
pressure ε1 = 1−q1 and ε2 = 1−q2 of the primaries, respectively. On simplification,
we found that

A1 = −35 + 541ω2
1ω

2
2 − 644ω4

1ω
4
2, (64)

A2 = 26244 (2262 − 653b) − 27 (5292162 − 4787719b) ω2
1ω

2
2

−2 (402982614 − 10430203b) ω4
1ω

4
2 + 32 (12457908 − 1490819b) ω6

1ω
6
2

+1024 (67581 + 1634b) ω8
1ω

8
2, (65)

A3 = −78732
(
416 − 241

√
3b

)
− 27 (3181248 + 4414649sqrt3b) ω2

1ω
2
2

−6
(
72610776 + 10390609

√
3b

)
ω4
1ω

4
2 + 32

(
6808752 − 212191

√
3b

)
ω6
1ω

6
2

+1024
(
36828 + 997

√
3b

)
ω8
1ω

8
2, (66)

A4 = 8748
(
195

√
3 − 584b

)
− 27

(
465795

√
3 − 1556744b

)
ω2
1ω

2
2
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+2
(
10722915

√
3 − 11609036b

)
ω4
1ω

4
2 + 32

(
200970

√
3 − 103079b

)
ω6
1ω

6
2

−512
(
2565

√
3 − 3217b

)
ω8
1ω

8
2, (67)

A5 = −8748
(
507

√
3 − 688b

)
+ 27

(
315819

√
3 − 1533728b

)
ω2
1ω

2
2

+2
(
3085838

√
3 + 759212b

)
ω4
1ω

4
2 − 32

(
941526

√
3 − 283835b

)
ω6
1ω

6
2

−512
(
10251

√
3 + 877b

)
ω8
1ω

8
2, (68)

B1 = 8
(
1 − 4ω2

1ω
2
2

) (
4 − 25ω2

1ω
2
2

)
, (69)

B2 = 864ab, (70)

B3 = B2, (71)

B4 = 1152ab, (72)

B5 = 576ab, (73)

a =
[
ω2
1ω

2
2

(
1 − 4ω2

1ω
2
2

)
(
4 − 25ω2

1ω
2
2

) (
117 + 16ω2

1ω
2
2

)]
, (74)

(a)

(b)

Fig. 2 Zero (μ0) of the determinant D4 within the stability range 0 < μ < μc at: a W1 = W2 = ε1 =
ε2 = 0 (classical case); b W1 = 0.015, W2 = 0.005, ε1 = 0.003, ε2 = 0.03 (perturbed case)
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b =
√(

27 − 16ω2
1ω

2
2

)
. (75)

In the absence of perturbing parameters,

D4 = −35 + 541ω2
1ω

2
2 − 644ω4

1ω
4
2

8
(
1 − 4ω2

1ω
2
2

) (
4 − 25ω2

1ω
2
2

) , (76)

which agree with the classical result [9,19,20,25]. In order to analyze the nonlinear
stability of triangular equilibrium points in non-resonance case using Arnold–Moser
theorem, we plot the determinant D4 with respect to the mass parameter μ to insure
the value of D4 = K4(ω2, ω1). From Figs. 2, 3, 4, 5 and 6, it is clear that within the
linear stability range 0 < μ < μc, there exists one value of mass parameter μ = μ0,
called the zero of D4, at which D4 vanish in each case. Thus, Arnold–Moser theorem
fails, which insure that in non-resonance case, triangular equilibrium points of the
problem under analysis are unstable in nonlinear sense within the linear stability range
0 < μ < μc. To see the effect of perturbing parameters, we have computed values
of the zero (μ0) of D4 and critical mass ratio (μc) at different values of perturbing
parametersW1, W2, ε1, ε2 and results are placed in Table2. FromTable2, it is noticed

(a)

(b)

Fig. 3 Zero (μ0) of the determinant D4 within the stability range 0 < μ < μc at: a W1 = 0.015, W2 =
ε1 = ε2 = 0 (only in presence of P–R drag of first primary); b zoom of specified region of a
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(a)

(b)

Fig. 4 Zero (μ0) of the determinant D4 within the stability range 0 < μ < μc at: a W2 = 0.005, W1 =
ε1 = ε2 = 0 (only in presence of P–R drag of second primary); b zoom of specified region of a

Fig. 5 Zero (μ0) of the determinant D4 within the stability range 0 < μ < μc at: ε1 = 1 − q1 =
0.003, W1 = W2 = ε2 = 0 (only in presence of radiation pressure of first primary)
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Fig. 6 Zero (μ0) of the determinant D4 within the stability range 0 < μ < μc at ε2 = 1−q2 = 0.03, W1 =
W2 = ε1 = 0 (only in presence of radiation pressure of second primary)

that on increase in the values of W1, W1, ε1, value of critical mass μc increases but
the value of μ0 is nonzero in each case. On the other hand, on increase in the value
of ε2, μc decreases with nonzero μ0. Thus, from the Figs. 2, 3, 4, 5 and 6 as well as
from the Table2, it is clear that radiation pressure and P–R drag of both the primaries
affect the linear stability range of the problem significantly. The nonzero value of the
zero (μ0) of the determinant D4 in the Arnold–Moser theorem under non-resonance
case, insure the instability of triangular equilibrium points, within the range of stability
0 < μ < μc.

6 Conclusions

We have considered the photogravitational restricted three body problem in the pres-
ence of radiation pressure force and P–R drag of both the massive bodies, which are
radiating in nature. Analysis of nonlinear stability of the triangular equilibrium points
is performed in non-resonance case using Arnold–Moser theorem under the influence
of four perturbing parameters in the form of P–R drags W1, W2 and mass reduction
factors q1, q2, of both the primaries. First, we have normalized the Hamiltonian of
the problem up to order four using Lie transform method and then Birkhoff normal
form of the Hamiltonian constructed, which is necessary to apply the Arnold–Moser
theorem in non-resonance case. The determinant D4 of the Arnold–Moser theorem is
computed analytically under the consideration of only linear order terms of perturb-
ing parameters, which agree with that of Deprit and Deprit-Bartholome [9], Meyer
and Schmidt [25], Kushvah et al. [20], Kishor and Kushvah [19] in the absence of
perturbing parameters. To apply the Arnold–Moser theorem in non-resonance case,
we have plotted the determinant D4 with respect to the mass parameter μ within the
stability range 0 < μ < μc. It is observed that in presence as well as in absence
of perturbing parameters, there exist a nonzero value of μ = μ0 at which D4 van-
ish (Figs. 2, 3, 4, 5, 6), which insure that triangular equilibrium points are unstable
in nonlinear sense. The effect of perturbing parameters are also analyzed and it is
found that on increasing the values of W1, W1, ε1, critical mass ratio μc increases,
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Table 2 Zero (μ0) of D4 and
critical mass ratio μc at different
values of perturbing parameters

W1 W1 ε1 ε2 μ0 μc

0.000 0.0000 0.000 0.00 0.010950 0.0385209

0.005 0.0000 0.000 0.00 0.000305 0.0393447

0.010 0.0000 0.000 0.00 0.000876 0.0401684

0.015 0.0000 0.000 0.00 0.005844 0.0409922

0.020 0.0000 0.000 0.00 0.010970 0.0418159

0.025 0.0000 0.000 0.00 0.016230 0.0426397

0.000 0.0040 0.000 0.00 0.001122 0.0388504

0.000 0.0045 0.000 0.00 0.000440 0.0388916

0.000 0.0050 0.000 0.00 0.000529 0.0389328

0.000 0.0055 0.000 0.00 0.000625 0.0389740

0.000 0.0060 0.000 0.00 0.000727 0.0390152

0.000 0.0000 0.001 0.00 0.014260 0.0385387

0.000 0.0000 0.002 0.00 0.015750 0.0385566

0.000 0.0000 0.003 0.00 0.016580 0.0385744

0.000 0.0000 0.004 0.00 0.017320 0.0385922

0.000 0.0000 0.005 0.00 0.017860 0.0386101

0.000 0.0000 0.000 0.01 0.018040 0.0381642

0.000 0.0000 0.000 0.02 0.015740 0.0378075

0.000 0.0000 0.000 0.03 0.013380 0.0374508

0.000 0.0000 0.000 0.04 0.011130 0.0370941

0.000 0.0000 0.000 0.05 0.008876 0.0367374

0.015 0.0050 0.003 0.031 0.02483 0.0438750

with the existence of nonzero μ0 in each case, whereas on increasing the value of
ε2, μc decreases with the existence of nonzero μ0 (Fig. 1; Table2). A similar trend
is also seen in case of μc1 and μc2 (Table1). Thus, we conclude that due to radi-
ation pressure and P–R drag of both the primaries, the linear stability range of the
problem get changed, significantly. Also, due to existence of nonzero value of the
zero (μ0) of the determinant D4 in the Arnold–Moser theorem under non-resonance
case, within the range of stability 0 < μ < μc, triangular equilibrium points are
unstable in nonlinear sense. Present analysis is limited up to first order terms of
the perturbing parameter, which may be extended to higher order inclusion of the
terms. The results obtained can help to analyze the more generalized problem under
the influence of other perturbations such as albedo, solar wind drag, Stokes drag
etc.
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