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Abstract
We show how the use of rational parameterizations facilitates the study of the num-
ber of solutions of many systems of equations involving polynomials and square
roots of polynomials. We illustrate the effectiveness of this approach, applying it to
several problems appearing in the study of some dynamical systems. Our examples
include Abelian integrals, Melnikov functions and a couple of questions in Celestial
Mechanics: the computation of some relative equilibria and the study of some central
configurations.
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1 Introduction

A very common way to solve equations involving polynomials and square roots of
polynomials consists in squaring them several times until they become polynomials
and look for their zeros using a numerical method. Besides the fact that the degree
of such polynomials increases with any squaring, there exists a second inconvenience
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(harder than the first one): there appearmany spurious solutions thatmust be discarded.
This is usually done numerically, that is, finding (with a given precision) all the real
roots of the final polynomial equation, replacing them into the original equation and
imposing the final value to be smaller than a given tolerance. Of course, this is not a
rigorous proof and to get a correct solution, one has to follow these two steps using
interval arithmetic (see for instance the first example of this Sect. 1). The problem
becomes more complicated when, instead of working with an equation, we deal with
systems of equations of similar features. Is this the best convenient procedure to
follow?: The answer is “no” and we will illustrate how rational parameterizations
can be, in many cases, used to approach this kind of problems. As it will be seen,
this method eliminates the spurious solutions and determines a well-posed domain
containing the actual ones. This assertion will be supported on several examples.

The use of rational parameterizations to study the solutions of equations containing
square roots is, in fact, an already known technique (see for example [1,10,20] and
references therein). Although a few authors have introduced its use in dynamical
systems (see, for instance [18]). In our opinion it has not received an special attention
and its use in this setting is still infrequent.

The aim of this work is to show, bymeans of some examples, that the use of rational
parameterizations is more than an alternative method to find the number of solutions
in problems appearing in dynamical systems. Indeed, it permits, in some cases, to
reduce the original question to a well-posed polynomial problem. Once this is moved
into a polynomial setting, there are standard tools to approach its solutions, like the
use of resultants or Gröbner basis (see for instance [23]).

The fundamental idea in the method is to impose that any expression appearing
inside the square root symbol is equal to some new squared variable. This condition
can be rewritten as an algebraic expression of the form Fλ(x, y) = 0, where λ ∈ R

k

is a set of parameters. Cayley–Riemann’s Theorem ([2]) ensures that this algebraic
curve can be rationally parameterized if and only if its genus is zero. Moreover, in
such case there are effective methods to find a parameterization (see [21, Chapters 4
& 5]). In fact, many programs of symbolic calculus have implemented some of these
methods and algorithms. The situation where Fλ(x, y) = 0 has genus zero is the one
that will appear henceforth in the examples and results presented in this work.

Let us begin with a simple well-known toy problem, that of the two leaning ladders
(see for instance [5,13]). It reads as follows: consider two ladders, of length A and
B, leaning in opposite directions between two parallel walls. Assume that both of
them contact the base of the opposite wall and that they cross in a point at distance h
from the ground floor. Can we determine the distance w between both walls? And the
distances a and b between the ground floor and the point where each ladder contacts
its corresponding wall? (see Fig. 1).

Applying Thales’ Theorem it follows that the relation 1/h = 1/a + 1/b must be
satisfied or, using Pythagoras, that

1

h
= 1√

A2 − W
+ 1√

B2 − W
, (1)
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Fig. 1 The two leaning ladders
problem

where W = w2. Squaring this equation, recurrently, one gets the final polynomial
equation of degree 4,

P(W ) := W 4 +
(
−2A2 − 2B2 + 4h2

)
W 3

+
(
A4 + 4A2B2 − 6A2h2 + B4 − 6B2h2

)
W 2

+
(
−2A4B2 + 2A4h2 − 2A2B4 + 8A2B2h2 + 2B4h2

)
W

+ B4A4 − 2B2h2A4 + h4A4 − 2B4h2A2 − 2B2h4A2 + B4h4 = 0.

Depending on the values of the parameters A, B, and h, one should look for positive
zeros of this polynomial. It can be seen that it hasmore than one of these positive zeros.
Afterwards, one must substitute them into Eq. (1) to decide whether or not they are in
fact solutions.

An alternative way to solve (1) is to seek for a new variable t, such that W is a
rational function of t and in such a way that the equivalent problem has no spurious
solutions. To find such change of variables, we notice that from a2 = A2 − W ,
b2 = B2 − W the variables (a, b) move on the hyperbola b2 − a2 = B2 − A2. This
curve, in the (a, b)-plane, has genus zero and so, by Cayley–Riemann’s Theorem, it
can be rationally parameterized. Indeed, let us find a rational parameterization for it.
Having in mind that b2 − a2 = (b + a)(b − a), we introduce a real parameter t such
that

b + a = t, b − a = B2 − A2

t
.

Isolating a and b in terms of t we get

a = t2 + A2 − B2

2t
, b = t2 + B2 − A2

2t
. (2)
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Since a, b > 0, it follows that t >
√|A2 − B2| and we can parametriseW in terms

of t as

W = A2 − a2 = A2 −
(
t2 + A2 − B2

2t

)2

= − (A2 − B2)2

4t2
+ A2 + B2

2
− t2

4
=: ϕ(t). (3)

Therefore to study P(W ) = 0 is equivalent to consider P(ϕ(t)) = 0, where

P (ϕ(t)) = t4 − 4ht3 − (
A2 − B2

)2
h(t2 + A2 − B2)(t2 − A2 + B2)

=: Q(t)

h(t2 + A2 − B2)(t2 − A2 + B2)
.

Hence, instead of solving P(W ) = 0, we can solve Q(t) = 0. Each of the positive
roots of this second equation produces, by using (3), a unique W which is a solution
of (1). In fact, taking into account Bolzano’s Theorem and Descartes’ rule (it exhibits
one change of sign when moving over its coefficients), it follows the existence of a
unique positive root of Q, t = t∗ such that w∗ = √

W ∗ = √
ϕ(t∗) is the unique

solution of our initial problem. The values of a and b are also unique and they can be
determined similarly from (2).

To illustrate the advantages of this approach, we provide the details in a particular
case. So, take for instance A = 7, B = 6, and h = 3. Then,

P(W ) = W 4 − 134W 3 + 6163W 2 − 106326W + 426465 = 0

has two positive solutions, W1 � 5.635917 and W2 � 33.066465. The actual solu-
tion is W1, since one can discard analytically the spurious solution W2 using simple
inequalities. Indeed, by Bolzano’s Theorem, we know that 33 < W2 < 331/10.
Hence, from Eq. (1), it follows that

1

h
− 1√

A2 − W2

− 1√
B2 − W2

= 1

3
− 1√

49 − W2
− 1√

36 − W2

<
1

3
− 1√

49 − 33
− 1√

36 − 33
= 1

12
−

√
3

3
< 0,

and so W2 is not a solution of (1). It has artificially appeared when squaring the
formulas. Notice that in general discarding spurious solutions using interval arithmetic
computation can be quite complicated (see for instance the last example in Sect. 3).

On the other hand our approach provides a direct answer: in the new variable t, we
get that

Q(t) = t4 − 12t3 − 169 = 0
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has a unique positive root, t∗1 � 12.095502, and then

ϕ(t∗1 ) =
(

−169

4t2
+ 85

2
− t2

4

)∣∣∣∣
t=t∗1

= W1.

Hence, the solution of our problem is w = √
W1 � 2.374008.

Another easy application of the rational parameterization is to prove identities
involving square roots. For instance the one appearing in [17], which says that for
x > y > 0 it holds that

√
x ± y =

√
x

2
+

√
x2 − y2

2
±

√
x

2
−

√
x2 − y2

2
,

follows straightforwardly from the parameterization

x = t2 + s2

2t
, y = t2 − s2

2t
,

with t > s > 0. Indeed,

√
x + y = t√

t
,

√
x − y = s√

t
and

√
x

2
±

√
x2 − y2

2
= t ± s

2
√
t
.

This useful parameterization is obtained again from a genus zero planar curve. As
before, it is natural to impose that x2 − y2 = s2, for some unknown value s. Hence
the planar curve Fs(x, y) = x2− y2−s2, for s �= 0, is irreducible and has genus zero.
Therefore it admits a rational parameterization. The one given above is the simplest
one.

These two simple examples show the advantages of using rational parameterizations
to solve equations involving square roots. Along the paper some more applications
of this use are presented. We briefly describe its contents. In Sect. 2 we recall with
a simple example how to deal with 1-parameter families of polynomials systems, a
common final situation after applying rational parameterizations. We will focus our
attention on three particular types of applications. The first one, in Sect. 3, deals with
polynomial expressions with two square roots of polynomials. These equations arise
in the study of the number of zeros for some Abelian integrals (see [15]). The second
one, in Sect. 4, handles with central configuration problems in Celestial Mechanics.
Here, square roots appear due to the Euclidean distances among the bodies. Two
examples are presented: one concerning critical points of a certain potential (see [6])
and a second one dealing with central configurations (see [7,22]). And the third type,
in Sect. 5, where we seek for estimates for the number of limit cycles of planar non-
autonomous differential equations by studying the zeros of some Melnikov functions.
The problem considered was proposed in [9].
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2 Preliminary Results: Systems of Polynomial Equations

Thewell-knownBezout’s Theorem asserts that, generically and taking into account the
solutions at infinity, the number of complex solutions x ∈ C

k that a polynomial system{
Fj (x) = 0

}
j=1,...,k has is

∏k
j=1 deg(Fj ). Moreover, this number only changes when

some of these degrees vary. This situation is drastically different when one is interested
only in its real solutions. In this sense, we focus our attention on 1-parameter families
of polynomial systems and we are concerned about knowing when the number of their
simple real solutions vary. To this end we introduce the following definition:

Definition 2.1 Let Fi (x, λ) be real polynomials in x ∈ R
k, i = 1, . . . , k, and λ ∈ R.

An effective bifurcation value is a real value λ∗ such that the number of simple real
solutions of the system {Fi (x, λ∗ + ε) = 0}i is different for ε > 0 than for ε < 0, for
any small enough ε.

Next example illustrates how these effective bifurcation values can be obtained by
applying the techniques developed in [23]. In this particular example, both polynomials
have degree 2 and effective bifurcations occur.

Proposition 2.1 The effective bifurcation values for the number of simple real solutions
of the system of polynomial equations

F(x, y, λ) = (−λ + 1)x2 + 3λy2 − x − λy = 0,

G(x, y, λ) = λx2 + (2λ + 1)y2 − 2y + λx = 0, (4)

are the four real roots of the polynomial P8(λ) = 107λ8 − 1190λ7 + 2525λ6

− 3222λ5 + 3307λ4 + 568λ3 − 868λ2 + 160λ − 4, namely,

λ1 � −0.5081, λ2 � 0.02967, λ3 � 1.7826, λ4 � 8.7774.

Moreover, the number of simple real solutions in the intervals (−∞, λ1), (λ1, λ2),

(λ2, λ3), (λ3, λ4), (λ4,+∞) is 2, 4, 2, 4, 2, respectively (see Fig. 2).

Proof The first step consists on computing the resultants of F and G with respect to
x and y. This is based on the fact that Res(p(x), q(x), x) = 0 if and only p(x) and
q(x) have a common root (see [23]). Thus,

Rx (y) = Res(F,G, x) = y((5λ2 − λ − 1)2y3 − 2(5λ2 − λ − 1)(λ2 + 2λ − 2)y2

+ (−2λ4 + 8λ3 + 3λ2 − 6λ + 4)y + λ(λ − 2)(λ2 + 2)),

Ry(x) = Res(F,G, y) = x((5λ2 − λ − 1)2x3 + 2(3λ2 + 2λ + 1)(5λ2 − λ − 1)x2

+ (11λ4 + 11λ3 − 4λ2 + 14λ + 1)x + λ(2λ − 5)(λ2 + 2)).

Afterwards,we define R̂x (y) and R̂y(x) as the polynomials containing the same factors
as Rx (y) and Ry(x) but with simple multiplicity. In our case, there are no multi-
ple factors in the polynomials Rx (y) and Ry(x), so we have R̂x (y) = Rx (y) and
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Fig. 2 N (̃λ) denotes the number of real solutions of system (4) for λ = λ̃

R̂y(x) = Ry(x). Next, following the approach proposed in [11,12], we consider dou-
ble resultants (see [16] for a general introduction to this setting). Computing them we
get

Rxy(λ) = Res
(
R̂x (y), R̂

′
x (y), y

)

= λ4(λ2 + 2)2(5λ2 − λ − 1)4(λ − 2)4P8(λ),

Ryx (λ) = Res
(
R̂y(x), R̂

′
y(x), x

)

= λ4(λ2 + 2)2(5λ2 − λ − 1)4(2λ − 5)4P8(λ),

where P8 is given in the statement. The real roots of each of these polynomials are the
only candidates to provide the effective bifurcation values we are looking for. So, all
these values are contained in the set of real roots of the polynomial

RFG(λ) = λ(5λ2 − λ − 1)(λ − 2)(2λ − 5)(λ2 + 2)P8(λ).

The real roots of P8(λ) are λ1 � −0.5081, λ2 � 0.02967, λ3 � 1.7826, and λ4 �
8.7774, and the ones of 5λ2 − λ − 1 are λ5 � −0.3582 and λ6 � 0.5582. Hence, the



590 A. Gasull et al.

(ordered) real roots of RFG are

λ1 < λ5 < 0 < λ2 < λ6 < λ3 < 2 < 5/2 < λ4.

To determine whether they are or not effective bifurcation values, we study the number
of simple real solutions of the system on each one of the ten intervals defined by these
nine real roots of RFG . To do this, it suffices to fix a rational value of λ in each interval
and compute the number of real solutions for that specific value (see Fig. 2). It follows
that only four of them are effective bifurcation values, which correspond to the ones
given in the statement. 	


3 Polynomial Expressions with Two Square Roots

Let us consider the following system of ordinary differential equations

ẋ = −y(x − c)(y − d) + εP(x, y),

ẏ = x(x − c)(y − d) + εQ(x, y),

with c > 0, d > 0, and P and Q polynomials. For ε = 0, this systemhas a linear center
at the origin and a couple of straight lines of equilibrium points (precisely, x = c and
y = d). Then, all the circles centered at the origin of radius less thanmin(c, d) define a
continuum of periodic orbits. It is well-known that the limit cycles that bifurcate from
them come from the simple zeros of the Poincaré–Melnikov–Pontryagin function

I (r) =
∫

x2+y2=r2

Q(x, y) dx − P(x, y) dy

(x − c)(y − d)

(see for instance [8]). Using polar coordinates, it admits the equivalent expression

I (r) =
∫ 2π

0

r(Q(r cos θ, r sin θ) sin θ − P(r cos θ, r sin θ) cos θ)

(r cos θ − c)(r sin θ − d)
dθ.

As a direct consequence of Lemma 2.2 in [15], this function can be written as

I (r) = U (r2) + 1

c2 + d2 − r2

(
V (r2)√
c2 − r2

+ W (r2)√
d2 − r2

)
,

for some suitable polynomialsU , V , andW .Writing z = −r2, the formof the function
(c2 −r2)(d2 −r2)I (r)motivates the study of the number of zeros of functions of type

Pn0(z) + Pn1(z)
√
z + a + Pn2(z)

√
z + b, (5)

with Pn j (z), arbitrary polynomials of degree n j , for j = 0, 1, 2, and a, b ∈ R.

The problem of estimating the maximal number of zeros of these functions was
studied in [14]. They were considered as elements of a family which is, in fact, an
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Extended Complete Chebyshev system. A rather different question is, given a partic-
ular function of this type (5), to compute effectively its zeros. The following theorem
and example show how rational parameterizations are an efficient way to do it. How-
ever, the proof of the theorem does not work when the number of square roots involved
is larger than 2, or the degrees of the polynomials inside the square roots are higher
than 1.

Theorem 3.1 Let us consider polynomials Pn j of degree n j , j = 0, 1, 2, with no
common factors. Then, the study of the number of zeros of the function

F(x) := Pn0(x) + Pn1(x)
√
x + a + Pn2(x)

√
x + b

in x ≥ −a > −b, is equivalent to the study of the number of positive zeros of the
polynomial Q(t), of degree 2m, given by the numerator of F(ϕ(t)), where m :=
max(2n0, 2n1 + 1, 2n2 + 1) and

ϕ(t) = bt2 (2 + t)2 − a
(
2 + 2t + t2

)2
4 (1 + t)2

= R(t)

(1 + t)2
.

Proof We look for (u, v), with u, v ≥ 0, satisfying x + a = v2, x + b = u2. These
equalities imply that they must move on the hyperbola u2 − v2 = b − a =: c > 0.
To find a rational parameterization for this genus zero curve, first we take τ such that
u − v = τ , u + v = c/τ , which leads to u = (c + τ 2)/2τ , v = (c − τ 2)/2τ for τ ∈
(0,

√
c]. The transformation τ = √

c/(t + 1) provides the rational parameterization
for t ∈ [0,+∞):

u = 2 + 2t + t2

2(1 + t)

√
c, v = t(2 + t)

2(1 + t)

√
c. (6)

Using this transformation we obtain that x = v2 − a = u2 − b = ϕ(t), with the
function ϕ given in the statement. Hence

F(ϕ(t)) = Pn0(ϕ(t)) + Pn1(ϕ(t))
√

ϕ(t) + a + Pn2(ϕ(t))
√

ϕ(t) + b

= Pn0

(
R(t)

(1 + t)2

)
+ Pn1

(
R(t)

(1 + t)2

)
t(2 + t)

2(1 + t)

√
c

+Pn2

(
R(t)

(1 + t)2

)
2 + 2t + t2

2(1 + t)

√
c = Q(t)

(1 + t)m
,

where R(t) is the polynomial of degree 4 provided by the statement and Q(t) is a
suitable polynomial of degree 2m. Notice that there is a one-to-one correspondence
between zeros of F(x) and zeros of Q(t), that is, no false zeros are added. Furthermore,
the final domain [0,+∞) of Q(t) is very convenient to apply polynomial standard
techniques. 	


Let us illustrate how our approach works with a particular example of function
F(x).
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Example 3.1 Consider, for x ≥ 0, the following function:

Fα(x) = A(x) + B(x)
√
x + C(x)

√
x + 1,

with A, B,C the polynomials

A(x) = 38340 + α + 5760 x, B(x) = −69993 − 144298 x,

C(x) = 23400 − 143702 x,

and α being a real parameter. Then, Fα(x) has no real solutions for α < −61740 and
it has exactly one for α ≥ − 61740.

Proof In this case a = 0 and b = 1 in the statement of Theorem 3.1. Taking the
rational parameterization (6),

x = ϕ(t) =
(
t(2 + t)

2(1 + t)

)2

, t ≥ 0, (7)

we get that the numerator of Fα(ϕ(t)) is

Qα(t) = −72000 t6 − 429120 t5 − 968044 t4 + (2α − 950056) t3

+ (6α − 232009) t2 + (6α + 230454) t + (2α + 123480),

defined for t ∈ [0,+∞). To apply Descartes’ rule, we consider the values of α that
produce changes in the sign of the coefficients of Qα(t). Namely, they are

− 61740, − 115227

3
,

232009

6
, 475028.

It is straightforward to verify that there is no change in the sign of the coefficients
of Qα(t) if α < − 61740 and one change otherwise. Thus we can assert that Qα(t)
has no real roots for t ∈ (0,+∞) in the first case and has at most one in the second
case. Moreover, if α ≥ − 61740 then Qα(0) ≥ 0 and since limt→+∞ Qα(t) = −∞
the existence of this zero tα > 0 follows. From expression (7) we obtain the value
xα = ϕ(tα) such that Fα(xα) = 0. 	


Finally, let us show with a fixed value of α the advantage of using our approach
instead of the classical recurrent squaring process to solve Fα(x) = 0. With this
classical approach, the corresponding polynomial equation is

Gα(x) =
(
A2(x) + (x + 1)C2(x) − x B2(x)

)2 − 4(x + 1)A2(x)C2(x) = 0.

Consider, for instance, α = 2. Then

G2(x) = 29463035904000000x6 − 597819133749657600x5
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+ 4274549116862945536x4 − 13150960109956884832x3

+16873855567372135585x2 − 7555772293001326152x

+851096590977473296.

Its roots, z1, z2, . . . , z6, are located approximately at:

0.1676387, 0.5656784, 1.731563, 3.713337, 5.502619, 8.609643.

They all are candidates to be zeros of the function F2(x), but only the first one, z1,
is an actual root. The others can be discarded, for example, using interval arithmetics.
Let us do it, for instance, for the second one, z2 � 0.5656784. Indeed, it satisfies
1/2 < z2 < 3/5 and it holds that

F2(z) = 38342 + 5760z − (69993 + 144298z)
√
z + (23400 − 143702z)

√
z + 1

< 38342 + 5760
3

5
−

(
69993 + 144298

1

2

) √
1

2
+

(
23400 − 143702

1

2

)

√
1

2
+ 1 = 41798 − 71071

√
2 − 48451

2

√
6 < 0.

Similar computations can be done for the rest of solutions.
However, if we apply the rational parameterization provided by (7), we obtain

Q2(t) = −72000t6 − 429120t5 − 968044t4 − 950052t3 − 231997t2

+230466t + 123484.

This polynomial has exactly one zero in [0,+∞), at the point t2 � 0.4900103.
Substituting this value into (7) one obtains x2 = ϕ(t2) � 0.1676387, an approximation
of the unique zero of F2(x).

4 Applications to Celestial Mechanics

Distances among bodies and, therefore, square roots appear often in equations model-
ing many problems in Celestial Mechanics. In this section we show two applications
of rational parameterization and polynomial tools in this field: a first one concerning
critical points of a certain potential (see [6]) and a second one dealing with central
configurations in a system of four charged particles (see [7,22]).

4.1 Relative Equilibria in the Schwarzschild Isosceles Three Body Problem

The so-called Schwarzschild isosceles three body problem with masses m1 = m2 =
M > 0 andm3 = 1 is introduce in detail in [6]. In particular, in cylindrical coordinates,
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it has the following reduced Hamiltonian

Hred = 1

M
P2
R + 2M + 1

4M
P2
z +U , (8)

with potential

U (R, z) = C2

MR2 − A

R
− B

R3 − 4A1√
R2 + 4z2

− 16B1

(R2 + 4z2)3/2
,

where A, A1, B, B1, and C are positive parameters. This model extends to a three
mass point system the classical Schwarzschild model of interaction between two mass
points, with potentialU (r) = −A/r − B/r3, where r is the relative distance between
them.

The solutions where the three mass points are steadily rotating about their common
center of mass are called relative equilibria. In particular, for the Hamiltonian system
defined by (8) they correspond to the critical points of U , that is

∂U

∂R
= 0,

∂U

∂z
= 0. (9)

In [6] it is studied, joint to other problems, the number of solutions of (9) on z = 0
for positive values of A, A1, B, and B1 in terms of C . In this case, there is only one
bifurcation value, C2 in the next result, that distinguish the cases with 0, 1 or 2 relative
equilibria. The following result extends the study of the number of solutions of (9),
also in terms of C , for arbitrary non-zero values of A, A1, B, and B1. We show that
the effective bifurcation set is bigger. In the proof it can be seen that there are values
with more than two solutions. It is not restrictive to assume C ≥ 0.

Theorem 4.1 For non-vanishing values of A, A1, B, B1, and M the C-effective bifur-
cation values for the number of solutions of (9) belong to the set EC = {C1,C2,C3}∩
R, where

C1 = 4

√
−3M2(4AB1 − A1B)2

16A1B1
,

C2 = 4
√
3M2(B + 16B1)(A + 4A1), C3 = 4√

3ABM2.

Moreover, there exist values of the parameters such that EC is, actually, the C-effective
bifurcation set.

Proof To eliminate the square roots in system (9) we write R2 + 4z2 = r2, for some
new positive variable r . The family of planar curves Fr (R, z) = R2 + 4z2 − r2 = 0
has genus zero and can be rationally parameterized as

R = r(1 − t2)

1 + t2
, z = r t

1 + t2
,
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for t ∈ R and r > 0. Observe that the origin (r = 0) has been removed since it is a
singular point of (9). In the parameters (r , t), Eq. (9) are equivalent to

∂U

∂r
= P8(r , t)

Mr3(t − 1)3(t + 1)3
= 0,

∂U

∂t
= Q7(r , t)

Mr3(t − 1)4(t + 1)4
= 0,

where

P8(r , t) =
(
(Ar2 − 4A1r

2 + 3B − 48B1)t
6 − (Ar2 − 12A1r

2 − 9B − 144B1)t
4

−(Ar2 + 12A1r
2 − 9B + 144B1)t

2 + Ar2 + 4A1r
2 + 3B + 48B1

)
M

+ 2C2r(t4 − 1),

Q7(r , t) = t
(
(Ar2 + 3B)t4 − (2Ar2 − 6B)t2 + Ar2 + 3B

)
M + 2C2r t(t4 − 1).

To solve themwe follow the procedure presented in Sect. 2: we compute the resultants

Rr (t) = Res(P8, Q7, r) = 243M2t2(t2 − 1)6V8(t),

Rt (r) = Res(P8, Q7, t) = 22036B6M10(A1r
2 + 12B1)

4W2(r),

where

V8(t) = 3(4AB1t
4 − A1Bt

4 − 8AB1t
2 − 2A1Bt

2 + 4AB1 − A1B)2M2

+ 16A1B1C
4(t4 − 1)2,

W2(r) =
(
(4A1 + 1)r2 + 3(B + 16B1)

)
M − 2C2r ,

and take

R̂r (t) = t(t2 − 1)V8(t),

R̂t (r) = (A1r
2 + 12B1)W2(r),

which contain all the terms in the preceding functions, but without multiplicity. Now,

Rrt = Res(R̂r (t), R̂
′
r (t), t)

= 211838A4B12A25
1 B17

1 M16C16(C4 − C1)
5(C4 − C3)

4,

Rtr = Res(R̂t (r), R̂
′
t (r), r)

= −21433A4
1B

3
1 (A + 4A1)(C

4 − C1)
2(C4 − C2),

where C1,C2, and C3 are the constants given at the statement. Thus, the product of
the factors of Rrt and Rtr with no multiplicity, namely

C(C4 − C1)(C
4 − C2)(C

4 − C3) = 0,
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divides the positive real line in four different intervals having the same number of real
simple solutions of system (9). The case A + 4A1 = 0 becomes C2 = 0 and the set
EC does not vary.

Finally, taking for instance A = 2, B = 3, A1 = −1/3, B = 1/5, and M = 2
we get 0 < C2 < C3 < C1. The number of zeros on the intervals that they define is,
respectively, 0, 2, 6, and 2. In consequence, for these values of the parameters, EC is
the C-effective bifurcation set. 	

Remark 4.1 (i) From this proof it is not difficult to see that, when all the parameters are

positive and one restricts himself to the surface z = 0, the C-effective bifurcation
set reduces to {C2}, recovering the result of [6]. Indeed, C1 is not real since
−3M2(4AB1 − A1B)2/(16A1B1) < 0. The condition z = 0 implies t = 0 in
the rational parameterization (since r > 0). This means that Q7(r , 0) = 0 and
P8(r , 0) = (Ar2+4A1r2+3B+48B1)M−2C2r . The discriminant of P8(r , 0) is
−3ABM2−48AB1M2−12A1BM2−192A1B1M2+C4, whose unique positive
real root (there is one real negative and two conjugate pure imaginary) is C2.

(ii) Taking A = 2, B = 3, A1 = −1, B = 4, and M = 2 it can be proved that
the C-effective bifurcation set is {C3}. In fact, for 0 < C < C3 the number of
equilibria is 1. Even though on each of the intervals C3 < C < C1 and C > C1
this number is 3, their corresponding relative position changes between aligned
and triangular-shaped.

(iii) There exist values of the parameters whose C-effective bifurcation set is EC ,
exhibiting different number of equilibria. Indeed, taking A = 5, B = 3, A1 = −1,
B1 = 4, and M = 2, the respective number of equilibria is 0, 4, 6, and 4.

4.2 Central Configurations

The equations governing the charged Newton’s planar n-body problem are

mi q̈i = −
∑
j �=i

mim j

|qi − q j |3
(
qi − q j

)
, i = 1, . . . , n.

Here the units have been suitably taken, |q| denotes the Euclidean norm of q, and
mi ∈ R\0.Wewill assume that the center of mass of the n charged particles is located
at the origin. Then, they form a spatial charged central configuration if there exists a
constant λ ∈ R such that

λqi = −
∑
j �=i

m j

|q j − qi |3
(
q j − qi

)
, i = 1 . . . , n, (10)

(see [19] and references therein). Actually, the geometric configuration (up to dilations
and rotations) of the particles is such that the position vectors are always parallel to
the acceleration ones.

For a fixed set of masses, to find all possible central configurations is a very hard
problem. Two of the main obstructions to solve system (10) are the large number of
unknowns and to deal with equations involving square roots. Usual reductions of this
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Fig. 3 Kite configuration, where ◦ denotes the (charged) mass m

problem come from assuming symmetries and restrictions on the dimension of the
spatial positions. One of the most studied reduction is the planar non-collinear.

In some cases, the method of rational parameterization transforms this problem into
seeking for zeros of polynomials in several variables. This is the approach used by
Leandro in [18]. He studies the finiteness of central configurations when the d masses
are in a plane and two more stay in the orthogonal line to this plane passing through
the origin, where is located the center of masses of the system. The restriction to four
masses moving on a plane is known as a kite central configuration. The case with
three equal masses has been tackled in [7,22] and the case of two couples of equal
masses in [4]. Both cases, in the more general situation of charged masses, have been
considered in [3].

The aim of this section is to describe the number of different kite central config-
urations in the first frame, charged or not, using rational parameterizations. Without
loss of generality we can fix m1 = m2 = m3 = 1 and m4 = m ∈ R\0. Moreover, we
locate them as in Fig. 3. That is, with the charged mass at the point with coordinates
(0, 
) and satisfying k + 
 > 0. In this setting, following [7], Eq. (10) reduces to

F1(k, 
,m) = m (k + 
)

(
(k + 
)−3 −

(

2 + 1

)−3/2
)

+ 2 k

((
k2 + 1

)−3/2 − 1/8

)
= 0,

F2(k, 
) = (k + 
)

(
(k + 
)−3 −

(
k2 + 1

)−3/2
)

+ 2 


((

2 + 1

)−3/2 − 1/8

)
= 0. (11)

Solutions of (11) correspond to different kite central configurations. The non-
charged problem (m > 0) is studied in [7,22] where the authors show that the effective
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bifurcation set is formed by only one value. In the charged problem, as it will be seen
in the next result, the bifurcation set is increased by two negative values of m. Our
proof for the non-charged problem is also shorter.

Theorem 4.2 The effective bifurcation set for the number of solutions of system (11) is
{−1,−1/4,m∗} where m∗ ≈ 1.00266054757261 is the closest to 1 root of a suitable
irreducible polynomialwith integer coefficients anddegree240. Indeed, in the intervals
(−∞,−1), (−1,−1/4), (−1/4,m∗), and (m∗,+∞) this number is 3, 4, 5, and 3,
respectively.

Proof Toeliminate the square roots in (11)we impose that k2+1 = u2 and 
2+1 = v2,

for some new variables u and v. Again, both planar curves have genus zero and can
be parameterized through the rational parameterizations

(k, u) =
(
s2 − 1

2s
,
s2 + 1

2s

)
, (
, v) =

(
t2 − 1

2t
,
t2 + 1

2t

)
,

with s, t > 0. Substituting them into Eq. (11) they become

F̃1(s, t,m) = P20(s, t,m)

(s2 + 1)3(t2 + 1)3(t + s)2(st − 1)2s
= 0,

F̃2(s, t) = Q20(s, t)

(t2 + 1)3(s2 + 1)3(t + s)2(st − 1)2t
= 0,

where P20, Q20 are polynomialswith integer coefficients of degree 20 in s, t .Moreover
P20 has degree 1 on m. Recall that we only need to study the number of intersections
of the algebraic curves F̃1(k, 
,m) = 0, F̃1(k, 
) = 0 when k + 
 > 0. To do it we
use the procedure explained in Sect. 2.

First we compute the resultants

Rs(t) = Res(P20, Q20, s) = t20(t2 + 1)51(3t2 − 1)U100(t),

Rt (s) = Res(P20, Q20, t) = s20(s2 + 1)51(3s2 − 1)V100(s).

Afterwards we consider the functions (with no multiple roots)

R̂s(t) = t(3t2 − 1)U100(t),

R̂t (s) = s(3s2 − 1)V100(s),

and get the new two resultants

Rst (m) = Res
(
R̂s(t), R̂

′
s(t), t

)

= m16(4m − 1)24(4m + 1)24(m − 1)60(m + 1)64(m + 2)24

(249m2 − 162m − 23)2P2
18(m)P240(m)P2

644(m),

Rts(m) = Res
(
R̂t (s), R̂

′
t (s), s

)

= m1076(4m − 1)7(4m + 1)7(m − 1)60(m + 1)64(m + 2)78
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(249m2 − 162m − 23)2P240(m)P2
408(m),

Pi being polynomials of degree i, irreducibles inQ(t). They are not explicitly written
because of their big size. Finally, we consider a polynomial containing all the simple
factors appearing in Rst and Rts , that is,

RPQ(m) = m(4m − 1)(4m + 1)(m − 1)(m + 1)(m + 2)

(249m2 − 162m − 23)P18(m)P240(m)P644(m)P408(m).

This polynomial has 74 simple real roots.We analyze these roots taking rational values
of the parameter m just before and after them and studying if an effective change in
their behavior undergoes.We select those with such effective change, i.e., the effective
bifurcation values. In this problem they are just three: −1,−1/4,m∗, with m∗ being
the real root of P240 which is closest to 1. 	


5 Zeros of Melnikov Functions

In this section we start with a similar question as the one posed in Sect. 3. Indeed, we
consider a planar non-autonomous periodic differential equation with a continuum of
periodic orbits and we study how many of these periodic solutions remain after small
perturbations. Those which remain are isolated (limit cycles) and are closely related to
the simple zeros of its corresponding Melnikov function. In [9], the following system
of coupled generalized Abel equations is considered:

{
ṙ = a(t)r2 + ε f (t)rnsm,

ṡ = b(t)s2 + εg(t)r psq ,

with n+m ≥ 3, p+q ≥ 3, and a, b, f and g, T -periodic trigonometric polynomials.
Using a variational approach, the authors derive the correspondingMelnikov function:

M(ρ) =

⎛
⎜⎜⎝

ρn
1ρm

2

∫ T

0

f (t)

(1 − A(t)ρ1)n−2(1 − B(t)ρ2)m
dt

ρ
p
1 ρ

q
2

∫ T

0

g(t)

(1 − A(t)ρ1)p(1 − B(t)ρ2)q−2 dt

⎞
⎟⎟⎠ , (12)

where ρ = (ρ1, ρ2) ∈ R
2, A(t) = ∫ t

0 a(s) ds, B(t) = ∫ t
0 b(s) ds, and A(T ) =

B(T ) = 0.
Motivated by this problem, it seems interesting to study the number of limit cycles

arising from a system of type

{
ṙ = (cos t)r2 + ε (F0 + F1 sin t + · · · + Fn sinn t) rs2,
ṡ = (cos t)s2 + ε (G0 + G1 sin t + · · · + Gn sinn t) r2s,

(13)

where Fi ,Gi are real constants such that FnGn �= 0, ε is an small parameter and
n ∈ N. The case n = 2 was already considered in [9].
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It is not restrictive (rescaling if necessary) to assume Fn = Gn = 1. Denote
F = (F0, F1, . . . , Fn−1) and G = (G0,G1, . . . ,Gn−1). We know that simple real
zeros of (12) inD = {|ρi | < 1, i = 1, 2 and ρ1ρ2 �= 0} provide limit cycles of (13)
for small enough ε. Several computations, that we omit for the sake of shortness, prove
that system M(ρ) = 0 in D\ρ1ρ2 �= 0 is equivalent to

⎧⎨
⎩

PF (ρ1, ρ2) + QF (ρ1, ρ2)

√
1 − ρ2

2 = 0,

PG(ρ1, ρ2) + QG(ρ1, ρ2)

√
1 − ρ2

1 = 0,
(14)

for some polynomial systems PF , PG , QF , QG . In [9, Prop. 11], for n = 2 and a suit-
able choice of the parameters F,G, it is showed, by squaring the latter equations, that
the system (14) has four simple solutions.Namely, theyfix F = F∗ = (−1/2,−1/10),
G = G∗ = (−3/5, 3/10) and get, using Gröbner Basis, that the squared system

{
�1(ρ1, ρ2) = P2

F∗(ρ1, ρ2) − Q2
F∗(ρ1, ρ2)

(
1 − ρ2

2

) = 0,
�2(ρ1, ρ2) = P2

G∗(ρ1, ρ2) − Q2
G∗(ρ1, ρ2)

(
1 − ρ2

1

) = 0.

has 10 solutions in D from whose only 4 are actual solutions of (14).
Let us show how our method works for n = 2 and with the same choice of the

parameters F,G. Introducing the new variables si as 1 − ρ2
i = s2i , i = 1, 2 we have

once more two genus zero curves for which rational parameterizations exist. Plugging
in system (14) the rational parameterizations ρi = 2σi/(1 + σ 2

i ) and si = (1 −
σ 2
i )/(1 + σ 2

i ), for σi ∈ (−1, 1), i = 1, 2 we obtain an equivalent polynomial system
S,with rational coefficients and degree 6 in σ1, σ2. This system is triangularized again
by using Gröbner Basis, proving that there exist polynomials f and g, of degree 13,
14, respectively, such that the system S is equivalent to {σ1 = f (σ2), g(σ2) = 0}.The
polynomial g has only 6 zeros in (−1, 1). Using interval arithmetic it is easy to prove
that only 4 of them belong to D: for the values σ2 such that g(σ2) = 0 one checks if
f (σ2) ∈ (−1, 1).We again find a clear advantage with respect to the previous method:
no spurious solutions appear.

The study of the number of limit cycles of (13) for small ε but arbitrary n presents
some main difficulties. The most important one is that the complexity increases with
the degree n. A second one is how to choose suitable parameters F and G giving rise
to the highest number of limit cycles. Using the preceding procedure, the following
result provides high lower bounds for small values of n.

Theorem 5.1 For n = 1, . . . , 16, there exist values of F and G such that system (13)
has n2 limit cycles, for small enough values of ε.

Proof However the result is asserted and proved for n = 1, . . . , 16,we strongly believe
that the same procedure is applicable to larger values of n. The real limitation to that is
its high computational cost. We describe the method for a general n without providing
explicit expressions of the polynomials appearing during the process.
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First, consider the same change as above: ρi = 2σi/(1 + σ 2
i ), for i = 1, 2. So,

system (14) reads ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(σ 2
2 + 1)2

(σ 2
1 + 1)(σ 2

2 − 1)3
�1(σ1, σ2) = 0,

(σ 2
1 + 1)2

(σ 2
2 + 1)(σ 2

1 − 1)3
�2(σ1, σ2) = 0,

where�1(σ1, σ2) and�2(σ1, σ2) are polynomials of degree n+4. Thus, our problem
becomes to find the number of real solutions of S = {�1(σ1, σ2) = 0,�2(σ1, σ2) =
0} in the open square (−1, 1)2.

Second, we look for values F∗ and G∗ such that the polynomial system S has
n solutions, for instance, at the points (−1 + 2 j/(n + 1),−1 + 2 j/(n + 1)) with
j = 1, . . . , n.
Using again Gröbner basis, the system S is written as the union of systems of type

{σ1 = f (σ2), g(σ2) = 0} for some polynomials f and g. A detailed study with
interval arithmetic shows that S has in fact n2 − n more simple solutions, having n2

simple solutions in total. 	

We finish this section with a simple example of 1-parameter bifurcation in Eq. (14)

with n = 2, whose number of limit cycles varies with the parameter. Let consider
F = (−1/2,−1/3) and G = (−3/4 + 2/3λ, λ). Thus, performing the change of
variables ρi = 2σi/(1 + σ 2

i ), for i = 1, 2, system (14) reads

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3σ 2
1 σ 4

2 − 6σ1σ 5
2 − 2σ1σ 4

2 − 9σ 2
1 σ 2

2 + 12σ1σ 3
2 + 3σ 4

2 − 4σ 2
1 σ2 + 8σ1σ 2

2 + 6σ1σ2
−9σ 2

2 + 2σ1 − 4σ2 = 0,
12λσ 4

1 σ2 − 12σ 5
1 σ2 + 6σ 4

1 σ 2
2 − 8σ 2

1 σ 2
2 λ − 48λσ 2

1 σ2 + 24λσ1σ
2
2 + 6σ 4

1 + 24σ 3
1 σ2

−15σ 2
1 σ 2

2 − 8λσ 2
1 + 32λσ1σ2 − 8λσ 2

2 + 24λσ1 − 12λσ2 − 15σ 2
1+3σ 2

2 − 8λ + 3 = 0.

Using the procedure described in Sect. 2, it can be proved that its effective bifurcation
values are λ = −3/20 and λ = 3/4. In particular, for small enough ε, if−3/20 < λ <

3/4 the system (13) has four limit cycles while only two if λ < −3/20 or λ > 3/4.
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