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Abstract A comprehensive theoretical study on the head-on collision between two
solitary waves in a thin elastic plate floating on an inviscid fluid of finite depth is
investigated analytically by means of a singular perturbation method. The effects of
plate compression are also taken into account. The Poincaré–Lighthill–Kuo method
has been used to derive the solution up to the fourth order of the resulting nonlinear
differential equation, which in principle gives the asymptotic series solution. It is
found that after collision, both the hydroelastic solitary waves preserves their original
shape and positions. However a collision does have imprints on colliding waves with
non-uniform phase shift up to the third order which creates tilting in the wave profile.
Maximum run-up amplitude, wave speed, phase shift and distortion profile have also
been calculated and plotted for two colliding solitary waves.

Keywords Head-on collision · Solitary waves · Thin elastic plate · Perturbation
solutions · Compressive force

1 Introduction

The hydroelastic problems are very important in different fields of sciences such as
biology, polar engineering, offshore engineering and also many other industrial appli-
cations.Hydroelasticity is related to the deformations of elastic bodies that corresponds
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to excitations of hydrodynamics and together with the refinement of these excitation
owing to the deformation of the body.Many of the problems in hydroelasticity are cou-
pled which state that deformations of the elastic bodies depend on the hydrodynamic
forces. It is very difficult to study numerically and theoretically for both coupled fluid
motion and the deformation of the elastic bodies. These difficulties are in fact due to
hydrodynaimc forces that are acting on the surface of the elastic body which strongly
depends on the surface displacements.

A number of applications are dedicated to nonlinear hydroelastic waves in polar
areas where ice sheets are treated as roads and aircraft runways in winters and air-
cushioned automobiles are used to break the ice. Forbes [1] investigated the periodic
waves under an elastic sheet which is placed on the surface of infinitely deep water.
Forbes [1] obtained the series solution for the periodic waves with the help of higher-
order series expansion technique and also found that the waves of maximum height
move with infinite speed for at least a single value of the flexural rigidity. Later, Forbes
[2] also examined solution for surfacewaves of large amplitude beneath an elastic sheet
with the help of the Galerkin method. Recently, Părău and Vanden-Broeck [3] studied
three-dimensional nonlinear hydroelastic (flexural-gravity) waves under an ice sheet
due to a steadily moving pressure by using the boundary integral method. Deike et
al. [4] investigated experimentally linear and nonlinear waves beneath an elastic sheet
where flexural waves and tension waves occur. Deike et al. [4] used the optical method
to attain the full time and space fieldwave, and found thatwhen the forcing is increased,
a momentous nonlinear shift has been observed in the dispersion relation. Chen et al.
[5] studied numerically the nonlinear hydroelastic waves of a moored floating body
and established the governing equation of motion in a frequency domain. Chen et al.
[5] found that the coupling resonance and the rigid resonance of amoored floating body
can be originated in a low frequency domain whereas the flexible resonance happens
in a higher frequency domain. Plotnikov and Toland [6] described the special Cosserat
theory of hyperelastic shells that satisfy Kirchoff’s theory and the irrotational flow
theory. This theory describes the modeling of interaction between a thin heavy elastic
sheet under the ocean. Blyth et al. [7] investigated the two-dimensional nonlinear
traveling waves that are bounded above and below by two elastic plates.

In the framework of the potential flow theory, Vanden-Broeck and Părău [8] investi-
gated numerically weakly nonlinear and fully nonlinear generalized two-dimensional
solitarywaves and periodicwaves under an ice sheet.Milewski et al. [9] studied asymp-
totically and numerically the nonlinear hydroelastic solitary waves in an infinite depth
which are bounded below and above by an elastic sheet. Milewski et al. [9] found
that for the unforced problems that the wave packets of solitary waves bifurcate from
nonlinear periodic waves and when there is a moving load for small amplitude, steady
responses can be obtained easily at all critical speeds, but for higher loads there are no
steady solutions for transcritical range. Later, Guyenne and Părău [10] described the
forced and unforced flexural-gravity solitary waves bymeans of Hamiltonian formula-
tion. Alam [11] asymptotically found the series solution for the dromions of nonlinear
hydroelastic waves.

It is very well known that during the past few years solitary waves and their interac-
tion received an enormous attention among many distinct researchers [12–20]. When
two solitary waves become closer they collide, their energies and their positions have
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been transferred with one another. After collision both the solitary waves regain their
initial forms. The only important and unique influence of collision is their phase shifts,
and it is notable that solitary waves can only be kept in an integrable system during
striking and colliding. During this process of collision solitary waves can maintain
their identities. Many authors have presented the solution for solitary waves. Laitone
[21] extended Friedrich’s technique and included the terms upto the fourth order with
the help of shallow water theory for a flat bottom, and then obtained the second
order solutions for both the canodial and solitary waves. Grimshaw [22] analyzed the
deformation of solitary waves which generates due to slow variation in the bottom
topography.

As we are verymuch familiar that asymptotic behavior between two uni-directional
nonlinear gravitywaves in shallowwater is presented by theKorteweg–deVries (KdV)
equation. To analyze the solution of KdV equation we can easily find it with the help
of the inverse scattering transformmethod [23]. For two overtaking solitary waves, the
inverse scattering transform method can also be used to see the effects of colliding.
For the head-on collision between two waves, we employ the Poincaré–Lighthill–
Kuo (PLK) method. Basically, it is the method of strained coordinates which was
first presented by Poincaré in 1892 for ordinary differential equations. Later, Lighthill
[24] and Lin [25] used this methodology for hyperbolic partial differential equations
[26]. Kuo [27] performed a perfect combination of the Lighthill technique with the
boundary layer method for the flow along a flat plate [28]. Detailed discussion has
been described by Van Dyke [29] and Dai [28]. Zhu and Dai [30] analyzed the head-on
collision between two generalized KdV (gKdV) solitary waves in a stratified fluid by
the reductive perturbation method with a combination of the PLK method and two
parameter expansions, and found that gKdV solitary waves keep their original shapes
and during colliding of both thewaves. Further, Zhu [31] also found the solution for two
modified KdV solitary waves using the PLK technique and the reductive perturbation
technique. Zhu [31] examined that the waves do not preserve their original shape after
collision due to non-uniform in the phase shift.

The purpose of this study is to analyze the effects of hydroelasticity on the head-
on collisions between two solitary waves in a thin elastic plate floating on a fluid of
shallow depth. In Sect. 2 we describe the statement of problem mathematically. For
the mathematical model of the plate, we follow the formulation proposed by Xia and
Shen [32] who used linear Euler–Bernoulli beam theory, in which the gravity, elastic,
inertial and lateral forces are taking into consideration.We assume here that the gravity
force is the predominant one. The incompressible and homogenous fluid is assumed
to be inviscid and the motion be irrotational. A thin elastic plate of infinite extension
is floating on the surface of the fluid. To study the head-on collision in shallow water,
we assume that both the solitary waves are small in amplitude (a/H � 1) and long in
wavelength (λ/H � 1), where a is amplitude, λ is the wavelength and H the depth
of the fluid. The parameters and the wavelength are associated with Ursell’s ordinary
theory of shallowwater i.e H3 ≈ aλ2. In Sects. 3 and 4 we will apply the PLKmethod
to our resulting non-linear partial differential equations and obtain the series solution
upto the third order approximation. A preliminary study on this problemwas presented
by Bhatti and Lu [33] while detailed mathematical method and results are elucidated
here.
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It is well known that different asymptotic regimes will lead to different approximate
results. In above-mentioned assumptions, we shall find the 3rd-order KdV equation,
with the combined effects of inertial and lateral forces, is the leading contribution to
the wave motion considered here, and the effect of elastic force appears in a higher
order. This approximation scheme is similar to that of Guyenne and Părău [34] for the
case with H3 ≈ aλ2. Guyenne and Părău [34] also showed that the 3rd-order KdV
equation can be the leading order while the 5th-order term appears for higher-order
asymptotic expansion. Xia and Shen [32], however, assumed that the effects of the
gravity force and the elastic force are in the same order so that the 3rd-order and the
5th-order terms are of the leading contribution in the 5th-order KdV equation they
derived. It is noted that the mathematical models for the ice sheet in Xia and Shen
[32] and Guyenne and Părău [34] are different. Xia and Shen [32] considered a linear
Euler–Bernoulli model, taking the elastic force, inertial force and lateral force into
account while Guyenne and Părău [34] used a nonlinear Kirchhoffs–Love plate with
Plotnikov and Toland’s formulation [6]. However, the linear part of the elastic force
in Plotnikov and Toland’s model [6] is the same as that of the Euler–Bernoulli model.
The discrepancy in the structure models is not responsible to the difference in the KdV
equations for the leading-order approximation.

2 Mathematical Formulation

Let us consider the nonlinear hydroelastic waves in a two-dimensional channel of
finite depth. We have selected the Cartesian coordinate system with the x-axis is taken
along the horizontal direction of the channel and the z-axis is taken along the vertical
direction of the channel. The horizontal plane bottom is situated at z = 0 where the
normal velocity of the fluid is considered to be zero, since the fluid particles do not
involve in any motion. The deflection of the plate is presented at z = H(x, t). Under
the approximation that fluid having constant density is incompressible and inviscid,
and the motion is irrotational, with the help of potential flow theory the velocity field
for the governing flow is described by the potential function φ(x, z, t) statifying

∇2φ = 0, (0 < z < H). (1)

The bottom boundary condition can be described as

∂φ

∂z
= 0, (z = 0). (2)

The kinematic boundary condition at the free surface can be written as

∂H

∂t
+ ∇φ · ∇H − ∂φ

∂z
= 0. (3)

With the help of Euler–Bernoulli’s beam theory, the kinematic boundary condition for
the floating elastic plate at the free surface is described by
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∂φ

∂t
+ gH + 1

2
|∇φ|2 + 1

ρ

(
D∇4H + M

∂2H

∂t2
+ Q

∂2H

∂x2

)
= B(t), (4)

where D = Ed3/[12(1−ν2)] is the flexural rigidity of the plate,M = ρed is amass per
unit area of the plate, Q is associated to the lateral stress of the plate (with compression
at Q > 0), B(t) is the Bernoulli constant, E , d, ν, and ρe are Young’s modulus, the
thickness of plate, Poisson’s ratio, and the density of the plate, respectively.

For long waves in shallow water, we can easily describe the potential function
φ(x, z, t) can be presented as the Taylor series at z = 0. With the help of Eqs. (1) and
(2), we get

φ(x, z, t) =
∞∑
n=0

(−1)n
z2n

(2n)!∇
2n�, (5)

where

�(x, t) = φ(x, 0, t). (6)

Rewriting Eqs. (3) and (4) in terms of �, we obtain

∂H

∂t
+ ∇ ·

[ ∞∑
n=0

(−1)n
H2n+1

(2n + 1)!∇
2n(∇�)

]
= 0, (7)

∂�

∂t
+ gH + 1

2
|∇�|2 + 1

ρ

(
D∇4H + M

∂2H

∂t2
+ Q

∂2H

∂x2

)

+
∞∑
n=1

(−1)n
H2n

(2n)!

[
∇2n�t + 1

2

2n∑
m=0

(−1)mC2n
m ∇m+1� ∗ ∇2m−n+1�

]
, (8)

where

C
2n
m =

(
2n
m

)
= 2n

m!(2n − m)! (9)

is the binomial coefficients and U = ∂�/∂x is the tangential velocity at the bottom
of the channel. In Eq. (8) the asterisk represents the vector inner product for usual
multiplication of even m and odd n.

3 Method of Solution

In this section, we apply the PLKmethod to obtain the solution of Eqs. (7) and (8). We
define the following transformations of wave frame coordinates with phase functions

ξ = ε
1
2 k(x − C+t) + εkθ(ξ, η), η = ε

1
2 k̄(x + C−t) + εk̄ϕ(ξ, η). (10)
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In Eq. (10) k and k̄ are the wave numbers of left- and right-going waves of order unity
whereas ε is the dimensionless parameters which defines the amplitude of the wave
and order of the magnitude where 0 < ε � 1, C+ and C− the corresponding wave
speed for the right- and left going wave, θ and ϕ are the phase functions. According
to Ursell’s relationship, the scaling of the horizontal wavelength is taken as ε1/2. We
derive the following transformation between the derivatives as

∂

∂t
+ C+

∂

∂x
= ε

1
2

D
(C+ + C−)

[
k̄

∂

∂η
+ εkk̄

(
∂θ

∂η

∂

∂ξ
− ∂θ

∂ξ

∂

∂η

)]
, (11)

∂

∂t
− C−

∂

∂x
= −ε

1
2

D
(C+ + C−)

[
k

∂

∂ξ
+ εkk̄

(
∂ϕ

∂ξ

∂

∂η
− ∂ϕ

∂η

∂

∂ξ

)]
, (12)

where

D =
(
1 − εk

∂ϕ

∂η

)(
1 − εk̄

∂θ

∂ξ

)
− ε2kk̄

∂ϕ

∂ξ

∂θ

∂η
. (13)

Let

H = H0 (1 + ζ ) , (14)

where H0 is a undisturbed depth of a fluid and ζ is a nondimensional elevation of
plate-fluid interface. Let C = √

gH0 is a phase speed of linear waves in the shallow
water of a constant depth. Rewriting Eqs. (7) and (8) yields

(
∂

∂t
+ C±

∂

∂x

)
(U ± Cζ ) + ∂F±

∂x
= 0, (15)

where

F± = ±(C − C±)(U ± Cζ ) + 1

2
U 2 ± CζU + 1

ρ

(
D

∂4ζ

∂x4
+ M

∂2ζ

∂t2
+ Q

∂2ζ

∂x2

)

+
∞∑
n=1

(−1)n H2n
0 (1 + ζ )2n

2n!

(
∂2nU

∂t∂x2n−1 ± C(1 + ζ )

(2n + 1)

∂2nU

∂x2n
+ 1

2

2n∑
m=0

C
2n
m (−1)m

∂mU

∂xm
∂2n−mU

∂x2n−m

)
.

(16)

Let us make the following changes in the dependent variables

U + Cζ = 2εCα, U − Cζ = −2εCβ. (17)

With the help of Eqs. (10) and (17), Eq. (15) can be written as

2εC(C+ + C−)

[
k̄
∂α

∂η
+ εkk̄

(
∂θ

∂η

∂α

∂ξ
− ∂θ

∂ξ

∂α

∂η

)]

+
[
k̄

∂

∂η
+ k

∂

∂ξ
+ εkk̄

(
∂

∂η
(θ − ϕ)

∂

∂ξ
− ∂

∂ξ
(θ − ϕ)

∂

∂η

)]
F+ = 0. (18)
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We can get similar equation for β if we replace α by β, ξ by η, k by k̄, F+ by F− and
θ by ϕ. According to the PLK method, we define the following expansions:

α(ξ, η) = α0 + εα1 + ε2α2 + . . . , (19)

β(ξ, η) = β0 + εβ1 + ε2β2 + . . . , (20)

θ(ξ, η) = θ0(η) + εθ1(ξ, η) + ε2θ2(ξ, η) + . . . , (21)

ϕ(ξ, η) = ϕ0(ξ) + εϕ1(ξ, η) + ε2ϕ2(ξ, η) + . . . , (22)

C+ = C
(
1 + εaR1 + ε2a2R2 + . . .

)
, (23)

C− = C
(
1 + εbL1 + ε2b2L2 + . . .

)
, (24)

where R1, R2, R3, . . . and L1, L2, L3 . . . are the parameters for removing secular
terms in the perturbation solution.

4 Perturbation Analysis

Substituting Eqs. (19) to (24) into Eq. (18), we get the following the following system
of equations. The coefficients of ε, ε2, ε3, . . . are presented in sequence as follows.

4.1 Coefficients of ε

We have the equations for α0 and β0 as follows

∂α0

∂η
= 0,

∂β0

∂ξ
= 0. (25)

The solution of Eq. (25) is

α0 = aA(ξ), β0 = bB(η). (26)

In above equation A(ξ) and B(η) are arbitrary functions, where a and b in Eqs. (19)
to (24) and (26) are proposed which permit us to take A(0) = 1 and B(0) = 1.

4.2 Coefficients

We have the equation for α1

4k̄

(
∂α1

∂η
+ kaA′ ∂θ0

∂η

)
+ ka

[
(3aA − 2aR1 − bB)A′ + k2H2

0

(
1

3
+ σ + �

)
A′′′

]

+ k̄b

[
−(aA + bB)B ′ + k̄2H2

0

(
2

3
+ σ + �

)
B ′′′

]
= 0, (27)
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where

σ = M/(ρH0), � = Q/(ρgH2
0 ) (28)

are the nondimensional parameters representing the effects of mass and compressive
force per unit length of plate, respectively. As σ and � tend to zero, Eq. (27) will
reduce to Eq. (20) of Su andMirie [26]. The terms occurring in Eq. (27) can be further
summarized into three parts, namely secular terms, non-local and local terms, which
will be analyzed in details as follows.

4.2.1 Secular Terms

In Eq. (27) there are five terms that are independent of η. After integrating these
terms with respect η, we get the secular attitude. These terms become unbounded with
respect to time or space. After setting these terms equal to zero, we obtain

(3A − 2R1) aA
′ + k2H2

0

(
1

3
+ σ + �

)
A′′′ = 0. (29)

Let

R1 = 1

2
, kH0 = √

3a. (30)

After some simplification, Eq. (29) can be written as

A′′′ +
(
3A − 1

γ

)
A′ = 0, (31)

where

γ = 1 + 3σ + 3�. (32)

The solution of the above equation can be written as

A = sech2
(

ξ

2
√

γ

)
. (33)

Similarly, we can also write for β

B = sech2
(

η

2
√

γ

)
, (34)

L1 = 1

2
, k̄H0 = √

3b. (35)
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4.2.2 Non-local Terms

These terms do not represent any secularity. So we will leave them as they are. Due to
them, the resulting equation for α1 comes under an integral. In Eq. (27) we recognize
the following two terms in this group. By setting them equal to zero, we obtain

(
4k̄

∂θ0

∂η
− bB

)
kaA′ = 0. (36)

Solving the above equation for θ0, we get

θ0 = b

4k̄

∫ η

−∞
B(η1)dη1. (37)

Similarly we have

ϕ0 = a

4k

∫ ξ

+∞
A(ξ1)dξ1. (38)

The first order phase shift in Eqs. (37) and (38) agree with the earlier work presented
by Su and Mirie [26].

4.2.3 Local Terms

The remaining part in Eq. (27) can be written as

∂α1

∂η
− b2

4
BB ′ − ab

4
AB ′ + 3b2

4

(
2

3
+ σ + �

)
B ′′′. (39)

Integrating the above equations, we get

α1(ξ, η) = 1

4
abAB − c0b

2B +
(
3c0
2

+ 1

8

)
b2B2 + a2A1(ξ), (40)

where c0 is given in the “Appendix”. Similarly

∂β1

∂ξ
− a2

4
AA′ − ab

4
A′B + 3a2

4

(
2

3
+ σ + �

)
A′′′ = 0, (41)

β1(ξ, η) = 1

4
abAB − c0a

2A +
(
3c0
2

+ 1

8

)
a2A2 + a2B1(η). (42)

A1(ξ) and B1(η) are two arbitrary functions which will be determined in the next
order of approximation.
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4.3 Coefficients of ε3

Let

� = D/(ρgH4
0 ), (43)

which is a nondimensional parameter representing the effect of the flexural rigidity
of the elastic plate. For the third order, we have the equation for α2, as shown in
“Appendix A”. The terms occurring in Eq. (A1) can be further summarized into three
parts as follows.

4.3.1 Secular Terms

The secular terms appearing are

γ A′′
1 + (3A − 1)A1 = (2R2 − c1) A + c2A

2 + c3A
3, (44)

where c1, c2 and c3 are defined in “Appendix”.
The first term on the right-hand side of Eq. (44) becomes unbounded when ξ →

±∞, which shows that the series solution is not asymptotic. Thus, the coefficient of
this term must vanish, namely

R2 = −c1
2

. (45)

In Eq. (44) we found that the solution for the wave speed upto the second order is
correct. The solution for the rest of the terms can be written as

A1(ξ) = c5A − c3
2
A2. (46)

Similarly, we have

B1(η) = c5B − c3
2
B2. (47)

This completes the solution for Eqs. (40) and (42). The homogeneous solution of Eq.
(44) is A′, but we will drop this term here because we find that when we move to a
higher order, the homogeneous term only causes a uniform shift of the origin of ξ

which describes a simple phase shift as mentioned in the preceding section.

4.3.2 Non-Local terms

These terms will provide the solution for θ1 and ϕ1 as

θ1(ξ, η) = b

16k̄

∫ η

−∞
[4bc5 − (a + b) − 3a(4 − σ + 3�)] Bdη1

+ ab

16k̄

∫ η

−∞
(37 − 3σ + 12c0 + 27�)ABdη1, (48)
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ϕ1(ξ, η) = a

16k

∫ ξ

+∞
[4ac5 − (a + b) − 3b(4 − σ + 3�)] Adξ1

+ ab

16k

∫ ξ

+∞
(37 − 3σ + 12c0 + 27�)ABdξ1. (49)

4.3.3 Local Terms

The solution for the local terms can be written as

α2 = (c5b
2 + c6a

2)bB3 + [(c7bB + c8aA)a + c9ab + c10a
2]bAB

+ (c11b
2 + c12ab − c6a

2)bB2 + (c13b
2 + c14a

2)bB + a3A2(ξ), (50)

β2 = (c5a
2 + c6b

2)aA3 + [(c7aA + c8bB)b + c9ab + c10b
2]aBA

+ (c11a
2 + c12ba − c5b

2)aA2 + (c13a
2 + c14b

2)aA + b3B2(η), (51)

where A2(ξ) and B2(η) are twoarbitrary functionswhich can easily be found in thenext
order approximation using the same procedure as mentioned above. The constants cn
(n = 4, 5, . . . 14) appearing in the above equations are given in “Appendix B”. For our
analysis convenience, further calculation stops at the order of O(ε3) and the formulas
of A2(ξ) and B2(η) are omitted.

5 Analytical Solutions of the Problem

The major results obtained in preceding section are as follows.
The surface elevation at the water–plate interface can be obtained with the help of

Eq. (17), we get

ζ = ε(α + β), (52)

which can be asymptotically given as

ζ = ε(α0 + β0) + ε2(α1 + β1) + O(ε3), (53)

where α0 and β0 are given in Eq. (26) while α1 and β1 in Eqs. (40) and (42). In Eq.
(53) the terms which are dependent of ξ and η are just the non-uniform phase shifts
i.e. at different points of wave the phase shift is different which causes a distortion
in wave during collision. For this purpose the terms which are products of A(ξ) and
B(η) in Eq. (53) must vanish. Therefore the distortion profile can be obtained. After
setting B(η) = 0, we get

ζ = εaA + ε2a2
[
1

2

(
c0 + 1

4

)
A + A1(ξ)

]
+ O(ε3). (54)

The maximum run-up ζmax during the collision process can be obtained by taking
A = B = 1 in Eq. (53), and we get
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ζmax = ζ

∣∣∣
A=B=1

. (55)

The velocity at the bottom U can be obtained from Eq. (17), and we get

U = εC(α − β). (56)

Following from Eqs. (30) and (45), the asymptotic solutions for the wave speeds
read

C+
C

= 1 + 1

2
εa − c1

2
ε2a2 + O(ε3), (57)

C−
C

= 1 + 1

2
εb − c1

2
ε2b2 + O(ε3). (58)

The phase shift during the collision process reads

θ = θ0 + εθ1 + O(ε2), ϕ = ϕ0 + εϕ1 + O(ε2), (59)

where θ0, θ1, ϕ0, and ϕ1 are given in Eqs. (37), (38), (48), and (49), respectively.

6 Graphical Results and Discussion

In this section, we describe the behavior of all the important governing parameters
involved in this hydroelastic wave problem. To analyze it more vigorously, Figs. 1,
2, 3, 4, 5, 6, 7, 8, 9 and 10 are plotted against multiple values of all the parameters.
For instance, we describe the behavior of distortion profile, phase shift, wave speed,
water–plate elevation and maximum run-up during a collision. We take the physical
parameters E = 105 Nm−2, d = 0.4m, g = 9.8ms−2, ρ = 103 kgm−3, H0 = 1m,
ρe = 917kgm−3 and � = 1 for the graphical results, which yield � = 0.0725 and
σ = 0.3668.

Fig. 1 Three-dimensional view
of head-on collision between
two solitary waves
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Fig. 2 Head-on collision
between two solitary waves for
different values of � and σ . Red
line: � = 0, σ = 0; Green line:
� = 0.0725, σ = 0.3668 (color
figure online)
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Fig. 3 Head-on collision
between two solitary waves for
different values of �. Red line:
� = 0; Green line: � = 1 (color
figure online)
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Fig. 4 Maximum run-up versus
wave amplitude. Red line:
� = 0, σ = 0; Green line:
� = 0.0725, σ = 0.3668 (color
figure online)
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Figure 1 represents the three-dimensional behavior of a pair of solitarywaves during
the collision process. From this figure we can see that the solitary waves maintain
their shapes before and after the colliding process. Figures 2 and 3 are plotted against
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Fig. 5 Maximum run-up versus
wave amplitude. Red line:
� = 0; Green line: � = 1 (color
figure online)
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Fig. 6 Distortion profile. Solid
line: Before collision; Dashed
line: After collision

x

ζ

-20 -10 0 10 20

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 7 Phase shift vs wave
amplitude. Red line: � = 0,
σ = 0; Green line: � = 0.0725,
σ = 0.3668 (color figure online)
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multiple values of �, σ and �. In Fig. 2 we can see that in the presence of a thin
elastic plate, the amplitudes of both solitary waves reduce significantly. An increment
in � and/or σ reveals the increment in the plate thickness d and Young’s modulus
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Fig. 8 Phase shift vs wave
amplitude. Red line: � = 0;
Green line: � = 1 (color figure
online)
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Fig. 9 Wave speed vs wave
amplitude. Red line: � = 0,
σ = 0; Green line: � = 0.0725,
σ = 0.3668 (color figure online)
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Fig. 10 Wave speed vs wave
amplitude. Red line: � = 0;
Green line: � = 1 (color figure
online)
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E which are favorable in providing a resistance in the wave profile. Moreover when
Young’s modulus increases then deflection in a thin elastic plate becomes more stiffer
and a very high rate of reactive forces generated to oppose the deformation of elastic
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plate. It depicts from Fig. 3 that an increment in the compressive force � also causes
a remarkable reduction in the amplitude of the wave profile.

Figures 4 and 5 represent the maximum run-up amplitude during the collision
process which are plotted with the help of Eq. (55). Figure 4 shows the variation of
pure gravity waves (� = σ = 0) and hydroelastic waves (� �= 0 and/or σ �= 0). It is
found from this figure that when the nondimensional � and σ parameters increase, the
maximum run-up amplitude decreases significantly. However its behavior is similar
against the nondimensional parameter � as shown in Fig. 5.

Figure 6 is sketched to see the behavior of distortion profile before and after collision
process. It has been plotted with the help of Eq. (54). Moreover, we can easily observe
that the hydroelastic wave profile is symmetric (along the x-axis) before collision
process, whereas after the collision a larger tilting occurs and the wave profile push
backward along the direction of wave propagation. Moreover, the behavior for the
left-going wave is similar as the right-going one.

Figures 7 and 8 are plotted to determine the behavior of phase shift against the
multiple values of �, σ and �. It is worth mentioning here that the first order phase
shift in Eqs. (37) and (38) agrees with the earlier work by Su and Mirie [26]. It can be
viewed from Fig. 6 that the presence of hydroelastic waves (i.e. increment in � and
σ ), significantly enhances the phase shift profile. It can be observed from Fig. 8 that
an increment in the compressive force� creates a marked increment in the phase shift
profile. Furthermore, in the absence of thin elastic plate (or pure gravity waves) and
compression, the present results are in excellent agreement with that of Su and Mirie
[26].

Figures 9 and 10 are plotted to analyze the wave speed against the multiple values
of �, σ and �. It can be seen from Fig. 9 that greater effects of thin elastic plate
terms γ and σ cause a major reduction in the wave speed. However, in Fig. 10 we
noticed that the nondimensional parameter � significantly effects the wave speed and
produces marked diminution in the wave speed.

7 Conclusions

Head-on collision between two solitary waves in a thin elastic plate floating on a fluid
has been investigated. To observe the effects of collision the Poincaré–Lighthill–Kuo
(PLK) method has been used to find the asymptotic series solution. The solution has
been calculated upto third order approximation. The physical behavior of all the per-
tinent parameters are discussed mathematically and graphically for surface elevation,
velocity at the bottom, wave speed, phase shift, distortion profile andmaximum run-up
during collision process.

We found that after collision both the solitary waves preserve their original posi-
tions and shapes. From the computational results we also analyze that the amplitudes
of both the solitary waves decrease due to the plate deflection. During the head-on
collision, we can easily notice that the maximum amplitude decreases when the plate
thickness and the compressive forces increase. Another most important point is that
when the thickness of plate tends to zero, the solutions are in good agreement with
those obtained by Su and Mirie [26] for pure gravity waves. The total phase shift
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before and after collision for the right- and left-going waves have also been calcu-
lated. We also concluded that the distortion in the wave profile produces a smaller
tilting and after collision the wave tilts backward in the direction of propagation. The
investigation of a present results which is introduced for two-dimensional problems
is also applicable for three dimensions with relevant modifications and assumptions.
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Appendix A: Equation of O(ε3)

4k̄
∂α2

∂η
+ k

∂α1

∂ξ

(
4k̄

∂θ0

∂η
− 2aR1 + 3α0 − β0

)
+ k̄

∂α1

∂η

(
2bR1 + 3α0 − β0

)

− (α0 + β0)

(
k
∂β1

∂ξ
+ k̄

∂β1

∂η

)
+ H2

0

3

(
k3

∂3

∂ξ3
− 2k̄3

∂3

∂η3

)
(α1 − β1)

− k̄
∂β0

∂η

[
−2k̄2H2

0
∂2β0

∂η2
+ 1

3
k3H2

0
∂3ϕ0

∂ξ3
+ k

∂ϕ0

∂ξ
(α0 + β0) + α1 + β1

]

+ k
∂α0

∂ξ

[
k2H2

0
∂2α0

∂ξ2
+ k̄2H2

0
∂2β0

∂η2
− 2

3
k̄3H2

0
∂3θ0

∂η3

+ 4k̄
∂θ1

∂η
+ 2k̄ R1

∂θ0

∂η
− 2a2R2 + k̄

∂θ0

∂η
(3α0 − β0) + 3α1 − β1

]

+ k3H2
0

∂3α0

∂ξ3

(
1

2
aR1 + β0

)
+ k2k̄2H2

0
∂2α0

∂ξ2

∂2θ0

∂η2
+ k̄3H2

0

×
(
1

2
bR1 + β0 + 2α0 + k

∂ϕ0

∂ξ

)

− H4
0

30

(
k5

∂5α0

∂ξ5
+ 3

2
k̄5

∂5β

∂η5

)
+ �H4

0

(
k5

∂5α0

∂ξ5
+ k̄5

∂5β0

∂η5

)

+ σH2
0

{(
k

∂

∂ξ
+ k̄

∂

∂η

) [(
k2

∂2

∂ξ2
+ k̄2

∂2

∂η2

)
(α1 + β1)

+ 2k̄k

(
k
∂θ0

∂η

∂2α0

∂ξ2
+ k̄

∂ϕ0

∂ξ

∂2β0

∂η2

)]
+ k̄k

(
k3

∂θ0

∂η

∂3α0

∂ξ3
+ k̄3

∂ϕ0

∂ξ

∂3β0

∂η3

)}

+ �H2
0

{(
k

∂

∂ξ
+ k̄

∂

∂η

)[(
k2

∂2

∂ξ2
+ k̄2

∂2

∂η2
+ 2k̄k

∂2

∂ξ∂η

)
(α1 + β1)

+ 2k̄k

(
k
∂θ0

∂η

∂2α0

∂ξ2
+ k̄

∂ϕ0

∂ξ

∂2β0

∂η2

)]
− k̄k

(
k3

∂θ0

∂η

∂3α0

∂ξ3
+ k̄3

∂ϕ0

∂ξ

∂3β0

∂η3

)}
= 0.

(A1)



120 M. M. Bhatti, D. Q. Lu

Appendix B: Expressions of the Coefficients
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