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Abstract Non-standard Lagrangians have gained recently an increasing interest in the
theory of nonlinear differential equations, classical and quantum nonlinear dynamical
systems. In this work, we discuss a number of dynamical systems characterized by
powers of singular Lagrangians identified to non-standard Lagrangians based on the
resultingHamilton–Jacobi equation.A number of dynamical problemswere addressed
and a number of statements which support the non-standard Lagrangians formalism
were postulated. After connecting the action to a certain complex wave function and
in particular for the case of linear potentials, a link is established between the resulting
modified Schrödinger equation which describes specific classes of quantum mechan-
ical systems and the Navier–Stokes equation which describes the motion of viscous
fluid matters.
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1 Introduction

Newtonian classical mechanics is themost fundamental part of physics which is traced
back to Sir Isaac Newton. It continues till the present moment to play important roles
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in modern sciences, e.g. in fluid dynamics, planetary dynamics and astrophysics. In
its conventional formulation, Newton’s theory describes the relationship between a
system assumed to be of mass m and forces acting upon it which generally depend
on position x , velocity ẋ and time t . The general equation of motion is therefore
given by F(ẋ, x, t) = mẍ . However, in order to solve this set of 2nd-order differ-
ential equations, we need to know the exact form of F(ẋ, x, t) which is somewhat
complicated in particular when constraint forces are present. An additional problem
with Newton’s formulation is the natural use of Cartesian coordinates since jump-
ing to a different coordinates system is usually awkward. Given these limitations,
Joseph-Louis Lagrange and William Rowan Hamilton introduced a geometric formu-
lation of Newton’s mechanics where generalized coordinates and constraint forces are
incorporated correctly in the mechanical theory. Besides, symmetries which are easily
identified in the Lagrangian and Hamiltonian formalisms, have served to construct the
Hamilton–Jacobi theory which plays a leading role in classical and quantum physics
and steers physicists to develop the basic mathematical tools of classical field the-
ory [22]. The Hamilton–Jacobi equation is mainly helpful in identifying conserved
quantities for mechanical systems. It is the only formulation of classical mechanics
in which the particle can be represented as a wave and hence going beyond the usual
WKBJ approximation. The similarity between the Hamilton–Jacobi equation and the
Schrödinger equation is well-known in physics. It is worth stressing that the inter-
play between the Hamilton–Jacobi-type equations describing the propagation of wave
fronts in quantum mechanics and the Hamilton’s equations has been largely inves-
tigated in quantum physics. Many emergent physical theories based on this analogy
are now under studies in particular fluid dynamics. In fact, the interpretation of the
Schrödinger wave equation in terms of a probability fluid dates back to 1927 [54] when
Madelung convert the Schrödinger equation into a set of two nonlinear equations: the
quantum Hamilton–Jacobi equation and the continuity equation by decomposing the
complex wavefunction into amplitude and phase [36]. In other words, the Schrödinger
wave equation takes a hydrodynamic form. It was observed that the velocity field
satisfies the Euler equations for an ideal fluid and the quantum potential is propor-
tional to the pressure field of the frictionless fluid. This hydrodynamic analogy offers
new insights with regard to the wave equation [45,68,69] and it has been used to
describe the carrier transport in open quantum systems. In parallel of this analogy,
Bohm suggested that the quantum potential is a term within the Schrödinger equa-
tion which steers the movement of quantum particles and depends on the curvature
of the amplitude of the wave function [13]. An alternative to Madelung’s and Bohm’s
interpretations of the quantum potential was explored recently in [36] in which the
quantum potential introduced to take into account the dissipative term in the equa-
tions of motion of the probability fluid. In that case, the velocity field does not satisfy
the Euler’s equation for an ideal fluid but the Navier–Stokes equation for a viscous
fluid, i.e. the quantum potential is responsible for the occurrence of viscosity. This
approach is interesting since classical friction in a fluid yields quantum effects and the
fluid described by the classical Navier–Stokes equation becomes a wavefunction sat-
isfying the Schrödinger equation. This framework suggests an alternative appealing
description to the Schrödinger equation. It is noteworthy that although the connec-
tion between the classical Navier–Stokes equation and the Schrödinger equation, the
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resulting systems of partial differential equations obtained differ completely from the
quantum Navier–Stokes–Poisson equations derived from the collisional Wigner-BGK
model using the moment method and the Chapman–Enskog expansion [48,72–74]
used in quantum fluid models. In the present work, we will prove that, based on
the notion of the notion of singular non-standard Lagrangians (NSL), a connection
between a modified Schrödinger equation and the Navier–Stokes equation may be
achieved starting from classical arguments. Our motivations are based on the follow-
ing observations:

In fact, the majority of real-world physical systems, including gas dynamics, fluid
mechanics, plasma physics, biological dynamics, thermodynamics and many more
fields, are modeled by nonlinear differential equations. Despite the tremendous suc-
cess of Lagrangian and Hamiltonian theories, attempts to describe nonlinear dynamics
are doomed to failure. Moreover, these fundamental theories fail to describe non-
conservative dynamical systems. One can use the inverse scheme which start with
the equation of motion and then construct a consistent Lagrangian function. This is
known as the “inverse problem” nevertheless it requires a complicated mathemati-
cal analysis to deal with it [46]. Recently, this problem was alleviated by means of
a special class of Lagrangians known as “non-standard Lagrangians (NSL)” which
allowmathematicians and physicists to identify several classes of equations of motion
that admit a Lagrangian description [20,56,57]. There exist many motivations to
deal with NSL despite their irregular physical forms since neither the ordinary
kinetic term nor the classical potential function is introduced in the Lagrangian.
Quantum field theorists used NSL in color confinement problem to describe large
distances interactions in the region of applicability of classical theory [1]. NSL
plays as well a significant role in theory of nonlinear differential equations, e.g.
nonlinear 2ndorderRiccati equation [14], theLiénard-type nonlinear differential equa-
tion [18,19], also in classical and quantum theories [2,15,16,27,29–31,52,63,76].
In fact, NSL arise in different forms, nevertheless in this paper, we will focus on
power-law NSL of the form L1+ε introduced in [29] where ε is a real parameter.
This type of Lagrangian is motivating for many reasons. In fact, by considering the
action S = ∫

L1+ε(ẋ, x, t)dt , the variational principle leads to a generalized Euler–
Lagrange equation which contains higher-order derivative terms and has the general
form:

∂L

∂x
− d

dt

(
∂L

∂ ẋ

)

= ε

L

∂L

∂ ẋ

(
∂L

∂t
+ ẋ

∂L

∂x
+ ẍ

∂L

∂ ẋ

)

.

This form is interesting since for singular Lagrangians of the form L = aẋ +bx((a, b)

are real or complex parameters) the resulting equation of motion is:

a2εẍ + ab(ε − 1)ẋ − b2x = 0.

Obviously, for ε = 1 and b2 = −a2, this equation is reduced to ẍ + x = 0 which is
the equation of motion of a harmonic oscillator derived at the moment from a com-
plex singular Lagrangian. However, for ε �= 1, the differential equation describes
dissipative oscillators. Therefore, this technique works with singular or degenerate
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Lagrangians yet it fails if the standard formalism is used since the Hamilton equa-
tions of motion cannot be obtained by the common procedure [17]. This problem
was in fact solved using Dirac’s method which consists of constructing canonical
equations at the expense of introducing undetermined variables [21,28]. Alternative
solutions were addressed in literature [4,22] yet the topic still required more plausi-
ble solutions. In a recent work [31], it was observed that the power-law NSL L1+ε

modifies the Hamilton–Jacobi equation and consequently the Schrödinger equation.
A number of interesting physical properties not obtained in the traditional formalism
were derived accordingly. The Hamilton–Jacobi formulation for singular systems was
addressed in literature through different arguments and based on standard Lagrangians
[7,59]. It is worth mentioning that for b2 = −a2 the Lagrangian L = aẋ + bx is
complexified. However, complex Lagrangians are not forbidden in literature since
they occur not only in quantum but also in classical systems [9–11,32,33]. It was
observed recently that within complexified classical mechanics, the Ostrogradsky the-
orem which predicts boundless kinetic terms may be evaded and lead to real energy
spectrum [60].

Motivated by these outcomes, the main objective of the present paper is to discuss
several implications of the Hamilton–Jacobi equationwhich result from the power-law
NSL L1+ε in particular when the Lagrangian is singular. We will prove the impor-
tance of the resulting Hamilton–Jacobi equation at classical and quantum levels. The
jump from classical to quantum dynamics will be made following Bohm approach
[13] which is closed linked to the work of Madelung. Since Bohm’s and Madelung’s
approaches result on a hydrodynamical form of the Schrödinger equation, it will be
motivating to derive the hydrodynamical form of the modified Schrödinger equation
that results from the power-law NSL L1+ε. The strategy we will follow is therefore
completely different from most previous approaches. A comparison between both
hydrodynamical forms will be crucial accordingly. The paper is structured as follows:
In Sect. 2, we review briefly the basic setups of the power-law NSL L1+ε, then we
construct the Hamilton–Jacobi equation and we discuss a number of classical dynam-
ical problems in particular for systems characterized by actions of powers of singular
Lagrangians; in Sect. 3, we consider a special class of singular Lagrangian and we
discuss its implication in quantum dynamics by connecting the action of the theory to
a certain complex wave function; finally in Sect. 4 conclusions are given.

2 Hamilton–Jacobi Formulation: Classical Dynamical Systems

We start by reviewing the basic concepts: given a mechanical system with N degrees
of freedom characterized by the power-lawNSL L1+ε, the correspondingHamiltonian
functions are defined as the Legendre transformation [42]:

H(x, p, t) =
N∑

k=1

ẋk · pk − L1+ε(x, p), (1)

where

p = ∂L1+ξ

∂ ẋ
= (1 + ε)Lε ∂L

∂ ẋ
, (2)
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is the non-standard generalized momenta [29]. It is notable that in this approach:

ṗ = ∂L1+ξ

∂x
= (1 + ε)Lε ∂L

∂x
. (3)

Remark 2.1 One may logically ask “how can be reasonable that the Hamiltonian
H(x, p, t) has the proper physical dimension?” In fact, it should be pointed out that in
our approach, in order to obtain a physical Hamiltonian dimension, one must introduce
a certain parameter A in the Hamiltonian function with dimension [M L2T −2]−ε in
a way the Hamiltonian recovers the correct energy dimension [E] = [M L2T −2].
(M, L , T ) refer respectively to the mass, length and time. We effectively recuperate the
dimensional problem, yet in our approach we set A = 1 for mathematical simplicity.

The Hamilton’s equations of motion in the present formalism are: ẋk = ∂ H/∂pk and
ṗk = −∂ H/∂xk augmented by the constraint:

∂ H

∂t
= −(1 + ε)Lε ∂L

∂t
. (4)

The couple (xk, pk) is considered as independent variables. Let us look into transfor-
mations which do not change the form of Hamilton’s equations:

(ẋk, ṗk) =
(

∂ H

∂pk
,−∂ H

∂xk

)

. (5)

To do this, we consider the transformations (Xk(p, q), Pk(p, q)) such that:

(Ẋk, Ṗk) =
(

∂ H ′

∂ Pk
,−∂ H ′

∂ Xk

)

, (6)

where

H ′(X, P, t) =
N∑

k=1

Ẋk · Pk − L ′1+ε(X, P). (7)

We require that both Hamiltonians yield the same equations of motion, i.e. the two
Hamiltonians differ only by a total derivative of a function F = F(x, p, X, P, t) with
4n + 1 variables with respect to time which mathematically means that:

ẋk pk − H = Ẋk Pk − H ′ + Ḟ . (8)

If we choose F = F(x, P, t) then one may check that Xk = ∂ F/∂ Pk , pk = ∂ F/∂qk

and H ′ = H + ∂ F/∂t [67]. By denoting S = S(x, P, t) and putting H ′ = 0 we get
straightforwardly H + ∂S/∂t = 0. However, if H ′ = 0 we obtain (Ẋk, Ṗk) = (0, 0)
which gives (Xk, Pk) = (αk, βk); (α, β) are integration constants with αk = ∂S/∂βk

and pk = ∂S/∂qk . The Hamilton–Jacobi equation is then:

H

(

q,
∂S

∂q
, t

)

+ ∂S

∂t
= 0, (9)
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which contains 2n +1 derivatives and therefore the solution contains 2n +1 constants.

Remark 2.2 For the case of singular Lagrangian of the form L = aẋ + bx, the action
is given by S = ∫

L1+εdt = ∫
(aẋ + bx)1+εdt and for that reason we entitle the term

(aẋ +bx)1+ε as a NSL. Evidently, for ε = 1 and b = ia, the NSL is a2(ẋ + i x)2which
is the square of the singular Lagrangian L = a(ẋ + i x).

To illustrate, we choose once more the Lagrangian L = aẋ + bx with b2 =
−a2, i.e. b = ia. The corresponding Hamiltonian is deduced from H(x, p, t) =∑N

k=1 ẋk · pk − L1+ε and takes the form:

H(x, p) = p

a

((
p

a(1 + ε)

) 1
ε − bx

)

−
(

p

a(1 + ε)

) 1+ε
ε

. (10)

The Hamilton–Jacobi equation is H(x, ∂S/∂x)+∂S/∂t = 0 and we naturally assume
a solution of the form S = A(t) + B(x). Consequently we obtain H(x, ∂ B/∂x) +
∂ A/∂t = 0. Since the Lagrangian is time-independent, then the Hamiltonian is con-
stant and is equal to the energy E , i.e. ∂ H/∂t = −(1 + ε)Lε∂L/∂t . Therefore
A = −Et and we find:

E = 1

a

d B

dx

((
1

a(1 + ε)

d B

dx

) 1
ε − bx

)

−
(

1

a(1 + ε)

d B

dx

) 1+ε
ε

. (11)

In particular for ε = 1 we obtain:

E =
(

1

2a

d B

dx

)2

− b

a
x

d B

dx
. (12)

After arrangement, we get:

d B

dx
= 2ia2x ± 2a

√
E − a2x2. (13)

Performing the integration, we find:

B = ia2x2 ±
(

E

2
sin−1

(
ax√

E

)

+ ax

2

√
E − a2x2

)

, (14)

where we have assumed the integration constant equal to zero. The action takes then
the form:

S = −Et + ia2x2 ±
(

E

2
sin−1

(
ax√

E

)

+ ax

2

√
E − a2x2

)

. (15)

Using α = ∂S/∂β = ∂S/∂ E we find x =
√
2Ē sin(α + t)/a where Ē = 2E . Conse-

quently we recover the usual solution to the equation of harmonic oscillator starting
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from a singular complexified Lagrangian characterized by a complexified Hamilto-
nian and a complexified energy. In other words, the solution to the corresponding
complexified singular Lagrangian exhibit analogous behavior to the harmonic oscil-
lator. This result is expected to have interesting quantum mechanical effects. This is
not surprising since early works showed that a number of quantum dynamical systems
are characterized by complex Hamiltonians and give rise to complexified energies
[11,23,39,40]. Then we can launch the following 1st-statement:

Statement 1 Given the singular complexified Lagrangian L = a(ẋ ± i x) and the
classical action S = ∫

L2dt. The corresponding Hamilton–Jacobi equation results
on a 2nd-order differential equation which coincides with the harmonic oscillators
and is characterized by a complexified Hamiltonian and a complex energy.

As a second illustration, we consider the singular Lagrangian L = Aẋ + B ẏ + C
√

y
where (A, B, C) are real or complex parameters. The conjugate momenta are given
by:

px = (1 + ε)A
(

Aẋ + B ẏ + C
√

y
)ε

, (16)

and
py = (1 + ε)B

(
Aẋ + B ẏ + C

√
y
)ε

, (17)

which gives A = B and px = py . The Hamiltonian takes now the following form:

H =
(
1

A

(
px

(1 + ε)A

) 1
ε − C

A

√
y

)

px −
(

px

(1 + ε)A

) 1+ε
ε

. (18)

The corresponding Hamilton–Jacobi equation is:

(
1

A

(
1

(1 + ε)A

∂S

∂x

) 1
ε − C

A

√
y

)
∂S

∂x
−

(
1

(1 + ε)A

∂S

∂x

) 1+ε
ε + ∂S

∂t
= 0. (19)

Since this is not a completely separable equation we write S = √
ySx + ySt with

H = E . Accordingly, for ε = 1 we can write Eq. (19) as:

(
1

2A

d Sx

dx

)2

− C

A

d Sx

dx
− E = 0. (20)

This gives Sx = (2AC ± √
4A2C2 + 4A2E)x after dropping the irrelevant constant

of integration. The total action is therefore:

S = (2AC ±
√
4A2C2 + 4A2E)x

√
y − yEt. (21)

Accordingly we get:

px = ±2A
√

C2 + E
√

y, (22)

and
py = (2AC ± 2A

√
C2 + E)x − 2

√
yEt. (23)
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Since px = py , we find after algebra:

√
y = AC ± A

√
C2 + E

Et ± A
√

C2 + E
x . (24)

We can take E = −C2 with C = i ∈ C which give rise to a complexified singular
Lagrangian with real energy spectra. The action is therefore given by:

S = 2i Ax
√

y − yEt. (25)

Taking the constants A and E as new momentum variables, we have:

qx = ∂S

∂ A
= 2i x

√
y, (26)

and

qy = ∂S

∂ E
= −2

√
yEt. (27)

Since from Eq. (24) we have
√

y = −Ax/Ct we get:

x2 = −qx t

2A
, (28)

and √
y = qy

2C2t
, (29)

which give:

y =
(

Aqy

qx x2

)2

, (30)

with A < 0. The dynamics is therefore hyperbolic and is similar to the scattering
problem which occurs in atomic physics [64]. This result leads unavoidably to the
conclusion that the particle trajectory deviates from a parabola since the Lagrangian
is L = A(ẋ + ẏ) + i

√
y and the action of the theory S ∝ ∫

L2dt contains coupled
terms whereas in the standard approach, the action S ∝ ∫

(Aẋ2 + B ẏ2 + Cy)dt . The
following 2nd-statement may be addressed:

Statement 2 Given the singular complexified Lagrangian L = Aẋ + B ẏ + i
√

y
and the classical action S = ∫

L2dt . The corresponding Hamilton–Jacobi equation
results on a hyperbolic dynamics similar to a scattering process and is characterized
by a real energy.

Onemay argue that if theHamilton–Jacobi equation is not separable then the system
can be integrable if the Lagrangian is concurrently of power-law form and complexi-
fied. It is notable that in the Hamilton–Jacobi approach, integrable dynamical systems
are characterized by a complete solution of the Hamilton–Jacobi equation in the Liou-
ville sense. In the case of compact energy level sets, this requires finding smooth and
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invertible action-angle variables by means of the corresponding coordinate transfor-
mations. In many cases, this can be done by means of symmetries since they provide
constants ofmotionwhich in their turn leads to find the action-angle coordinates. How-
ever, for bounded orbits, trajectories may be quasi-periodic similar to those occurring
in the quantumToda lattice and accordingly the action-angle coordinates may not exist
[43].

As a third illustration we consider L = √
ẋ . The Hamiltonian is then given by:

H = p

(
2p

(1 + ε)

) 2
ε−1 −

(
2p

(1 + ε)

) 2(ε+1)
ε−1

, (31)

with ε �= 1. For ε = 3, Eq. (31) is reduced to:

H = p2

2
− p4

16
. (32)

The corresponding Hamilton–Jacobi equation is then H(x, ∂S/∂x) + ∂S/∂t = 0
and since we have a separable solution we assume normally a solution of the form
S = A(t) + B(x) which gives H(x, ∂ B/∂x) + ∂ A/∂t = 0 with A = −Et . We get
therefore:

E = 1

2

(
d B

dx

)2

− 1

16

(
d B

dx

)4

, (33)

which in its turn gives:
d B

dx
= ±2

√
1 ∓ √

1 − E . (34)

After simple integration, we find:

B(x) =
(

±2
√
1 ∓ √

1 − E

)

x, (35)

and the action takes then the form:

S = −Et ± 2
√
1 ∓ √

1 − Ex . (36)

Using α = ∂S/∂β = ∂S/∂ E we find x = ±√
1 − E(α + t) which corresponds for a

linear motion characterized by 0 < E < 1. It is obvious from Eq. (31) that for ε = −3
(inverse Lagrangians), we obtain H = p− i

√
p which is a complexified Hamiltonian.

Using similar steps we find:

B(x) =
(−2E − 1 ± √

1 + 4E
)

x

2
, (37)

and therefore:
x = α + t

−1 ± 1√
1+4E

. (38)
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The following statement holds accordingly:

Statement 3 Given the singular complexified Lagrangian L = √
ẋ and the classical

action S = ∫
L4dt. The consequent Hamilton–Jacobi equation results on a linear

dynamics characterized by a complexified Hamiltonian and a real bounded energy
0 < E < 1.

As a final illustration in this section, we discuss dissipative dynamics using the
Hamilton–Jacobi equation and the singular Lagrangian L = aẋ + bx . In fact, in
the Hamiltonian formulation of dissipative systems, several methodologies have been
used in literature, e.g. the Rayleigh dissipation method where the friction force is
proportional to the velocity (see [63] and references therein); Bateman method which
aims to include supplementary coordinates in the Lagrangian [6]; Bauer argument
which states that “the equations of motion of a dissipative linear dynamical system
with constant coefficients are not given by a variational principle” [8]; methods based
on fractional calculus of variations [34] among others (see [3] and references therein).
The Hamilton–Jacobi equation was also used to explore dissipative systems [5,26,44,
47,55,61]. As stated in the introductory text of thiswork, if we consider the Lagrangian
L = aẋ + bx then the resulting equation of motion in our approach is:

a2εẍ + ab(ε − 1)ẋ − b2x = 0, (39)

which describes dissipation for ε �= 1. In particular for b = i , a = (i ± √
3)/2 and

ε = (1 ± i
√
3)/4, the differential equation is reduced to ẍ + ẋ + x = 0 and describes

unforced underdamping harmonic oscillators. For ε = 2, the differential equation
takes the form 2a2 ẍ + abẋ − b2x = 0 which has the characteristic equation 2a2s2 +
abs − b2 = 0 with characteristic roots (−b ± 3b)/2. Undoubtedly, one can choose
different values of (a, b, ε) so that the differential Eq. (39) describes overdamping
oscillations, e.g. (a, b, ε) ≈ (4.8i, i,−0.04) which results into ẍ + 5ẋ + x = 0.

In particular for a = i and b = 1 the system describes an exotic oscillator which
is critically damped and characterized by a complex damping term. Such types of
oscillators are discussed in literature and are connected to quantization (see [24,39]
and references therein). The corresponding momentum is given by:

p = (1 + ε)a (aẋ + bx)ε , (40)

and the canonical Hamiltonian has the form of Eq. (10). For ε = 2, the Hamiltonian
is reduced to:

H(x, p) = 2

3

√
1

3

(
1

a

) 3
2

p
3
2 − b

a
px . (41)

The Hamilton–Jacobi equation is H(x, ∂S/∂x) + ∂S/∂t = 0 and a solution of the
form S = A(t) + B(x) exists accordingly. Since the Lagrangian is time-dependent,
then A = −Et and we obtain:

E = 2

3

√
1

3

(
1

a

) 3
2
(

d B

dx

) 3
2 − b

a
x

d B

dx
, (42)
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which gives:

d B

dx
= x2

3I 2

⎛

⎜
⎜
⎝1 + 3

3

√
27

2

a2 I 4E2

b2x6
− 9aI 2E

bx4
+ 3

√
3

2

(
27a4 I 8E4

b4x12
− 4a3 I 6E3

b3x9

)

+ 1

−
3
√
2

(
− 6aI 2E

bx3
− 1

)

3

√
27a2 I 4E2

b2x6
− 18aI 2E

bx4
+ 3

√
3

(
27a4 I 8E4

b4x12
− 4a3 I 6E3

b3x9

)
+ 2

⎞

⎟
⎟
⎠ , (43)

where I = −(2a/3b)(1/a)3/2
√
1/3. For x >> 1, we can approximate Eq. (43) by:

d B

dx
≈ 9b2ax2

4

(

4 + 3
√
2 + 8 3

√
2E

9b3
1

x3

)

, (44)

and after integration we find:

B(x) ≈ 3
(
4 + 3

√
2
)

b2ax3 + 2 3
√
2E

ab
ln x, (45)

where the integration constant is set equal to zero. The action takes now the form:

S = −Et + 3
(
4 + 3

√
2
)

b2ax3 + 2 3
√
2E

ab
ln x . (46)

Using α = ∂S/∂β = ∂S/∂ E we find:

x ∝∝ e
ab(α+t)

2 3√2 . (47)

For a = i and b = 1 we obtain:

x ∝ e
i(α+t)

2 3√2 . (48)

We state thus the following:

Statement 4 Given the singular complexified Lagrangian L = i ẋ + x and the clas-
sical action S = ∫

L3dt. The consequential Hamilton–Jacobi equation results on an
exponential dynamics characterized by a complexified Hamiltonian, a complexified
energy and a critically damped complex exotic oscillator.

3 Hamilton–Jacobi Formulation: Quantum Dynamics

In this section, we will discuss a mechanical scenario by considering the singular
Lagrangian L = aẋ − V (x) where V (x) is a function of the position identified to a
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potential. Our aim is to connect the resulting Hamilton–Jacobi equation to quantum
dynamics. The corresponding Hamiltonian is given by:

H = p

a

((
p

a(1 + ε)

) 1
ε + V (x)

)

− (aẋ − V (x))1+ε . (49)

In fact, the implications of the classicalHamilton–Jacobi equations in quantumdynam-
ics is done for the first time by Schrödinger by connecting the action to a complexwave
function ψ by the relation ψ = Aei S/h̄ where h̄ is the Planck’s constant which is set
equal to one for convenience and A is the wave amplitude [65,66]. Since p = ∂S/∂x ,
then we get easily pψ = −i∂ψ/∂x ≡ −i∇xψ , i.e. the momentum plays the role of a
complex differential operator. Besides ψ∂S/∂t = −i∂ψ/∂t . The Hamiltonian takes
therefore the following form:

H = − i

a

(( −i

a(1 + ε)
∇x

) 1
ε + V (x)

)

∇x −
(

− i

a(1 + ε)
∇x

) 1+ε
ε

, (50)

and the modified Schrödinger equation is now nonlinear and takes the form:

i
∂ψ

∂t
= − i

a

(( −i

a(1 + ε)
∇x

) 1
ε + V (x)

)

∇xψ −
(

− i

a(1 + ε)
∇x

) 1+ε
ε

ψ. (51)

Remark 3.1 For ε �= 1, Eq. (51) is no-longer interpreted as a modified Schrödinger
equation since the Laplacian operator will be absent. To clarify, for ε = 1/2 Eq. (51)
is reduced to the 3rd-order partial differential equation:

∂ψ

∂t
= − 20i

27a3�x∇xψ − i

a
V (x)∇xψ,

whereas for ε = 2, we obtain:

i
∂ψ

∂t
= 2

√
3

9

(−i

a

)

(∇x )
3
2 ψ − i

a
V (x)∇xψ,

which is characterized by a fractional gradient operator. Equation (51) gives accord-
ingly a family of partial differential equations although we start from a simple singular
Lagrangian L = aẋ − V (x).

For ε = 1 and a2 = 1/2, we can write Eq. (51) as:

i
∂ψ

∂t
= −1

2
�xψ − i

√
2V (x)∇xψ. (52)

This is a modified Schrödinger equation which differs from the standard equation
because of the presence of the last term which couples the potential to the momentum
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in place of the usual term V (x)ψ . Here we have set the mass of the particle is equal to
one for straightforwardness. Considering the conjugate wave function ψ∗ = Ae−iθ ,
θ being the real phase of the wave function [12,13], we can write Eq. (51) as:

i
∂ψ∗

∂t
= 1

2
�xψ

∗ − i
√
2V (x)∇xψ

∗. (53)

By multiplying Eq. (52) by ψ∗ and Eq. (53) by ψ and adding the resulting equations,
we obtain:

i

(

ψ∗ ∂ψ

∂t
+ ψ

∂ψ∗

∂t

)

=−1

2

(
ψ∗�xψ − ψ�xψ

∗)−i
√
2V (x)

(
ψ∗∇xψ + ψ∇xψ

∗) .

(54)
This equation may be written as:

∂ A2

∂t
+ 1

2i

(
ψ∗�xψ − ψ�xψ

∗) + √
2V (x)∇x A2 = 0. (55)

A2 is interpreted now as a probability density ρ (the particle density). Introducing the
density flux J by the relation:

div J = ψ∗�xψ − ψ�xψ
∗

2i
, (56)

we can write Eq. (55) as:

∂ρ

∂t
+ div J + √

2V (x)∇xρ = 0. (57)

Equation (57) is the modified continuity equation since it differs of the continuity
equation of standard quantum mechanics, i.e. in the absence of the potential this
equation is reduced to the standard continuity equation. In fact, since ψ = Aeiθ =
Aei S and p = ∇x S, then we can split Eq. (57) after algebra into real and imaginary
parts as follows:

∂ A

∂t
= −1

2
(�x S + 2∇x A · ∇x S) − √

2V (x)∇x A, (58)

−∂S

∂t
= − 1

2A

(
�x A − A (∇x S)2

)
+ √

2V (x)∇x S. (59)

If we neglect the 1st-term in the parenthesis of Eq. (58), then this equation will be
reduced to the modified Hamilton–Jacobi equation:

− A
∂S

∂t
= A

2
(∇x S)2 + √

2V (x)A∇x S. (60)
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Multiplying Eq. (60) by 2A gives:

∂ A2

∂t
+ ∇

(
A2∇S

)
+ √

2V (x)∇x A2. (61)

Equation (61) is similar to Eq. (57) since A2 = ψψ∗ and j = A2∇x S. Introducing
the velocity field of the quantum probability by the relation v = ∇x S = ∇xθ , then the
gradient of Eq. (59) for irrotational flow gives:

∂v
∂t

+ (v · ∇x ) v − √
2v∇x V (x) = 0. (62)

However, an irrotational flow is described by the following Navier–Stokes equation
[36,70]:

∂v
∂t

+ (v · ∇x ) v + 1

ρ
∇x p − ζ + 4η

3

ρ
�x v = 0. (63)

Here ζ and η are respectively the shear viscosity and the bulk viscosity of the fluid
and p is the density of the fluid. Equations (62) and (63) are similar if the following
relation holds:

∇x p + √
2j∇x V (x) =

(

ζ + 4η

3

)

�x v, (64)

where j = ρv is the mass flux which is a classical version of j = A2∇x S [71]. For
the case of a linear potential, e.g. bouncing ball due to gravity effect and gas in a
gravitational field with V (x) = √

2x/2, Eq. (64) is reduced to:

∇x p + j =
(

ζ + 4η

3

)

�x v, (65)

and eventually this equation states that for the correspondence between both equations
to hold, themass flux added to the gradient of the pressuremust be equal to the viscosity
term in the Navier–Stokes equation. Equation (65) may be written as:

(�x − ρ̃) v = ∇x p̃, (66)

where
ρ̃ = ρ

ζ + 4η
3

, (67)

and
p̃ = p

ζ + 4η
3

. (68)

If, for instance, the potential is constant, then Eq. (66) is reduced to:

�x v = ∇x p̃, (69)

which states that for the correspondence to hold, the gradient of the pressure must
compensate the viscosity term in the Navier–Stokes equation. For a highly viscous
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fluid which appear as solid, we obtain the Laplace equation �x v = 0. All the previ-
ous equations are interesting since they offer new constraints of viscosity solutions.
Altogether, one may set up the following statement:

Statement 5 Given the singular Lagrangian L = √
2(ẋ − x)/2 and the classical

action S = ∫
L2dt. Assuming that there exist a complex scalar field ψ = ei S/h̄ and

that the velocity field of the quantum probability is v = ∇x S = ∇xθ , then for the case
of a linear potential, the Hamilton–Jacobi equation leads to a modified Schrödinger
equation which coincides with the Navier–Stokes equation for irrotational and viscous
flow. This connection holds only if the mass flux added to the gradient of the pressure
must match the viscosity term in the Navier–Stokes equation.

Obviously, the quantum potential is absent in our framework and hence our treat-
ment is classical since its occurrence accounts for most of the differences between
classical and quantum physics. The theory describes here describes therefore classical
fluids and not quantum fluids.

In Table 1, we summarize for lucidity reasons the main differences between our
appraoch and the basic formal aspects mainly described in [36,70].

Hence, we have shown that if themodified Schrödinger equation is valid to describe
a physical state of a fluid particle, then it coincides with the Navier–Stokes equation
and besides the modified continuity equation implies the existence of the velocity
potential. It is important to point out a distinction between our approach and the

Table 1 Comparison between the power-law NSL approach and basic formal aspects

Power-law NSL
L1+ εapproach

Basic formal aspects

Hamiltonian for ε = 1 and
a2 = 1/2

H = − 1
2�x − i

√
2V (x)∇x H = − 1

2�x + V (x)

Action of the theory S = ∫
L1+εdt =∫

(aẋ − V (x))1+εdt
S = ∫

L Sdt L S : Schrödinger
Lagrangian

Complex wave function ψ = Aeiθ = Aei S ψ = Aeiθ = Aei S

Continuity equation ∂ρ
∂t + divJ + √

2V (x)∇x
ρ = 0

∂ρ
∂t + divJ = 0

Velocity field v = ∇x S = ∇x θ v = ∇x S = ∇x θ

Dynamical equation of v ∂v
∂t + (v · ∇x ) v −√

2v∇x V (x) = 0

∂v
∂t + (v · ∇x ) v = −∇x U −
∇x V U = − 1

2
�x |ψ |

|ψ | is the
quantum potential

Condition for the
hydrodynamic
correspondence for the case
of a linear potential
V (x) = √

2x/2

∇x p + j =
(
ζ + 4η

3

)
�x v

the mass flux added to the
gradient of the pressure
must match the viscosity
term in the Navier–Stokes
equation

the pressure gradient in the
Navier–Stokes equation ∂v

∂t +
(v · ∇x ) v = − 1

ρ ∇x P − ∇x V
is associated with the gradi-
ent term in ∂v

∂t + (v · ∇x ) v =
−∇x U − ∇x V suggesting a
relationship between the den-
sity and pressure
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one described in [50]. The later started from the standard Schrödinger equation, then
introduced the complex wave function ψ = Aeiθ = Aei S and the velocity field of the
quantum probability v = ∇x S = ∇xθ which permitted to prove a connection between
the continuity equation and the Schrödinger equation; this correlation facilitated to
establish in the case of an incompressible fluid with a constant viscosity a relation
between the Navier–Stokes equation and the reaction-diffusion equation for the wave
function of the de Broglie’s wave associated to the moving fluid substance. Whereas
in our arguments, we have started from the singular Lagrangian L = aẋ − V (x), then
we have constructed the corresponding Hamiltonian which permitted us to derive a
modified Schrödinger equation after connecting the action to a wave function ψ by
the relation ψ = ei S . In particular for ε = 1, a2 = 1/2 and a linear potential, a
correlation between the modified Schrödinger and the Navier–Stokes equations exist
only if the mass flux added to the gradient of the pressure balance the viscosity term
in the Navier–Stokes equation.

The following observation holds: in fact, by introducing the new complex poten-
tial U (x) = −i

√
2V (x)∇xψ/ψ , Eq. (52) will be reduced to the linear Schrödinger

equation:

i
∂ψ

∂t
= −1

2
�xψ − U (x)ψ. (70)

This complex potential differs from those introduced in Bohm’s and Madelung’s
approaches to quantum mechanics since it is coupled to the classical potential. In
that case, the standard Hamiltonian operator of the Schrödinger equation is charac-
terized by the presence of a quantum complex potential U (x) and not the classical
potential V (x). This is in contrast to Bohm’s approach where both the classical and
the quantum potential are present in the Hamiltonian. Using Bohm’s suggestion and
letting again ψ = Aei S , the linear complex Schrödinger equation is splitted to the
following two real equations:

∂S

∂t
+ (∇x S)2

2
− 1

2

(∇x A)2

A
+ W (x) = 0, (71)

∂ A2

∂t
+ ∇ ·

(
A2∇S

)
= 0, (72)

where

W (x) = −i
√
2V (x)

(∇x A

A
+ ∇x S

)

. (73)

Obviously, the Bohm’s quantum potential is modified and is given by:

Q(x) = −1

2

(∇x A)2

A
− i

√
2V (x)

(∇x A

A
+ ∇x S

)

. (74)

Obviously, it is a complexified quantum potential. In short, we can say that in the
Bohmian interpretation, the particle is under the influence of A, S and the classical
potential which is coupled simultaneously to A and S. In the absence of the classical
potential, Q(x) is reduced to the standard Bohm’s quantum potential. The following
statement then holds accordingly:
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Statement 6 Starting from the Schrödinger equation i∂ψ/∂t = −�xψ/2 − U (x)ψ

with U (x) = −i
√
2V (x)∇xψ/ψ and following the Bohm’s approach, we get a com-

plexified quantum potential which is coupled to A, S and the classical potential.

Introducing once more the velocity field of the quantum probability v = ∇x S, then
the gradient of Eq. (71) for irrotational flow gives:

∂v
∂t

+ (v · ∇x ) v + ∇x Q = 0. (75)

Comparing this equation with Eq. (63) gives:

1

ρ
∇x p − ζ + 4η

3

ρ
�x v = ∇x Q. (76)

and eventually this equation states that for the correspondence between Eqs. (63) and
(75) to hold, the gradient of the pressure must match the viscosity term in the fluid’s
equations of motion added to the gradient of the Bohm’s quantum potential. These
results are summarized in Table 2 and compared with the results obtained in [36]:

Our approach has two different hydrodynamical correspondences: the 1st one is
free from quantum potential (summarized in Table 1) and the 2nd one is characterized
by a modified complexified quantum potential (summarized in Table 2). Although
the quantum potential has multiples implications in different fields of sciences, e.g.
solid state physics and theoretical chemistry, its nature is still not understood [51].
In the basic formal aspects the quantum potential arises from the action of Laplacian
operator on the wave function in the standard Schrödinger equation and it is therefore
it is interpreted as a kinetic-like energy term [62].

One more point is that Eq. (64) is absent in the arguments of [50]. The similar-
ity between both approaches lies on the form of the velocity of the fluid particle
which is given by v = ∇x S = ∇xθ = −i∇xψ/ψ known as the Cole-Hopf
transformation and which is used to linearize the Burgers equation. Replacing the
relation v = ∇xθ into Eq. (63) and introducing a new scalar function ψ̄ such that
θ = −2((3ζ + 4η)/3ρ) ln ψ̄ , then the Navier–Stokes equation is reduced to the
reaction-diffusion equation:

∂ψ̄

∂t
− ν�x ψ̄ = 1

2
(
ζ + 4η

3

)
ρ

ψ̄�p, (77)

also known as the Einstein–Kolmogorov equation [50]. Here �p = p − p0, i.e. the
difference between the actual pressure and the initial pressure. It is notable that ψ̄ andψ

represent the same state of the particle since θ = −2((3ζ + 4η)/3ρ) ln ψ̄ = −i lnψ .
One can check that Eq. (77) may also be written as:

∂ψ

∂t
− ν�xψ = 1

2
(
ζ + 4η

3

)
ρ

ψ�p, (78)
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Table 2 Comparison between the power-law NSL approach with a new complex quantum potential and
Bohm’s approach

Power-law NSL L1+εapproach
with a new complex quantum
potential

Bohm’s approach and
Schrödinger versus
Navier–Stokes

Schrödinger equation i ∂ψ
∂t = − 1

2�x ψ − U (x)ψ

U (x) = −i
√
2V (x)

∇x ψ
ψ

i ∂ψ
∂t = − 1

2�x ψ − V (x)ψ

Quantum potential Q(x) = − 1
2

(∇x A)2

A −
i
√
2V (x)

(∇x A
A + ∇x S

)
Q(x) = − 1

2
(∇x A)2

A

Complex wave function ψ = Aeiθ = Aei S ψ = Aeiθ = Aei S

Continuity equation ∂ρ
∂t + divJ = 0 ∂ρ

∂t + divJ = 0

Velocity field v = ∇x S = ∇x θ v = ∇x S = ∇x θ

Dynamical equation of v ∂v
∂t + (v · ∇x ) v + ∇x Q = 0 ∂v

∂t + (v · ∇x ) v = −∇x U −∇x V

U = − 1
2

�x |ψ |
|ψ | is the quantum

potential

Condition for the
hydrodynamic
correspondence

1
ρ ∇x p − ζ+ 4η

3
ρ �x v = ∇x Q the

gradient of the pressure must
match the viscosity term in the
fluid’s equations of motion
added to the gradient of the
Bohm’s quantum potential

the pressure gradient in the
Navier–Stokes equation
∂v
∂t + (v · ∇x ) v =
− 1

ρ ∇x P − ∇x V is associated
with the gradient term in
∂v
∂t + (v · ∇x ) v =
−∇x U − ∇x V suggesting a
relationship between the
density and pressure

which is “the reaction-diffusion equation for thewave function corresponding to the de
Broglie’s wave associated to the moving fluid particle with velocity v [50]”. Although
there are a number of similarities between our approach and the one discussed in [50],
the arguments differ totally as stated previously. Substituting v = ∇xθ into Eq. (69)
which describes the motion of the particle in constant potential field, we obtain using:

�x v = ∇x (∇x · v) − ∇x × ∇x × v = ∇x�xθ, (79)

since ∇x × ∇x ≡ 0:
∇x (�xθ) = ∇x p̃, (80)

or
�xθ = � p̃. (81)

Substituting θ = −i lnψ into Eq. (81) gives:

(�x − i� p̃) ψ − (∇xψ)2

ψ
= 0, (82)
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which is a nonlinear 2nd-order differential equation where the solution is given by:

ψ(x) = c2ec1x+ i� p̃x2

2 . (83)

ci , i = 1, 2, ... are constants of integration. Assuming initial conditionsψ(0) = 1 and
ψ ′(0) = 0, the solution is given by ψ(x) = ei� p̃x2/2 and it differs completely from
the standard solution of the 2nd-order linear differential equation (�x + k2)ψ = 0
which is ψ±(x) ∝ e±ikx where k = √

2E , E being the total energy of the particle (in
units h̄ = c = 1 and assuming the mass of the particle equal to unity). In Fig. 1, we
plot the numerical solutions of ψ(x) = ei� p̃x2/2 and ψ(x) = eikx for � p̃ = k = 1:

We observe that the solution ψ(x) = eix2/2 corresponds to fast oscillations (super-
oscillatory final state) in contrast to the normal oscillatory mode of ψ(x) = eikx .

Remark 3.2 If we introduce a new complex wave function φ such that ψ = eiαφ, α ∈
R, then Eq. (82) is reduced to the Poisson equation α�xφ = � p̃ and hence the
� p̃/α is reduced to a source term. For α = 1 then ψ ≡ θ.

In order to show the difference between themodified Schrödinger equation obtained
in our framework and the standard one used for classicalwaves and fluids,we introduce
the new complex wave function φ = V (x)ψ which permits us to write Eq. (52) after
some algebra as:

i
∂φ

∂t
=−1

2
�xφ+

(
1

2V

d2V

dx2
− 1

V 2

(
dV

dx

)2

+ i
√
2

dV

dx

)

φ+
(
1

V

dV

dx
− i

√
2V

)

∇xφ.

(84)

Fig. 1 Variations of real and imaginary parts of ψ(x) = eix2/2 and ψ(x) = eix
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If we choose the imaginary inverse potential V (x) = i x−1/
√
2, then Eq. (84) is

reduced to:

i
∂φ

∂t
= −1

2
�xφ + 1

2x2
φ, (85)

which amazingly is similar the Schrödinger equation in the presence of an inverse
square real potential. In fact, Schrödinger equation with imaginary potentials was
explored in literature to study the propagation of wave in gain media [53,75]. Inverse
potentials are of interest since they represent an intermediate threshold between those
potentials giving rise to ordinary stationary states and singular potentials particle
falling to the center with a non-lower-bounded energy [25,41]. By the method of
variables separation, we set φ = f (t)g(x) and we obtain easily:

i
1

f

∂ f

∂t
= − 1

2g
�x g + 1

2x2
= E, (86)

where E is a constant (identified to the energy). The LHS part of Eq. (86) gives
f (t) = e−i Et whereas the RHS gives the following 2nd-order differential equation:

�x g +
(

2E − 1

x2

)

g = 0, (87)

and the solution is given by:

g(x) = √
x

(

c3 J√
5
2

(√
2Ex

)
+ c4Y √

5
2

(√
2Ex

))

. (88)

Jn(z) and Yn(z) are respectively the Bessel functions of 1st and 2nd kinds. The general
solution is then given by:

φ = e−i Et√x

(

c3 J√
5
2

(√
2Ex

)
+ c4Y √

5
2

(√
2Ex

))

, (89)

and its corresponding real and imaginary parts are plotted in Figs. 2 and 3 respectively
after setting E = 1 and solving Eq. (87) with initial conditions g(1) = 0 and g′(1) = 1
for numerical illustration:

However, if we start from the standard Schrödinger equation and introduce the
inverse complex potential V (x) = i x−1/

√
2, it is easy to check that Eq. (85) will be

reduced to:

i
∂φ

∂t
= −1

2
�xφ + i√

2x
φ, (90)

and the general solution is obtained from the method of variables separation and takes
at the end the form:

φ = xe−i Et e−√−2Ex
(

c51F1

(

1 + i

4
√−E

; 2; 2√−2Ex

)

+ c6U

(

1 + i

4
√−E

; 2, 2√−2Ex

))

. (91)
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Fig. 2 Plot of the real part solution of Eq. (89)

Fig. 3 Plot of the imaginary part solution of Eq. (89)

1F1(a; b; x) is the Kummer confluent hypergeometric function and U (a, b, x) is the
confluent hypergeometric function of the 2nd kind. The real and imaginary parts of
Eq. (91) are plotted in Figs. 4 and 5 respectively after setting E = 1 and solving spatial
differential equations for initial conditions g(1) = 0 and g′(1) = 1:

Obviously, the dynamics differ since Figs. 4 and 5 describe the solutions of the
standard Schrödinger equation in the presence of an inverse complex potential whereas
Figs. 2 and 3 describe the solutions of the modified Schrödinger equation in the
presence of an inverse square real potential.
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Fig. 4 Plot of the real part solution of Eq. (91)

Fig. 5 Plot of the imaginary part solution of Eq. (91)

Note that in Eq. (85), the Schrödinger operator −�x + x−2 is scaling invariant
and represents a mathematical mean for certain important spectral inequalities such
as Strichartz estimates [35,49]. Inverse square potentials appear also in association
with 2D Schrödinger operators with Aharonov–Bohm-type magnetic field [37,38].
The following statement then holds:

Statement 7 Starting from a singular Lagrangian and introducing the new complex
wave function φ = V (x)ψ where ψ = ei S, S = ∫

L2dt and V (x) = i x−1/
√
2,
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we obtain a modified Schrödinger equation characterized by a scaling invariant
Schrödinger operator −�x + x−2.

At the end we note that Eq. (84) may be written as: Eφ = Hφ where H =
p2/2+ iσ p + U (x). Here U (x) represents the terms inside the 1st parenthesis in the
RHS of Eq. (84) and σ represents the terms inside the 2nd parenthesis of the same
equation. We observe that in contrast to the relativistic case where the Hamiltonian
involves quadratic and quartic terms on the momentum [58], the Hamiltonian involves
in our framework quadratic and linear terms on p.

4 Conclusions

In this paper, we have discussed the power of singular Lagrangianswhich are identified
to non-standard Lagrangians. We have established seven different statements which
prove that the Hamilton–Jacobi formulation of the power of singular Lagrangians
offers new features not realized in the standard approach although singularLagrangians
for a real system are not reported in classical mechanics. The Hamilton–Jacobi equa-
tion was derived from the common procedure and various differential equations which
exhibit various properties were obtained for different forms of singular Lagrangians.
At the classical level, it was observed that for special forms of complexified singu-
lar Lagrangians, the corresponding dynamical system holds a number of interesting
properties which are pointed out in Statements 1 to 4. These statements offer a num-
ber of motivating features which support the physics of NSL in general and singular
Lagrangians in particular. Nevertheless, the main outcomes of the present work con-
cern: 1st: the connection between the modified Schrödinger and the Navier–Stokes
equations for irrotational and viscous flow starting from a singular Lagrangian char-
acterized by a linear potential (pointed out in Statement 5); 2nd: the emergence of a
modified complexified quantum potential which is coupled to the wave amplitude, the
gradient of the action or the velocity field and the classical potential (pointed out in
Statement 6), 3rd: the emergence of a modified Schrödinger equation characterized
by the scaling invariant Schrödinger operator −�x + x−2 which is used in spectral
theories (pointed out in Statement 7). Our approach is characterized by two different
views: the 1st one is free from quantum potential (Bohm’s theory without quantum
potential) and still offers a correspondence between the Schrödinger equation and the
Navier–Stokes equation whereas the 2nd one is characterized by a modified complex
quantumpotential. Each viewholds its corresponding conditions for the hydrodynamic
correspondence. Our results led to another approach for solving classical problems
characterized by singular complexified Lagrangians. In literature, there exist a num-
ber of classical and quantum models in which the equations of motion are derived
from singular Lagrangians. However, our mathematical framework is totally different
since the action, the corresponding Euler–Lagrange equation, the Hamiltonian and the
canonical equations of motions hold different mathematical structures. In this paper,
we deepened into our formalism and demonstrated that singular Lagrangians offer
new features at both classical and quantum levels that deserve to be taken seriously. It
will be of interest to expand the present work to additional dynamical problems, using
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different types of potentials and demonstrate further the importance of singular and
NSL in classical and quantum dynamical systems.
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