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Abstract We investigate a class of planar piecewise smooth systems with a gen-
eralized heteroclinic loop (a closed curve composed of hyperbolic saddle points,
generalized singular points and regular orbits). We give conditions for the stability
of the generalized heteroclinic loop and provide some sufficient conditions for the
maximum number of limit cycles that bifurcate from the heteroclinic connection. The
discussions rely on the approximation of the Poincaré map, which is constructed near
the generalized heteroclinic loop. To obtain it, we introduce the Dulac map and use
Melnikov method. By analyzing the fixed point of the Poincaré map, we get the num-
ber of limit cycles, which can be produced from the generalized heteroclinic loop. As
applications to our theories, we give an example to show that two limit cycles can
appear.

Keywords Bifurcation · Piecewise smooth system · Limit cycle · Generalized
heteroclinic loop
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1 Introduction

Piecewise smooth (abbreviated as PWS) systems are frequently encountered in applied
science and engineering, such as control theory, mechanical engineering, power elec-
tronic circuits and so on (see for instance [4,8,14,19,30] and the references given
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there). For the details about the fundamental theory of PWS systems, we refer to the
monographs [9,13,22,27].

As known in [2,6], studying bifurcations of limit cycles is one of main problems in
smooth systems. This problem in PWS systems has attracted considerable attentions in
the past tens of years. Hopf bifurcation and periodic bifurcation for Filippov systems
have been studied in [1,7,11,12,18,23,24]. Homoclinic bifurcation for PWS systems
was investigated in [5,23,24]. Attentions also have been paid to limit cycles bifurcate
from heteroclinic loops. In this respect, bifurcations of limit cycles in planar PWS
systems with two zones, which are separated by a straight line and contain two real
saddles in each zones, were studied, for example, in [3,20,26] for PWS linear systems,
in [15] for PWS Hamiltonian systems. Recently, heteroclinic bifurcation in PWS
systems with multiple zones was considered in [25,29]. Liang, Han and Zhang [24]
in 2013 once studied bifurcation of limit cycles from generalized homoclinic loops,
which have generalized singular points on the switching manifold. We remark that
generalized singular points are also referred to as sliding points (see for instance
[9,13]). In this work, we are concerned with a planar PWS system defined in two
domains which are separated by a switching manifold and assume that the system
has a generalized heteroclinic loop, which has a real saddle in one subsystem and a
generalized singular point on the switching manifold.

More precisely, we assume that the plane is divided into

Ω+ = {x = (x1, x2)
T ∈ R

2 : x2 > 0},
Ω− = {x = (x1, x2)

T ∈ R
2 : x2 < 0}

with the switching maniflold

Ω0 = {x = (x1, x2)
T ∈ R

2 : x2 = 0}.

Consider a planar PWS system in the form

ẋ = f+(x) + εg+(x) := F+(x, ε), x ∈ Ω+, (1a)

ẋ = f−(x) + εg−(x) := F−(x, ε), x ∈ Ω−, (1b)

where

f±(x) =
(
p±(x)
q±(x)

)
, g±(x) =

(
j±(x)
k±(x)

)

with p±, q±, j±, k± ∈ Cn(Ω± ∪Ω0,R
2) (n ≥ 3) and |ε| < ε0 � 1 for some ε0 > 0.

When ε = 0, the system is reduced to

ẋ = f+(x), x ∈ Ω+, (2a)

ẋ = f−(x), x ∈ Ω−. (2b)

As indicated in [18], the generalized singular point of system (2) is a point P ∈ Ω0
satisfying q+(P)q−(P) ≤ 0.We define a closed curveΓ as a generalized heteroclinic
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Fig. 1 The generalized
heteroclinic loop Γ of the
unperturbed system (2)

loop if it consists of at least one generalized singular point on Ω0 and one singular
point in Ω±. We assume system (2) satisfies the following hypotheses:

(H) The system (2) has a counterclockwise generalized heteroclinic loop Γ , which
has a hyperbolic saddle point S ∈ Ω− and a generalized singular point P ∈ Ω0
satisfying

p+(P) < 0, q+(P) = 0, q+
x1(P) < 0, q−(P) > 0. (3)

Besides the point P , the generalized heteroclinic loopΓ intersectsΩ0 at the other
point Q, which is a crossing point satisfying q+(Q) < 0 and q−(Q) < 0. See
Fig. 1.

Without loss of generality, in what follows we always assume that the generalized
singular point P is at the origin point.

The aim of this paper is to study the stability and perturbations of the generalized
heteroclinic loop Γ . Among various approaches for determining the number of limit
cycles bifurcate from periodic orbits, homoclinic loops or heteroclinic loops in smooth
systems, theMelnikovmethod is treated as one of the efficient techniques (see [16,28]).
In the recent decades, the efforts in extending this method to PWS system have been
made, see for instance in [5,12,15,22,24,25,29]. We will use the Melnikov method
and introduce the Dulac map in a small neighborhood of S to estimate the Poincaré
map, from which we get stability of Γ . By analyzing zeros of the successor function
of the perturbed system in the neighborhood of Γ , which will be defined in Sect. 3,
we can obtain the number of limit cycles bifurcate from the generalized heteroclinic
loop Γ .

The present paper is built up as follows. Some necessary preparations are presented
in Sect. 2. We construct the Poincaré map near the generalized heteroclinic loop and
give conditions for stability of it in Sect. 3. Section 4 is devoted to perturbations of the
generalized heteroclinic loop. As applications of main results, an example is given in
the final section.
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2 Preliminaries

We firstly introduce some notations used repeatedly below. Let 〈a, b〉 = aT b, ‖a‖ =√〈a, a〉, a∧b = a1b2 −a2b1 and a⊥ = (−a2, a1)T for a = (a1, a2)T , b = (b1, b2)T

in R
2. The vector n is given by n = (0, 1)T . div X and DX respectively denote the

divergence and the Jacobianmatrix of a smooth vector field X (x) = (X1(x), X2(x))T .
Let real constants λ− and λ+ with λ− < 0 < λ+ be the eigenvalues of the matrix

Df−(S) and λ0 = −λ−/λ+ > 0. The stable and unstable manifolds of the hyperbolic
saddle point S are respectively denoted by Γs and Γu , the branch of Γ in Ω+ is
defined by Γ0. See Fig. 1. As the solution defined in [13,18], we define Γs := {γs(t) :
t ∈ [tQ,+∞)}, Γu := {γu(t) : t ∈ (−∞, tP )} and Γ0 := {γ0(t) : t ∈ (tP , tQ]},
furthermore, γs(tQ) = γ0(tQ) = Q, limt→t−P

γu(t) = P and limt→t+P
γ0(t) = P . Note

that S ∈ Ω− is a hyperbolic saddle point, then subsystem (1b) has a hyperbolic saddle
point Sε near the point S for sufficiently small |ε|. Let λ−(ε) and λ+(ε) with λ−(ε) <

0 < λ+(ε) be the eigenvalues of the matrix DF−(Sε, ε). Under the perturbation, Γs

(resp., Γu) becomes Γ ε
s (resp., Γ ε

u ), the stable (resp., unstable) manifold of Sε.
In order to approximate the Poincaré map, which will be constructed below, we

introduce the Dulac map in the following. As known in [21], there exists a local Cn−1

diffeomorphism Tε, which transforms subsystem (1b) into the following normal form:

u̇ = λ+(ε)u(1 + h1(u, v, ε)), v̇ = λ−(ε)v(1 + h2(u, v, ε)), (4)

where hi (u, v, ε) = uvhi0(u, v, ε) with hi0 ∈ Cn−2 for i = 1, 2. For sufficiently
small ρ, we take two sections of form

l
′
1 = {(u, v)T | v = ρ, 0 ≤ u ≤ ρ}, l

′
2 = {(u, v)T | u = ρ, 0 ≤ v ≤ ρ},

then the flow of system (4) induces the Dulac map D0 := D0(· , ε) from l
′
1 to l

′
2:

D0(· , ε) : [0, ρ] → [0, ρ]. See Fig. 2.
Let the sections l1 and l2 cross Γs and Γu at the points As := T−1

0 ((0, ρ)T ) and
Bu := T−1

0 ((ρ, 0)T ) along the vectors

Fig. 2 The Dulac map D0 of
system (4) near the hyperbolic
sadddle



Stability and Perturbations of Generalized Heteroclinic… 567

nAs := f ⊥− (As)

|| f−(As)|| , nBu := f ⊥− (Bu)

|| f−(Bu)|| ,

respectively. Then for sufficiently small |ε|, the section l1 (resp., l2) can intersect Γ ε
s

(resp., Γ ε
u ) transversally at A

ε
s := As +as(ε)nAs (resp., B

ε
u := Bu +bu(ε)nBu ). Given

that A := As + anAs for some small a > as(ε), then the flow of subsystem (1b) from
A crosses l2 at B := Bu + bnBu , which induces the Dulac map D := D(· , ε), that
is, b = D(a, ε). The expression of the Dulac map D can be obtained by [17, Lemma
3.5, p.302] and [17, Lemma 3.8, p.308]. The compendium of them is shown in the
following lemma.

Lemma 1 ([17]) Let the notations be given above. Then for sufficiently small |ε|, the
following assertions hold:

(i) Let λ(ε) = −λ−(ε)/λ+(ε) > 0. Then for any k ∈ (0, λ0/(1 + λ0)), we have

D0(u, ε) = ρ1−λ(ε)uλ(ε)(1 + ϕ0(u, ε)),

∂D0

∂u
(u, ε) = λ(ε)ρ1−λ(ε)uλ(ε)−1(1 + ϕ1(u, ε)),

where ϕ0(u, ε) = o(uk), ϕ1(u, ε) = o(uk) and u ∂ϕ0
∂u = o(uk).

(ii) Let β1 = ‖T−1
0 ((1, 0)T ) − P0‖, β2 = ‖T−1

0 ((0, 1)T ) − P0‖. Then there exist
Cn−1 functions

W1(u, ρ, ε) = as(ε) + M1(ρ, ε)u + O(u2),

W2(u, ρ, ε) = bu(ε) + M2(ρ, ε)u + O(u2),

such that if a(ε) = W1(u, ρ, ε), then D(a(ε), ε) = W2(D0(u, ε), ρ, ε), further-
more, Mi (ρ, 0) → βi sin θ as ρ → 0, i = 1, 2, where θ is the angle between
eigenvectors of λ+ and λ−.

3 Stability of Generalized Heteroclinic Loops

To get the stability of the generalized heterocinic loop Γ with the assumption (H), we
will construct the Poincaré map near Γ and analyze the properties of the successive
function. Precisely, we take l1 as the Poincaré section, where l1 is the same as defined
in Sect. 2. Let A = As + δnAs ∈ l1 for sufficiently small δ > 0. Then the flow of
subsystem (1b) starting from A intersects l2 at B := Bu + D(δ, 0)nBu . As stated in
Lemma 1, we can have the fact that if δ is small, so isD(δ, 0). Then by the continuous
dependency on initial values, for sufficiently small δ the flow starting from B intersects
the switching manifold Ω0 at C and D successively. The flow returns to the Poincaré
section l1 for the first time at E := As + h(δ)nAs . See Fig. 3. Let tX be the time, when
the flow reaches X , X = A, B,C, D, E . Then we can define the map P from l1 to
itself by P(A) = E , which is called the Poincaré map.

To approximate the Poincaré map, we need to make some preparations. Due to the
assumption (H), the orbit Γ0 of subsystem (2a) intersects Ω0 at exactly two points P
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Fig. 3 The Poincaré map near the generalized heteroclinic loop Γ

Fig. 4 The flow of system (2a) with the initial value near the generalized singular point P

and Q, furthermore, q+(Q) < 0 and (3) holds. Suppose that the orbit Γ̃0 of subsystem
(2a) crosses the point P̃ = (−d, 0)T for sufficiently small d > 0, then by the contin-
uous dependency on initial value, Γ̃0 intersects Ω0 at Q̃ = Q + (d̃, 0)T and x2-axis
at T̃ = (0,−d0)T if the domain of subsystem (2a) is extended to R2. See Fig. 4. Then
the following result gives the relationship between d and d̃.

Lemma 2 Let notations be given above. Then for sufficiently small d, we have

d̃ = q+
x1(P)

2q+(Q)
exp

(∫ tQ

tP
div f+(γ0(s))ds

)
d2 + O(d3). (5)

Proof Since subsystem (2a) satisfies (3), then near the point P = (0, 0)T ,

dx2
dx1

= q+
x1(P)

p+(P)
x1 + q+

x2(P)

p+(P)
x2 + ϕ(x1, x2), (6)
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where ϕ(x1, x2) is the high order term of x1 and x2. Consider Eq. (6) with the initial
value x2(0) = −d0, then

d0 = q+
x1(P)

2p+(P)
d2 + q+

x2(P)

p+(P)

∫ −d

0
x2dx1 +

∫ −d

0
ϕ(x1, x2)dx1, (7)

note that x2(−d) = 0 and through partial integration, we can obtain

∫ −d

0
x2dx1 = −

∫ −d

0
x1

(
q+
x1(P)

p+(P)
x1 + q+

x2(P)

p+(P)
x2 + ϕ(x1, x2)

)
dx1 = O(d3),

(8)

and it is clear that for sufficiently small d,

∫ −d

0
ϕ(x1, x2)dx1 = O(d3). (9)

From (7) to (9) it follows that

d0 = q+
x1(P)

2p+(P)
d2 + O(d3). (10)

Therefore, in order to obtain the relationship between d and d̃ , it is only necessary to
get the function of d̃ in d0.

Let x+
0 (t; t0, X) be the solution of (2a) with x+

0 (t0) = X for any X ∈ Ω+
⋃

Ω0.
By the Cn dependency on initial values, for sufficiently small d0, we can expand
x+
0 (t; tP , T̃ ) as

x+
0 (t; tP , T̃ ) = γ0(t) + Ψ1(t; P)(T̃ − P) + O(‖T̃ − P‖2), (11)

where Ψ1(t; P) satisfies the variational equation

Ψ̇1(t; P) = Df+(γ0(t))Ψ1(t; P), Ψ1(tP ; P) = I.

Assume that x+
0 (tQ̃; tP , T̃ ) = Q̃ ∈ Ω0, then from theCn dependency on initial values

it follows that

tQ̃ = tQ + τ1 + O(‖T̃ − P‖2), (12)

where τ1 = O(‖T̃ − P‖). Note that nT Q = nT Q̃ = 0, substituting (12) into (11)
yields

τ1 = −nTΨ1(tQ; P)(T̃ − P)

nT f+(Q)
. (13)
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If we plug (12) and (13) back into (11), we get

Q̃ = Q + f+(Q) ∧ [Ψ1(t; P)(T̃ − P)]
q+(Q)

n⊥ + O(‖T̃ − P‖2). (14)

Take ω(t; P) := f+(γ0(t))∧[Ψ1(t; P)(T̃ − P)], we can check that ω(t; P) satisfies

d

dt
ω(t; P) = div f+(γ0(t))ω(t; P), ω(tP ; P) = −d0 p

+(P),

which yields

ω(tQ; P) = −d0 p
+(P) exp

(∫ tQ

tP
div f+(γ0(s))ds

)
. (15)

Consequently, from (14) and (15) it follows that

d̃ = p+(P)

q+(Q)
exp

(∫ tQ

tP
div f+(γ0(s))ds

)
d0 + O(d20 ). (16)

Then, substituting (10) into (16) yields (5). Thus the proof is complete. ��
Lemma 3 Suppose that δ and ρ are sufficiently small, then we have

h(δ) = K1(ρ)D2(δ, 0) + O(D3(δ, 0)), (17)

where

K1(ρ) = − q+
x1(P)q−(Q)

2q+(Q)(q−(P))2

(
−λ2+β2

1

λ−β2
ρ + O(ρ2)

)
exp(H(ρ)),

H(ρ) = 2
∫ tP

tBu

div f−(γu(τ ))dτ +
∫ tQ

tP
div f+(γ0(τ ))dτ +

∫ tAs

tQ
div f−(γs(τ ))dτ.

Proof By the similar method used to obtain the formula (14), we can obtain

C = P + f−(Bu) ∧ (B − Bu)

f−(P) ∧ n⊥ exp

(∫ tP

tBu

div f−(γu(τ ))dτ

)
n⊥

+O(‖B − Bu‖2), (18)

E = As + f−(Q) ∧ (D − Q)

f−(As) ∧ nAs

exp

(∫ tAs

tQ
div f−(γs(τ ))dτ

)
nAs

+O(‖D − Q‖2), (19)

and it is clear to check that

f−(Bu) ∧ (B − Bu) = ‖ f−(Bu)‖‖B − Bu‖, f−(As) ∧ nAs = ‖ f−(As)‖.
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From (5), (18) and (19), we can obtain

h(δ) = − q+
x1(P)q−(Q)

2q+(Q)(q−(P))2

‖ f−(Bu)‖2
‖ f−(As)‖ D2(δ, 0) exp(H(ρ)) + O(D3(δ, 0)). (20)

By [5, Lemma 3], we have the fact that

‖ f−(As)‖ = −ρλ−β2 + O(ρ2), (21)

‖ f−(Bu)‖ = ρλ+β1 + O(ρ2). (22)

Then, substituting (21) and (22) into (20) yields (17). Therefore, the proof is now
complete. ��
Theorem 1 Suppose that system (2) has a generalized heteroclinic loop Γ with the
assumption (H). Given that λ0 �= 1/2, then Γ is asymptotically stable if λ0 > 1/2,
unstable if λ0 < 1/2.

Proof For sufficiently small δ, using result (ii) in Lemma 1, we can obtain

u = δ

M1(ρ, 0)
(1 + O(δ)), (23)

D(δ, 0) = M2(ρ, 0)D0(u, 0) + O
(
D2

0(u, 0)
)

, (24)

thus from (23), (24) and result (i) in Lemma 1, it follows that

D(δ, 0) = ρ1−λ0
M2(ρ, 0)

Mλ0
1 (ρ, 0)

(
1 + o

(
δk0

))
δλ0 + O

(
δ2λ0

)

= K2(ρ)
(
1 + o

(
δk0

))
δλ0 + O

(
δ2λ0

)
, (25)

where the constant k0 ∈ (0, λ0/(1 + λ0)),

K2(ρ) = (ρ sin θ)1−λ0
β2

β
λ0
1

(1 + ϕ(ρ)),

and the function ϕ(ρ) with ϕ(ρ) → 0 as ρ → 0. Take sufficiently small ρ fixed,
substituting (25) into (17) yields

h(δ) = K1(ρ)K 2
2 (ρ)(1 + o(δk0))δ2λ0 + O

(
δ3λ0

)
.

Consequently, for sufficiently small δ > 0, we have

h(δ)

δ
= K1(ρ)K 2

2 (ρ)(1 + o(δk0))δ2λ0−1 + O
(
δ3λ0−1

)
. (26)
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If λ0 > 1/2, from (26) it follows that h(δ)/δ → 0 as δ → 0. Thus the generalized
heteroclinic loop Γ is asymptomatically stable.

If λ0 < 1/2, from (26) we have

h(δ)

δ
=

(
K1(ρ)K 2

2 (ρ)(1 + o(δk0)) + O
(
δλ0

))
δ2λ0−1,

where K1(ρ)K 2
2 (ρ) > 0, k0 > 0 and λ0 > 0. Then we have that h(δ)/δ → +∞ as

δ → 0. Thus the generalized heteroclinic loop Γ is unstable. Therefore, the proof is
now complete. ��

4 Perturbations of Generalized Heteroclinic Loops

We assume that Γ ε
s (resp., Γ ε

u ), the stable (resp., unstable) manifold of Sε, intersects
Ω0 at Q−

ε (resp., P−
ε ). Under the condition (3) in (H), we will prove that there exists

a generalized singular point P+
ε ∈ Ω0 of system (1) near P . The flow of subsystem

(1a) starting from P+
ε crossesΩ0 transversally at point Q+

ε . The next lemma will give
the locations of P±

ε and Q±
ε .

Lemma 4 Suppose that system (2) has a generalized heteroclinic loop Γ with the
assumption (H), then for sufficiently small |ε|, system (1) has a generalized singular
point P+

ε ∈ Ω0, furthermore,

P+
ε := P + δ+

1 (ε)n⊥ = P + k+(P)

q+
x1(P)

n⊥ε + O(ε2),

P−
ε := P + δ−

1 (ε)n⊥ = P + Mu

q−(P)
n⊥ε + O(ε2),

Q−
ε := Q + δ−

2 (ε)n⊥ = Q − Ms

q−(Q)
n⊥ε + O(ε2),

Q+
ε := Q + δ+

2 (ε)n⊥ = Q +
{
k+(P)q+(P)

q+
x1(P)q+(Q)

+ M0

q+(Q)

}

× exp

(∫ tQ

tP
div f+(γ0(τ ))dτ

)
n⊥ε + O(ε2),

where

Mu :=
∫ tP

−∞
f−(γu(τ )) ∧ g−(γu(τ )) exp

(
−

∫ τ

tP
div f−(γu(s))ds

)
dτ,

Ms :=
∫ +∞

tQ
f−(γs(τ )) ∧ g−(γs(τ )) exp

(
−

∫ τ

tQ
div f−(γs(s))ds

)
dτ,

M0 :=
∫ tQ

tP
f+(γ0(τ )) ∧ g+(γ0(τ )) exp

(
−

∫ τ

tP
div f+(γ0(s))ds

)
dτ.
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Proof We define a functionψ(δ, ε) := q+(−δ, 0)+εk+(−δ, 0). Clearly, the function
ψ is continuously differentiable in δ and ε. Note that ψ(0, 0) = q+(P) = 0 and
ψδ(0, 0) = −q+

x1(P) > 0, using the implicit function theorem yields that there exists
a unique Cn function

δ+
1 (ε) = k+(P)

q+
x1(P)

ε + O(ε2) (27)

satisfying ψ(δ+
1 (ε), ε) = 0 for small |ε| . We can take P+

ε = (−δ+
1 (ε), 0)T ∈ Ω0,

which satisfies q+(P+
ε )+εk+(P+

ε ) = 0. Thus, the point P+
ε is a generalized singular

point of system (1). Note that n⊥ = (−1, 0)T , thenwe prove the existence and location
of P+

ε .
From [5, Lemma 5], we can obtain the expressions of P−

ε and Q−
ε . As follows, we

only carry out the proof for Q+
ε .

We define x+
ε (t; t0, X) to be the solution of (1a) with x+

ε (t0) = X for any X ∈
Ω+

⋃
Ω0. Using (27) and the Cn dependency on initial values and parameters yields

that for sufficiently small |ε|, we can write x+
ε (t; tP , P+

ε ) as

x+
ε (t; tP , P+

ε ) = γ0(t) + α(t)ε + O(ε2), (28)

where α = ∂x+
ε

∂ε
|ε=0. Note that x+

ε isCn with respect to (t, ε) for t ∈ R and sufficiently
small |ε|, then we have

∂

∂t

(
∂x+

ε

∂ε
|ε=0

)
= ∂2x+

ε

∂t∂ε
|ε=0 = ∂2x+

ε

∂ε∂t
|ε=0 = ∂

∂ε

(
f+(x+

ε ) + εg+(x+
ε )

) |ε=0

=
(
Df+(x+

ε )
∂x+

ε

∂ε
+ g+(x+

ε ) + εDg+(x+
ε )

∂x+
ε

∂ε

)
|ε=0

= Df+(γ0(t))α(t) + g+(γ0(t)), (29)

where the first equality follows from the result in [10, Exercise 3211.1] and the others
can be easily checked. Letting t = tP in (28) and using (29) yield that α satisfies

α̇(t) = Df+(γ0(t))α(t) + g+(γ0(t)), α(tP ) = k+(P)

q+
x1(P)

n⊥.

Assume that x+
ε (tQ+

ε
; tP , P+

ε ) = Q+
ε ∈ Ω0, from theCn dependency on initial values

and parameters it follows that tQ+
ε
can be expanded as

tQ+
ε

= tQ + T1ε + O(ε2). (30)

Note that nT Q+
ε = nT Q = 0, by substituting (30) into (28), we can obtain

T1 = − nTα(tQ)

nT f+(Q)
. (31)
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Thus, substituting (30) and (31) into (28) yields

Q+
ε = Q + f+(Q) ∧ α(tQ)

nT f+(Q)
n⊥ε + O(ε2). (32)

To get the expansion of Q+
ε , it is only necessary to obtain f+(Q) ∧ α(tQ). We define

ζ(t) := f+(x+
0 (t; tP , P)) ∧ α(t), and we can check that ζ(t) satisfies

ζ̇ (t) = div f+(γ0(t))ζ(t) + f+(γ0(t)) ∧ g+(γ0(t)), ζ(tP ) = k+(P)nT f+(P)

q+
x1(P)

,

which implies

ζ(tQ) =
{
k+(P)nT f+(P)

q+
x1(P)

+ M0

}
exp

(∫ tQ

tP
div f+(γ0(τ ))dτ

)
. (33)

Then, from (32) and (33) we can obtain the expression of Q+
ε . Therefore, the proof is

now complete. ��

Consider the following sets:

V1(ε) := {ε ∈ R : |ε| ≤ ε0 , δ−
2 (ε) ≥ δ+

2 (ε)},
V2(ε) := {ε ∈ R : |ε| ≤ ε0 , δ−

2 (ε) < δ+
2 (ε)},

where δ±
2 (ε) are defined in Lemma 4. Clearly, if ε ∈ V1(ε), then Q+

ε is at the right
side of Q−

ε , otherwise, Q
+
ε is at the left side of Q−

ε . See Fig. 5.
Take li , i = 1, 2, to be the sections as those defined in Sect. 2. We assume that

the flow of subsystem (1b) starting from Q+
ε intersects l1 for the first time at Aε :=

As + a(ε)nAs . Let Aε := As + δnAs with δ > max{as(ε), a(ε)}. The forward flow of
system (1) from Aε intersects l2 and Ω0 at B1

ε and C1
ε respectively, the backward flow

crosses Ω0 at B2
ε and C2

ε in order. See Fig. 5. Then we can define the Poincaré map
P(· , ε) in the form P(C2

ε , ε) = C1
ε . Let

‖Aε − Aε
s‖ = d1ε, ‖B1

ε − Bε
u‖ = d2ε, ‖C1

ε − P−
ε ‖ = d3ε,

‖Aε − Aε‖ = δ1ε, ‖B2
ε − Q+

ε ‖ = δ2ε, ‖C2
ε − P+

ε ‖ = δ3ε.

Clearly, d1ε ≥ δ1ε if ε ∈ V1(ε), d1ε < δ1ε if ε ∈ V2(ε).

Theorem 2 Suppose that system (2) has a generalized heteroclinic loop Γ with the
assumption (H). If λ0 > 1, then there exists a neighborhood U of Γ such that for
sufficiently small |ε|, system (1) has at most one limit cycle in U. If 0 < λ0 ≤ 1 and
λ0 �= 1/2, then there exists a neighborhood U of Γ such that for sufficiently small |ε|,
system (1) has at most two limit cycles in U.
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(a) (b)

Fig. 5 The generalized heteroclinic loop under perturbations

Proof As stated above, we have

d1ε = δ − as(ε), d2ε = D(δ, ε) − bu(ε), (34)

where as(ε) and bu(ε) satisfy Aε
s = As + as(ε)nAs and Bε

u = Bu + bu(ε)nBu ,
respectively, and the Dulac mapD is defined in Sect. 2. Then from (34) and Lemma 1,
we have

u = d1ε
M1(ρ, ε)

(1 + O(d1ε)),

D0(u, ε) = ρ1−λ(ε)

Mλ(ε)
1 (ρ, ε)

(1 + o(dk01ε ))d
λ(ε)
1ε + O(d2λ(ε)

1ε ), (35)

where k0 ∈ (0, λ0/(1+ λ0)) is fixed. Then from (34), (35) and result (ii) in Lemma 1
it follows

d2ε = M2(ρ, ε)ρ1−λ(ε)

Mλ(ε)
1 (ρ, ε)

(1 + o(dk01ε ))d
λ(ε)
1ε + O(d2λ(ε)

1ε ). (36)

By the same argument used in the proof of (14), we have

d3ε = K1εd2ε + O(d22ε), (37)

δ2ε = K2εδ1ε + O(δ21ε), (38)

where

K1ε = F−(Bε
u , ε) ∧ nBu

F−(P−
ε , ε) ∧ n⊥ exp

(∫ t
P−
ε

tBε
u

div F−(x−
ε (s; tBε

u
, Bε

u), ε)ds

)
,

K2ε = − F−(Aε, ε) ∧ nAs

F−(Q+
ε , ε) ∧ n⊥ exp

(∫ t
Q+

ε

tAε

div F−(x−
ε (s; tAε

, Aε), ε)ds

)
.
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As stated in Lemma 2, we have

δ2ε = K3εδ
2
3ε + O(δ33ε), (39)

where

K3ε = q+
x1(P

+
ε ) + εk+

x1(P
+
ε )

2q+(Q+
ε ) + 2εk+(Q+

ε )
exp

(∫ t
Q+

ε

t
P+
ε

div F+(x+
ε (s; tP+

ε
, P+

ε ), ε)ds

)
.

Furthermore, we can check the fact that as ε → 0,

K1ε → ‖ f−(Bu)‖
q−(P)

exp

(∫ tP

tBu

div f−(γu(τ ))dτ

)
,

K2ε → −‖ f−(As)‖
q−(Q)

exp

(∫ tQ

tAs

div f−(γs(τ ))dτ

)
,

K3ε → q+
x1(P)

2q+(Q)
exp

(∫ tQ

tP
div f+(γ0(τ ))dτ

)
.

Therefore, from (36) to (39) it follows that

d3ε = N1(ε)(1 + o(dk01ε ))d
λ(ε)
1ε + O(d2λ(ε)

1ε ), (40)

δ3ε = N2(ε)

(
1 + O(δ

1
2
1ε)

)
δ
1
2
1ε, (41)

where

N1(ε) = K1εM2(ρ, ε)ρ1−λ(ε)

Mλ(ε)
1 (ρ, ε)

and N2(ε) = K
1
2
2εK

1
2
3ε.

In order to get the number of limit cycles bifurcate from Γ , we take sufficiently small
ρ > 0 fixed and consider the function h(δ, ε), which satisfies

h(δ, ε)n⊥ = P(C2
ε , ε) − C2

ε = C1
ε − C2

ε

= (C1
ε − P−

ε ) + (P−
ε − P+

ε ) + (P+
ε − C2

ε )

= (d3ε + ϕ(ε) − δ3ε)n
⊥, (42)

where the function |ϕ(ε)| = ‖P−
ε − P+

ε ‖ only depends on the parameter ε. From (40)
to (42) it follows that

∂

∂δ
h(δ, ε) = λ(ε)N1(ε)d

λ(ε)−1
1ε

(
1 + o(dk01ε ) + O(dλ(ε)

1ε )
)

−N2(ε)

2

(
1 + O(δ

1
2
1ε)

)
δ
− 1

2
1ε .
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Suppose that λ0 > 1, then for sufficiently small |δ| + |ε|, we have λ(ε) − 1 > 0
and ∂h

∂δ
(δ, ε) < 0. Therefore, if λ0 > 1, then there exists a neighborhoodU of Γ such

that for sufficiently small |ε|, system (1) has at most one limit cycle in U .
The proof of the case 0 < λ0 ≤ 1 and λ0 �= 1/2 will be divided into two different

cases, which rely on the relative location between Q+
ε and Q−

ε .

Case (i) Suppose that ε ∈ V1(ε), that is, Q−
ε is at the left side of Q+

ε (see Fig. 5a).
Note that ∂h

∂δ
(δ, ε) = 0 is equivalent to

λ(ε)N1(ε)δ
1
2
1εd

λ(ε)−1
1ε

(
1 + o(dk01ε ) + O(dλ(ε)

1ε )
)

− N2(ε)

2

(
1 + O(δ

1
2
1ε)

)
= 0.

(43)

Suppose that λ0 > 1/2, we can rewrite (43) as

λ(ε)N1(ε)d
λ(ε)− 1

2
1ε

(
1 + o(dk01ε ) + O(dλ(ε)

1ε )
)

(δ
1
2
1εd

− 1
2

1ε ) = N2(ε)

2

(
1 + O(δ

1
2
1ε)

)
.

(44)

Since ε ∈ V1(ε), we have d1ε ≥ δ1ε. Thus, for ε ∈ V1(ε),

δ
1
2
1εd

− 1
2

1ε ≤ 1, dλ(ε)− 1
2

1ε → 0, as |δ| + |ε| → 0. (45)

Therefore, from (44) and (45) we can get the result that for sufficiently small |δ| + |ε|
and ε ∈ V1(ε), h(δ, ε) has at most one zero.

Suppose that 0 < λ0 < 1/2, note that ∂h
∂δ

(δ, ε) = 0 is equivalent to

(λ(ε)N1(ε))
−2d2−2λ(ε)

1ε

(
1 + o(dk01ε ) + O(dλ(ε)

1ε )
)

= 4N−2
2 (ε)

(
1 + O(δ

1
2
1ε)

)
δ1ε.

Let

h1(δ, ε) = d2−2λ(ε)
1ε

(
1 + o(dk01ε ) + O(dλ(ε)

1ε )
)

− N (ε)

(
1 + O(δ

1
2
1ε)

)
δ1ε,

where N (ε) = 4λ2(ε)N 2
1 (ε)N−2

2 (ε). Since

∂

∂δ
h1(δ, ε) = d1−2λ(ε)

1ε

(
2 − 2λ(ε) + o(dk01ε ) + O(dλ(ε)

1ε )
)

−N (ε)

(
1 + O(δ

1
2
1ε)

)
,

and 2−2λ(ε) > 0, 1−2λ(ε) < 0 for sufficiently small |ε|, then for sufficiently small
|δ| + |ε|, h1(δ, ε) has at most one zero. Therefore, by Rolle’s Theorem, h(δ, ε) has at
most two zeros for sufficiently small |δ| + |ε|.
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Case (ii) Suppose that ε ∈ V2(ε), that is, Q+
ε is at the left side of Q−

ε (see Fig. 5b).
Suppose that 0 < λ0 < 1/2, the condition ε ∈ V2(ε) implies d1ε < δ1ε. Thus for

ε ∈ V2(ε),

δ
1
2
1εd

− 1
2

1ε > 1, d
λ(ε)− 1

2
1ε → +∞, as |δ| + |ε| → 0. (46)

Therefore, from (44) and (46) it follows that h(δ, ε) has atmost one zero for sufficiently
small |δ| + |ε| and ε ∈ V1(ε).

Suppose that 1/2 < λ0 ≤ 1, set α(ε) := 2 − 2λ(ε), ω(δ, ε) := (dα(ε)
1ε − 1)/α(ε)

for α(ε) �= 0 and ω(δ, ε) := ln d1ε for α(ε) = 0, then we can rewrite h1(δ, ε) as

h1(δ, ε) = (α(ε)ω(δ, ε) + 1)
(
1 + o(dk01ε ) + O(dλ(ε)

1ε )
)

− N (ε)

(
1 + O(δ

1
2
1ε)

)
δ1ε.

Suppose that |δ0| + |ε| is sufficiently small and h1(δ0, ε) = 0, then

(α(ε)ω(δ0, ε) + 1)
(
1 + o(dk01ε ) + O(dλ(ε)

1ε )
)

= N (ε)

(
1 + O(δ

1
2
1ε)

)
δ1ε,

note that

N (ε)

(
1 + O(δ

1
2
1ε)

)
δ1ε → 0, 1 + o(dk01ε ) + O(dλ(ε)

1ε ) → 1, as |δ| + |ε| → 0,

then for sufficiently small |δ0| + |ε|, there exists a constant μ such that

0 > μ > α(ε)ω(δ0, ε) ≥ −1. (47)

We define the function

h2(δ, ε) := d2λ(ε)−1
1ε

∂

∂δ
h1(δ, ε)

= α(ε) + o(dk01ε ) + O(dλ(ε)
1ε ) − N (ε)

(
1 + O(δ

1
2
1ε)

)
d2λ(ε)−1
1ε ,

then the zeros of ∂
∂δ
h1(δ, ε) are equivalent to those of h2(δ, ε). Since for any ν > 0,

dν
1εω → 0, as |δ| + |ε| → 0,

and

h2(δ, ε)ω = α(ε)ω +
(
o(dk01ε ) + O(dλ(ε)

1ε )
)

ω

−N (ε)

(
1 + O(δ

1
2
1ε)

)
d2λ(ε)−1
1ε ω, (48)
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then for a small ε fixed, from (47) and (48) we have that h2(δ0, ε) has the same sign
as α(ε), where δ0 is a zero of h1(δ, ε). Therefore, h1(δ, ε) has at most one zeros for
sufficiently small |δ| + |ε|. Consequently, using Rolle’s Theorem yields that h(δ, ε)

has at most two zeros. Therefore, the proof is now complete. ��

5 An Example

Consider a planar PWS system in the form

{
ẋ1 = −1,
ẋ2 = −3x21 − 4x1 + 2ε1(x1 + 1),

(x1, x2)
T ∈ Ω+, (49)

{
ẋ1 = x1 + 4x2 + 5 + ε2(x1 + 1),
ẋ2 = 4x1 + x2 + 5 + 2ε2(x2 + 1),

(x1, x2)
T ∈ Ω−, (50)

where ε1 and ε2 are small parameters, Ω± and Ω0 are the same as defined in the
general system (1).

When ε1 = ε2 = 0, we can check that the unperturbed system has a generalized
heteroclinic loopΓ , which has a generalized singular point P at the origin, a hyperbolic
saddle point at S = (−1,−1)T and the other intersection between Γ and x1-axis is
point Q = (−2, 0)T . The branches of Γ are in the following form

Γu = {(x1, x2)T ∈ R
2 : x2 = x1 , x1 ∈ (−1, 0)},

Γ0 = {(x1, x2)T ∈ R
2 : x2 = x31 + 2x22 , x1 ∈ [−2, 0)},

Γs = {(x1, x2)T ∈ R
2 : x2 = −x1 − 2 , x1 ∈ [−2,−1)}.

It is clear that λ− = −3, λ+ = 5 and λ0 = 3/5 > 1/2. Then from Theorem 1 it
follows that Γ is asymptomatically stable.

When 0 < ε1 � 1 and ε2 = 0, there are no changes in subsystem (50). The flow
of subsystem (49) starting from P = (0, 0)T exactly crosses the point Q. Substituting
(x1, x2) = (0, 0) into (50) yields (ẋ1, ẋ2) = (−1, 2ε1). Therefore, a new homoclinic
loop Γε1 appears. Since λ+ +λ− = 2 > 0, then by [5, Theorem 1], we can obtain that
the homoclinic loop Γε1 is unstable. Thus, a stable limit cycle appears if 0 < ε1 � 1
and ε2 = 0.

When 0 < ε2 � ε1 � 1, S is also the hyperbolic saddle point of subsystem (50).
But Γs and Γu change to be Γ ε

s and Γ ε
u respectively, which are in the form

Γ ε
s = {(x1, x2)T ∈ R

2 : x2 + 1 = k−(x1 + 1) , x2 ∈ (−1, 0)},
Γ ε
u = {(x1, x2)T ∈ R

2 : x2 + 1 = k+(x1 + 1) , x2 ∈ (−1, 0)},

where k± = (ε2 ±
√
64 + ε22)/8. We can check that Γ ε

u and Γ ε
s intersect Ω0 at

P−
ε = (−1 − k−, 0)T and Q−

ε = (−1 − k+, 0)T respectively, where −1 − k− < 0
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and −1 − k+ < −2. Thus, the homoclinic loop Γε1 breaks and from [5, Theorem 2]
it follows that another one limit cycle appears. As known in Theorem 2, the perturbed
system has at most two limit cycles near the generalized heteroclinic loop. Therefore,
there are only two limit cycles in the perturbed system under the condition 0 < ε2 �
ε1 � 1.
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