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Abstract
In this paper, we study the exact traveling wave solutions for five high-order nonlinear
wave equations using the dynamical system approach. Based on Cosgrove’s work and
the dynamical system method, infinitely many soliton solutions and quasi-periodic
solutions are presented in an explicit form. We show the existence of uncountably
infinitemany double-humped solitarywave solutions.We discuss the parameters range
as well as geometrical explanation of soliton solutions.

Keywords Soliton solution · Double-humped solitary wave solution · Quasi-periodic
solution · Periodic solution · Homoclinic manifold · Center manifold · High-order
nonlinear wave equation

1 Introduction

Usually, nonlinear wave equations are used to describe the nonlinear physical phe-
nomena in a lot of areas, such as fluid mechanics, plasma physics, optical fibers, solid
state physics, et al. Some high-order nonlinear equations play an important role in
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these models. How to find exact travelling wave solutions for these models? In this
paper, we considered the following five equations.

1. The Olver Equation
In [7], by constructing meromorphic solutions in terms of the Weierstrass elliptic

function, the authors found some new exact solutions for the Olver equation [16] (and
also see [17]):

ηt + ηz + q1ηzzzzz + q2η
2ηz + q3ηηzzz + q4ηzηzz + q5ηzzz + q6ηηz = 0. (1)

This unidirectional model describes long, small amplitude waves in shallow water.
It can take the wave velocity or, alternatively, the surface elevation as the principal
variable, i.e., η gives a surface elevation, z is the horizontal coordinate, and coefficients
qi , i = 1, . . . , 6 are real constants, depending on surface tension.

Equation (1) contains six arbitrary constant coefficients and four nonlinear terms.
We assume that q1q2q3 �= 0. Then, letting η = v(z, t) − q6

2q2
, Eq. (1) becomes

vt +
(
1 − q26

4q2

)
vz + q1vzzzzz + q2v

2vz + q3vvzzz

+ q4vzvzz +
(
q5 − q3q6

2q2

)
vzzz = 0. (2)

Consider traveling wave solution v(z, t) = v(x − ct) = φ(ξ). We have

(
1 − c − q26

4q2

)
φξ + q1φξξξξξ + q2φ

2φξ + q3φφξξξ

+ q4φξφξξ +
(
q5 − q3q6

2q2

)
φξξξ = 0. (3)

Integrating Eq. (3) once we obtain

(
1 − c − q26

4q2

)
φ + q1φξξξξ + 1

3
q2φ

3 + q3φφξξ + 1

2
(q4 − q3)(φξ )

2

+
(
q5 − q3q6

2q2

)
φξξ + β1 = 0, (4)

where β1 is an integration constant.
Considering the cases of q1q2 > 0 and q1q2 < 0, respectively, under some special

parametric conditions, [7] gave someWeierstrass elliptic function solutions of Eq. (4).
It is different from [7] and [17], in this paper, we use the method of dynam-

ical systems to find the exact solutions of Eq. (4). We make the transformation

y = −
(
q5
q3

− q6
2q2

)
− φ, then Eq. (4) becomes the following 4-order equation:

y′′′′ = c1yy
′′ + c2(y

′)2 − c3y
3 + c4y

2 + αy + β, (5)
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where

c1 = q3
q1

, c2 = 1

2q1
(q4 − q3), c3 = q2

3q1
, c4 = −q2

q1

(
q5
q3

− q6
2q2

)
,

α = −q2
q1

(
q5
q3

− q6
2q2

)2

− 1

q1

(
1 − c − q26

4q2

)
,

β = β1

q1
− q2

3q1

(
q5
q3

− q6
2q2

)3

− 1

q1

(
1 − c − q26

4q2

) (
q5
q3

− q6
2q2

)
. (6)

For some given c j , j = 1 − 5, Eq. (5) has a form of Cosgrove’s higher-order
Painleve equations (see [5]), i.e., the forms F-III, F-IV, F-V and F-VI. Therefore, we
can obtain exact solutions of y(ξ) for these integrable systems by using the method
of dynamical systems. Thus, we have

η(ξ) = φ(ξ) − q6
2q2

= −q5
q3

− y(ξ). (7)

Formula (7) gives rise to the exact traveling wave solution of Olver Eq. (1). In order
to know exact y(ξ), we should consider the following four cases.

(1) The case c1 = 15, c2 = 45
4 , c3 = 15, c4 = 0 i.e., q2 = 45q1, q3 = 15q1, q4 =

45
2 q1, q6 = 6q5 and q1, q5 are arbitrary constants. In this case, Eq. (5) becomes
the form F-III:

y′′′′ = 15yy′′ + 45

4
(y′)2 − 15y3 + αy + β, (8)

(2) The case c1 = 30, c2 = 0, c3 = 60, c4 = 0 i.e., q2 = 180q1, q3 = q4 =
30q1, q6 = 12q5 and q1, q5 are arbitrary constants. In this case, Eq. (5) becomes
the form F-IV:

y′′′′ = 30yy′′ − 60y3 + αy + β, (9)

(3) The case c1 = 20, c2 = 10, c3 = 40, c4 = 0 i.e., q2 = 120q1, q3 = 20q1, q4 =
40q1, q6 = 12q5 and q1, q5 are arbitrary constants. In this case, Eq. (5) becomes
the form F-V:

y′′′′ = 20yy′′ + 10(y′)2 − 40y3 + αy + β, (10)

(4) The case c1 = 18, c2 = 9, c3 = 24, c4 = α̃, α = 1
9 α̃

2 i.e., q2 = 72q1, q3 =
18q1, q4 = 36q1 and q1, q5 are arbitrary constants, q6 depends on q1, q5, c. In this
case, Eq. (5) becomes the form F-VI:

y′′′′ = 18yy′′ + 9(y′)2 − 24y3 + α̃y2 + 1

9
α̃2y + β, (11)
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2. A Higher Order KdV-BBM Long Wave Equation
In [15], the authors considered the following higher order KdV-BBM long wave

equation:

ut + ux − 1

6
uxxt + δ1uxxxxt + δ2uxxxxx

+
(
3

4
u2 + γ (u2)xx − 1

12
u2x − 1

4
u3

)
x

= 0. (12)

Substituting u(x, t) = u(x − ct) = u(ξ) into (12) and integrating obtained result
once, we have

α̂uξξξξ + c

6
uξξ +

(
2γ − 1

12

)
u2ξ + 2γ uuξξ

= 1

4
u3 − 3

4
u2 − (1 − c)u + g = 0, (13)

where α̂ = δ2 − cδ1 and g is an integral constant. Making the transformation u =
1
2γ

(
y − c

6

)
, Eq. (13) becomes Eq. (5), where

c1 = 1

−α̂
, c2 = 24γ − 1

48γ α̂
, c3 = 1

16γ 2α̂
, c4 = 1

γ α̂

(
3

8
+ c

32γ

)
,

α = 1

α̂

(
1 − c − c

8γ
− c2

192γ 2

)
, β = 1

α̂

(
−2γ g − c(c − 1)

6
+ c2

96γ
+ c3

3456γ 2

)
.

Similar to the Eq. (4), we can reduce the parameters in Eq. (5), such that it become
the above forms (8)–(11).

3. The (2+1)-Dimensional B-Type Kadomtsev–Petviashvili Equation
[6] investigate the following (2+1)-dimensional B-type Kadomtsev–Petviashvili

equation:

ut + uxxxxx − 5(uxxy + ∂−1
x uyy)

+ 15(uxuxx + uuxxx − uuy − ux∂
−1
x uy) + 45u2ux = 0, (14)

where ∂−1
x is the inverse operator of ∂x .

Substituting u(x, t) = u(x + ay − ct) = u(ξ) into (14) and integrating obtained
result once, we have

− cu + uξξξξ − 5(auξξ + a2u) + 15(uuξξ − au2) + 15u3 + g = 0. (15)

Let u = 1
3a − 2y. Then, (15) becomes

y′′′′ = 30yy′′ − 60y3 + (c + 10a2)y +
(
1

2
g − 25

18
a2 − 1

6
ca

)
. (16)

Equation (16) is F-IV form.
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4. The (2+1)-Dimensional Sawada–Kotera Equation
[2] and [14] discussed the (2+1)-dimensional Sawada–Kotera equation:

ut + 1

9

(
uxxxx + 5uxy + 5uuxx + 5

3
u3

)
x

+ 5

9

(
2uuy + ux∂

−1
x uy − ∂−1

x uyy

)
= 0. (17)

Substituting u(x, t) = u(x+ay−ct) = u(ξ) into (17) and integrating obtained result
once, we get

uξξξξ − 9cu + 5(a + u)uξξ + 5

3
u3 + 5au2 + 5a(1 − a)u + g = 0, (18)

where g is an integral constant. Making the transformation u = −(a+6y), we obtain
the following F-IV form:

y′′′′ =30yy′′ − 60y3+(9c − 5a+10a2)y+
(
1

6
g+ 3

2
ca − 5

6
a2+ 25

18
a2

)
. (19)

5. A Sixth Order Solitary Wave Equation
By using Hirita’s bilinear operator, [4] derived the following sixth order equation:

utt = 2uxx − 15(uuxx )xx + 15(u3)xx + 3(u2)xx − uxxx + uxxxxxx . (20)

Substituting u(x, t) = u(x − ct) = u(ξ) into (20) and integrating obtained result
twice, we see that

uξξξξ = (1 + 15u)uξξ − 3u2 − 15u3 − (2 − c2)u + g, (21)

where g is an integral constant. Making the transformation u = 2y − 1
15 , we obtain

the following F-IV form:

y′′′′ = 30yy′′ − 60y3 +
(
c2 − 9

5

)
y +

(
1

2
g − c2

30
+ 14

225

)
. (22)

For the above five models, the authors of the above references did not give all pos-
sible exact travelling wave solutions. In this paper, by using the method of dynamical
systems (see [8–13] ), we discuss the exact solution families of Eq. (9) (i.e., the form
F-IV). We see from (16), (19) and (22) that we can choose the integral constant g such
that β = 0 in Eq. (9).

This paper is organized as follows. In Sect. 2, we consider the exact solutions
in the invariant manifold of the saddle-saddle type of equilibrium points of system
(23) corresponding to the form F-IV. We show that it is different from three-order
wave equation (like KdV equation), high-order wave equations have uncountably
infinite many double-humped solitary wave solutions. In Sect. 3, we discuss the exact
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solutions in the invariant manifold of the center-saddle type of equilibrium points of
system (23). In Sect. 4, we investigate the exact solutions in the invariant manifold of
the center-center type of equilibrium points of system (23). Sect. 5 state some simple
conclusions.

2 The Exact Solutions in the Invariant Manifold of the Saddle–Saddle

Let x1 = y, x2 = x ′
1 = y′, x3 = x ′

2 = y′′, x4 = x ′
3 = y′′′. Equation (9) is equivalent

to the system

x ′
1 = x2, x ′

2 = x3, x ′
3 = x4, x ′

4 = 30x21 x3 − 60x31 + αx1 + β, (23)

which has the following first integrals:

Φ1(x1, x2, x3, x4) = x24 − 12x4x1x2 − 24x1x
2
3 + 12x3x

2
2 + 120x3x

3
1

− 144x51 − 2αx1x3 + αx22 + 4αx31 (24)

and

Φ2(x1, x2, x3, x4) = x1x
2
4 − 21x21 x

2
3 + 120x41 x3 + 7αx41 − 1

12
αx23 − 1

12
α2x21

− 180x61 − 9x42 + 1

3
x33 − 18x21 x2x4 + 36x1x

2
2 x3 − x2x3x4

+ 1

6
αx2x4 − 2αx21 x3 + 1

1296
α3. (25)

For given two constants K1 and K2, the two level sets defined byΦ1(x1, x2, x3, x4)
= K1 and Φ2(x1, x2, x3, x4) = K2 determine two three-dimensional invariant mani-
folds of system (23). Their intersection is a two-dimensional manifold.

Notice that when β = 0 under the transformation (x1, x2, x3, x4) →
(x1,−x2, x3,−x4) and t → −t , system (25) is invariant. This symmetry is important
for the persistence of homoclinic orbits under some small perturbation (see [18]).

We take α = 60p2, β = 0 (p > 0). Then, system (23) has three equilibrium points
for which E1(− p, 0, 0, 0) is a center–center with the eigenvalues ± λ1i ≡ ±[(15 +√
15)p] 12 i,± λ2i ≡ ±[(15 − √

15)p] 12 i; E2(0, 0, 0, 0) is a center-saddle with the
eigenvalues ± λ1i ≡ ± (15)

1
4
√
2pi,± λ2 ≡ ± (15)

1
4
√
2p and E3(p, 0, 0, 0) is a

hyperbolic equilibrium point (saddle–saddle) with the eigenvalues ± λ1 ≡ ±[(15 +√
105)p] 12 ,± λ2 ≡ ±[(15 − √

105)p] 12 .
Corresponding to (24) and (25), we have

K11 = Φ1(− p, 0, 0, 0) = −96p5, K21 = Φ2(− p, 0, 0, 0) = 320

3
p6.

K12 = Φ1(0, 0, 0, 0) = 0, K22 = Φ2(0, 0, 0, 0) = 500

3
p6.

K13 = Φ1(p, 0, 0, 0) = 96p5, K23 = Φ2(p, 0, 0, 0) = 320

3
p6.
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In this section, we first consider the solutions of system (23) in the invariant man-
ifold of the equilibrium point E3(p, 0, 0, 0). In fact, the two level set (L1) and (L2)

defined by Φ1(x1, x2, x3, x4) = K13 and Φ2(x1, x2, x3, x4) = K23 pass through the
equilibrium point E3. By using the method given by [5], we know that in the intersec-
tion of (L1) and (L2), there exist solutions of (23) as follows:

y(ξ) = x1(ξ) = 1

2

[
(U (ξ) + V (ξ))′ + (U (ξ) + V (ξ))2 −U (ξ)V (ξ) + A3

]
,

(26)

where U (ξ) and V (ξ) are defined by inversion of the following two hyper-elliptic
integrals:

I1 ≡
∫ U

∞
dt√
P3(t)

+
∫ V

∞
dt√
P3(t)

= Ĉ1,

I2 ≡
∫ U

∞
tdt√
P3(t)

+
∫ V

∞
tdt√
P3(t)

= Ĉ2 + ξ, (27)

and

P3(t) = (t2 + A3)
3 − α(t2 + A3) + B3t + 1

3
β, (28)

B2
3 = 4

3K13 = 512
3 p5, A3 = − 64K23

9B2
3

= − 40
9 p and Ĉ1 and Ĉ2 are integral constants.

Under the parameter conditions of this section, we have

P3(t) = t6 − 40

3
pt4 + 1060

27
p2t2 + 16

√
6

3
p

5
2 t + 800

729
p3

= 1

729
(9t2 + 18

√
6pt + 50p)(9t2 − 9

√
6pt − 4p)2

= (t − r1)(t + r2)[(t + r3)(t + r4)]2, (29)

where r1 = 1
2

(
1
3

√
70 + √

6
)√

p, r2 = 1
2

(
1
3

√
70 − √

6
)√

p, r3 =
(√

6 − 2
3

) √
p,

r4 =
(√

6 + 2
3

)√
p. We notice that

∫ U dt√
P3(t)

= − 1

(r1 + r2)λ1

× ln

⎛
⎝λ21 + e1(U − r1) + λ1

√
(U − r1)2 + 2e1(U − r1) + λ21

1
2 (U − r1)

⎞
⎠

+ 1

(r1 + r2)λ2
ln

⎛
⎝λ22 + e2(U + r2) + λ2

√
(U + r2)2 + 2e2(U + r2) + λ22

1
2 (U + r2)

⎞
⎠ ,

(30)
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and

∫ U tdt√
P3(t)

= − r1
(r1 + r2)λ1

× ln

⎛
⎝λ21 + e1(U − r1) + λ1

√
(U − r1)2 + 2e1(U − r1) + λ21

1
2 (U − r1)

⎞
⎠

− r2
(r1 + r2)λ2

ln

⎛
⎝λ22 + e2(U + r2) + λ2

√
(U + r2)2 + 2e2(U + r2) + λ22

1
2 (U + r2)

⎞
⎠ ,

(31)

where λ21 = r21 +r1r3 +r1r4 +r3r4 = (15+√
105)p, λ22 = r22 −r2r3 −r2r4 +r3r4 =

(15 − √
105)p, e1 = 1

2 (2r1 + r3 + r4) = 4
3

√
6p + r1, e2 = 1

2 (−2r2 + r3 + r4) =
4
3

√
6p − r2.
Hence, by using two integral formulas given by (27), we obtain

(
λ21 + e1U1 + λ1

√
U 2
1 + 2e1U1 + λ21

) (
λ21 + e1V1 + λ1

√
V 2
1 + 2e1V1 + λ21

)
U1V1

= C̃1e
−ω1ξ , (32)

and

(
λ22 + e2U2 + λ2

√
U 2
2 + 2e2U2 + λ22

) (
λ22 + e2V2 + λ2

√
V 2
2 + 2e2V2 + λ22

)
U2V2

= C̃2e
−ω2ξ , (33)

where ω1 = 1
2

(
1 + r1

r2

)
λ1, ω2 = 1

2

(
1 + r2

r1

)
λ2, U1 = U (ξ) − r1, V1 = V (ξ) −

r1,U2 = U (ξ) + r2, V2 = V (ξ) + r2, C̃1 and C̃2 are two integral constants.
To get the exact explicit parametric representations of U (ξ) and V (ξ) from (32)

and (33), let

(λ21 + e1V1 + λ1

√
V 2
1 + 2e1V1 + λ21 = a1, λ22 + e2U2 + λ2

√
U2
2 + 2e2U2 + λ22 = a2,
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where a1 and a2 are two constants given by (45) below. Thus, (32) and (33) imply that

U (ξ) = Ua(ξ) = r1 − 2C1λ
2
1

2e1C1 − C2
1e

−ω1ξ − (e21 − λ21)e
ω1ξ

= r1 −
λ21
C1

e1
C1

− coshq1(−ω1ξ)
,

V (ξ) = Va ≡ r1 + V10 = r1 +
a1e1 +

√
a21e

2
1 − (a21 − 2λ21a1)(e

2
1 − λ21)

e21 − λ21
, (34)

where C1 = V10C̃1
a1

, q1 = e21−λ21
C2
1

, coshq(ξ) = 1
2 (e

ξ + qe−ξ ) is generalized hyperbolic

function defined by [13] and

V (ξ) = Vb(ξ) = −r2 − 2C2λ
2
2

2e2C2 − C2
2e

−ω2ξ − (e22 − λ22)e
ω2ξ

= −r2 −
λ22
C2

e2
C2

− coshq2(−ω2ξ)
,

U (ξ) = Ub ≡ −r2 +U20 = −r2 +
a2e2 +

√
a22e

2
2 − (a22 − 2λ22a2)(e

2
2 − λ22)

e22 − λ22
, (35)

where C2 = U20C̃2
a2

, q2 = e22−λ22
C2
2

. We see from (34) and (35) that

U ′
a(ξ) = 2C1λ

2
1ω1

[
C2
1e

−ω1ξ − (e21 − λ21)e
ω1ξ

]
[
2e1C1 − C2

1e
−ω1ξ − (e21 − λ21)e

ω1ξ
]2 =

λ21ω1
C1

sinhq1(−ω1ξ)[
e1
C1

− coshq1(−ω1ξ)
]2 (36)

and

V ′
b(ξ) = 2C2λ

2
2ω2

[
C2
2e

−ω2ξ − (e22 − λ22)e
ω2ξ

]
[
2e2C2 − C2

2e
−ω2ξ − (e22 − λ22)e

ω2ξ
]2 =

λ22ω2
C2

sinhq2(−ω2ξ)[
e2
C2

− coshq2(−ω2ξ)
]2 . (37)

Therefore, we know from (26) that system (23) has the following three classes of exact
solutions:

x1(ξ) = y(ξ) = x11(ξ) = 1

2

[
U ′
a(ξ) + (Ua(ξ) + Va)

2 −Ua(ξ)Va − 40p

9

]
, (38)

x1(ξ) = y(ξ) = x12(ξ) = 1

2

[
V ′
b(ξ) + (Vb(ξ) +Ub)

2 − Vb(ξ)Ub − 40p

9

]
, (39)
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x1(ξ) = y(ξ) = x13(ξ)

= 1

2

[
U ′
a(ξ) + V ′

b(ξ) + (Ua(ξ) + Vb(ξ))2) −Ua(ξ)Vb(ξ) − 40p

9

]
. (40)

Letting ξ → ±∞, we have from (38), (39) and (40) that

x11(ξ) → 1

2

[
3r21 + 3r1V10 + V 2

10 − 40p

9

]
≡ x11(±∞), (41)

x12(ξ) → 1

2

[
3r22 − 3r2U20 +U 2

20 − 40p

9

]
≡ x12(±∞) (42)

and

x13(ξ) → 1

2

[
(r1 − r2)

2 + r1r2 − 40p

9

]
= p. (43)

Now, we take

x11(±∞) = x12(±∞) = p. (44)

It is easy to see from (41) and (42) that (44) gives rise to two equations with respect
to a1 and a2 which imply two solutions a1 and a2 as follows:

a1 = p

9

(
2

√
7461

√
105 + 82787 +

(
413 + 27

√
105

))
,

a2 = p

9

(
9
√
105 + 65 − 6

√
85

√
105 − 465

)
. (45)

Obviously, three solutions x11(ξ), x12(ξ), and x13(ξ) of (23) with β = 0, given by
(38), (39) and (40), respectively, depend on integral constants C1 or C2 or both. When
C1 > 0 and C2 > 0 these three solutions have singularities at some points where the
denominators of Ua(ξ) and Vb(ξ) are equal to zeros. However, when we choose the
two constants C1 < 0 and C2 < 0, (38), (39) and (40) give rise to infinitely many
smooth soliton solutions. For some fixed pairs (C1,C2),we have the graphs of x13(ξ),
decaying to a non-zero constant p (See Fig. 1a, b).

(a) C1 = C2 = −2, a double-humped wave profile of x13(ξ). (b) C2 = −2,C1 ∈
(− 5,− 1), infinitely many double-humped soliton solutions. (c) C1 = −2,C2 ∈
(− 5,− 1), infinitely many double-humped soliton solutions.

To sum up, we have proved the following conclusion.

Theorem 1 (i) Equation (9) with β = 0 has a two-dimensional global homoclinic
manifold to the hyperbolic equilibrium point E3(p, 0, 0, 0) laying in the intersec-
tion of Φ3(x1, x2, x3, x4) = K13 and Φ4(x1, x2, x3, x4) = K23, in which the flow
of (9) is defined by (x13(ξ), x ′

13(ξ), x ′′
13(ξ), x ′′′

13(ξ)), where x13(ξ) is given by (40).
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Fig. 1 The infinitely many soliton solutions defined by (40) when p = 1

(ii) Taking C1 < 0,C2 < 0 in x11(ξ), x12(ξ) and x13(ξ), then (38), (39) and (40)
give rise to uncountably infinite many solton solutions of Eq. (9). Especially, (40)
defined a family of double-humped solutions.

3 Exact SolitaryWave Solution and Quasi-Periodic Solutions in the
Invariant Manifold of the Saddle-Center

In this section, we investigate the solutions on the intersection of level manifolds
Φ1(x1, x2, x3, x4) = K12 = 0 and Φ2(x1, x2, x3, x4) = K2. By using the result in [3]
cited by [5], we know that

y = x1(ξ) = U (ξ) + V (ξ), (46)

where U and V are defined by

(U ′)2 = 4U 3 − 5p2U + 1

6

√
K2,

(V ′)2 = 4V 3 − 5p2V − 1

6

√
K2. (47)

Taking K2 = K22, then we have

(U ′)2 = 4U 3 − 5p2U + 15
√
15

27
p3 =

(
U −

√
15

6
p

)2 (
4U + 4

√
15

3
p

)
,

(V ′)2 = 4V 3 − 5p2V − 15
√
15

27
p3 =

(
V +

√
15

6
p

)2 (
4V − 4

√
15

3
p

)
. (48)

Notice that in the (U , U̇ )−phase plane and (V , V̇ )−phase plane, the two equations
defined by (48) determine two cubic algebraic curves shown in Fig. 2a, b, respectively.
Clearly, the first equation of (48) gives rise to a homoclinic orbit, while the second

equation gives rise to an open curve and a point (V , V̇ ) =
(
−

√
15
6 p, 0

)
.
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Fig. 2 The phase curves defined by (48) a (U , U̇ )-phase plane for p > 0. b (V , V̇ )-phase plane for p > 0.

Thus, by using (48) to do integrate, we obtain the following results.

(1) Corresponding to the homoclinic orbit in Fig. 2a, we have its parametric repre-
sentation

U (ξ) = Uo1(ξ) =
√
15

2
p

[
tanh2(ωξ) − 2

3

]
,

where ω = 1
2 (2

√
15p)

1
2 = 1

2λ2.

(2) Corresponding to the stable manifold and the unstable manifold in the right of

the saddle
(√

15p
6 , 0

)
in Fig. 2a, we have the parametric representation

U (ξ) = Uo2(ξ) =
√
15

2
p

[
ctnh2(ωξ) − 2

3

]
.

(3) Corresponding to the equilibrium point
(√

15p
6 , 0

)
in Fig. 2a, we have its para-

metric representation

U (ξ) = Uo3(ξ) =
√
15p

6
.

(4) Corresponding to the point
(
−

√
15
6 p, 0

)
in Fig. 2b, we have its parametric

representation

V (ξ) = Vo1(ξ) = −
√
15

6
p.
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(5) Corresponding to the open curve passing through the point
(√

15p
3 , 0

)
in Fig. 2b,

we have the parametric representation

V (ξ) = Vo2(ξ) =
√
15p

2

[
tan2(ωξ) + 2

3

]
.

Therefore, as some intersection curves of two level manifolds Φ1(x1, x2, x3, x4) = 0
and Φ2(x1, x2, x3, x4) = 500

3 p6, we obtain the following exact explicit non-trivial
parametric representations of the solutions of Eq. (9):

y = x1(ξ) = Uo1(ξ) + Vo1(ξ)

= −
√
15p

6
+

√
15p

2

[
tanh2(ωξ) − 2

3

]
= −ω2sech2(ωξ),

y = x1(ξ) = Uo2(ξ) + Vo1(ξ)

= −
√
15p

6
+

√
15p

2

[
ctnh2(ωξ) − 2

3

]
= ω2csch2(ωξ),

y = x1(ξ) = Uo3(ξ) + Vo2(ξ)

=
√
15p

6
+

√
15p

2

[
tan2(ωξ) + 2

3

]
= ω2sec2(ωξ),

y = x1(ξ) = Uo1(ξ) + Vo2(ξ)

=
√
15p

2

[
tanh2(ωξ) + tan2(ωξ)

]
,

y = x1(ξ) = Uo2(ξ) + Vo2(ξ)

=
√
15p

2

[
ctnh2(ωξ) + tan2(ωξ)

]
. (49)

In (49), the first solution just gives rise to a solitary wave solution of Eq. (9) which
corresponds to the homoclinic orbit to center-saddle E2(0, 0, 0, 0).

We next consider the intersection of two level manifolds Φ1(x1, x2, x3, x4) = 0
and Φ2(x1, x2, x3, x4) = K2 where K2 < K22 and 0 ≤ |K2 − K22| ≤ δ with δ > 0
sufficiently small such that in the (U , U̇ )-phase plane and (V , V̇ )-phase plane, there
exists respectively a closed branch of the curves defined by (47). For example, taking
K2 = K2b = 320

3 p6 in (47), we have

(U ′)2 = 4U 3 − 5p2U + 4
√
15

9
p3,

(V ′)2 = 4V 3 − 5p2V − 4
√
15

9
p3. (50)

In the (U , U̇ )-phase plane and (V , V̇ )-phase plane, the two equations defined by (50)
determine two cubic algebraic curveswhich are shown in Fig. 3a, b, respectively. Obvi-
ously, two equations of (50) give rise to an open curve and a closed curve, respectively.
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Fig. 3 The phase curves defined by (50) a (U , U̇ )-phase plane for p > 0. b (V , V̇ )-phase plane for p > 0.

In the two cases, we have from (50) that

(U ′)2 = 4U 3 − 5p2U + 1

6

√
K2 = 4(r1 −U )(r2 −U )(U − r3),

(V ′)2 = 4V 3 − 5p2V − 1

6

√
K2 = 4(z1 − V )(z2 − V )(V − z3). (51)

where when K2 → K22, r1, r2 →
√
15p
6 , r3 → −

√
15p
3 , z2, z3 → −

√
15p
6 , z1 →√

15p
3 , r1 − r3 →

√
15p
2 , z1 − z3 →

√
15p
2 .

By using (51), we obtain

U (ξ) = Up(ξ) = r3 + (r2 − r3)sn
2(

√
r1 − r3ξ, k1) = r3 + Rdsn

2(Ω1ξ, k1),

V (ξ) = Vp(ξ) = z3 + (z2 − z3)sn
2(

√
z1 − z3ξ, k2) = z3 + Zdsn

2(Ω2ξ, k2),

where k1 =
√

r2−r3
r1−r3

, k2 =
√

z2−z3
z1−z3

, Rd = r2 − r3, Zd = z2 − z3, Ω1 =√
r1 − r3, Ω2 = √

z1 − z3, sn(·, k) is Jacobin elliptic function (see [1]). It is easy to
see that when K2 → K22, Up(ξ) → Uo(ξ), Vp(ξ) → Vo(ξ).

Hence, we have

y = x1(ξ) = r3 + z3 + Rdsn
2(Ω1ξ, k1) + Zdsn

2(Ω2ξ, k2). (52)

This parametric representation gives rise to a family of quasi-periodic wave solutions
of Eq. (9).

To sum up, we have proved the following conclusion.
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Theorem 2 (i) Equation (9) has a solitary wave solution given by the first equation
of (49) and other exact solutions given by other equations of (49). Geometrically,
they lie in the intersection of two level manifolds Φ1(x1, x2, x3, x4) = 0 and
Φ2(x1, x2, x3, x4) = K22 of system (23).

(ii) There exists a family of quasi-periodic solutions of system (23)with the paramet-
ric representation given by (52). Geometrically, they lie in the intersection of two
families of level manifolds Φ1(x1, x2, x3, x4) = 0 and Φ2(x1, x2, x3, x4) = K2 of
system (23) where K2 ∈ (K22 − δ, K22).

4 Exact Periodic Wave Solutions and Quasi-Periodic Wave Solutions
in the Invariant Manifold of the Center–Center

In this section, we discuss the flow related the equilibrium point E1. In this case,
instead of P3(t) in (29), we have

P1(t) = t6 + 40

3
pt4 + 1060

27
p2t2 + 16

√
6

3
(− p)

5
2 t − 800

729
p3 (53)

Clearly, by the parameter transformation p → −p, the polynomial P1(t) becomes
P3(t). Therefore, we have from (34) and (35) that

Ua1(ξ) = r1 + C1λ
2
1

2e1C1 − C2
1e

−iω1ξ − (e21 + λ21)e
iω1ξ

, (54)

and

Vb1(ξ) = −r2 + C2λ
2
2

2e2C2 − C2
2e

−iω2ξ − (e22 + λ22)e
iω2ξ

. (55)

Taking the real parts and imaginary parts, respectively, we obtain

Ua1r (ξ) = r1 + C1λ
2
1[2e1C1 − (C1 + e21 + λ21) cos(ω1ξ)]

[2e1C1 − (C2
1 + e21 + λ21) cos(ω1ξ)]2 + (C2

1 − e21 − λ21)
2 sin2(ω1ξ)

(56)

and

Ua1i (ξ) = − C1λ
2
1[(C2

1 − e21 − λ21) sin(ω1ξ)]
[2e1C1 − (C1 + e1 + λ21) cos(λ1ξ)]2 + (C2

1 − e21 − λ21)
2 sin2(ω1ξ)

;

(57)

Vb1r (ξ) = −r2 + C2λ
2
2[2e2C2 − (C2 + e22 + λ22) cos(ω2ξ)]

[2e2C2 − (C2 + e2 + λ22) cos(ω2ξ)]2 + (C2
2 − e22 − λ22)

2 sin2(ω2ξ)

(58)
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and

Vb1i (ξ) = − C2λ
2
2[(C2

2 − e22 − λ22) sin(ω2ξ)]
[2e2C2 − (C2

2 + e22 + λ22) cos(ω2ξ)]2 + (C2
2 − e22 − λ22)

2 sin2(ω2ξ)
.

(59)

Thus, similar to (40), system (23) has the following solutions:

x1(ξ) = y(ξ) = 1

2

[
U ′
a1r (ξ) + V ′

b1r (ξ) + (Ua1r (ξ)

+ Vb1r (ξ))2) −Ua1r (ξ)Vb1r (ξ) − 40p

9

]
(60)

and

x1(ξ) = y(ξ) = 1

2

[
U ′
a1i (ξ) + V ′

b1i (ξ) + (Ua1i (ξ)

+ Vb1i (ξ))2) −Ua1i (ξ)Vb1i (ξ) − 40p

9

]
. (61)

Generally, ω1 and ω2 are unreduced. Hence, (60) and (61) give rise to two families of
quasi-periodic solutions of system (23) for any real number pair (C1,C2).

We see from the above discussion, the following conclusion holds.

Theorem 3 (i) There exist two families of quasi-periodic solutions of system (23)
with the parametric representation given by (60) and (61). Geometrically, they lie
in the intersection of two families of level manifoldsΦ1(x1, x2, x3, x4) = K11 and
Φ2(x1, x2, x3, x4) = K21 of system (23).

(ii) Letting C1 = 0,C2 �= 0 or C2 = 0,C1 �= 0, then there exist two families of peri-
odic solutions of system (23) given by (60) and (61). These solutions lie in the center
manifold of the equilibrium E1 of system (23) given by M1 = {(x1, x2, x3, x4) ∈
R4|Φ1(x1, x2, x3, x4) = K11, Φ2(x1, x2, x3, x4) = K21}.

5 Conclusion

In Sects. 2, 3 and 4 of this paper, we obtain the exact solutions in the invariantmanifolds
of the three equilibriumpoints of system (23)withβ = 0.Under determined parameter
conditions, these results give rise to the exact travelling wave solutions for above
five nonlinear wave equations mentioned in introduction. We find that the high-order
nonlinear equations have uncountably infinite many double-humped soliton solutions.

When β �= 0, to get exact solutions, the calculation is very complicated.
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