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Abstract In this paper, we discuss a neutral delay predator–prey model with Hassel–
Varley type functional response and impulse is investigated. By using Mawhin
coincidence degree theory, we obtain some sufficient conditions for the existence
of positive periodic solutions. We extend some known work.
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1 Introduction

The predator–prey model was first introduced by Lotka and Volterra, and then the
traditional predator–prey models have been extensively studied [1–16]. Many models
have been established to describe the relationships between species and the outer envi-
ronment and the connections between species. In 1969, Hassell and Varley proposed a
predator–prey model (HV, for short), in which the functional response dependents on
the predator density in different way [1]. In Ref. [2], Wang considered the periodicity
to a non-autonomous predator–prey model with HV functional response and delay in
the prey specific growth term

This work is supported by the Natural Science Foundation of China (Grant No. 11471146), and partially
supported by PAPD of Jiangsu Province.

B Zengji Du
duzengji@163.com

Xiao Chen
395483688@qq.com

1 School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu,
People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12346-017-0223-6&domain=pdf


68 X. Chen, Z. Du

⎧
⎪⎨

⎪⎩

N ′
1(t) = N1(t)

[
a(t) − b(t)N1(t − τ(t)) − c(t)N2(t)

mNγ
2 (t)+N1(t)

]
,

N ′
2(t) = N2(t)

[
−d(t) + r(t)N1(t)

mNγ
2 (t)+N1(t)

]
.

0 < γ < 1.

Recently, the neutral differential equation with delay has been widely studied and
the applications in mathematical ecology will continue to be one of the dominant
themes due to its universal existence and importance [3,4]. Many excellent results
have been done for the predator–prey model with neutral and delays. For example,
Zhang and Zheng [5] considered the following neutral delay predator–preymodel with
Holling type II functional response

⎧
⎪⎪⎨

⎪⎪⎩

x ′(t) = x(t)
[
a(t) − bx(t − σ1) − ρx ′(t − σ2) − c(t)x(t)y(t)

my(t)+x(t)

]
,

y′(t) = y(t)
[

− d(t) + f (t)x(t−τ)
my(t−τ)+x(t−τ)

]
.

On the other side, in population dynamics, perturbations occur in a more-or-less
fashion for many reasons. For example, mating habits, hunting, harvesting, birth,
etc. This perturbation bring sudden change to the model. To describe the mathemat-
ical ecology systems more realistically, it need to consider the impulse term. In the
recent years, impulsive differential equations have been extensively studied [6,7].
By applying impulsive differential equations theory, many authors investigated the
mathematical ecology systems with impulse [8–11]. However there are few papers
discussing the impulse neutral differential systems.

Motivated by the above work, in this paper, we study the following neutral delay
predator–prey model with HV type functional response and impulse

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′ = x(t)
[
r(t) − b(t)x(t − τ(t)) − ρx ′(t − σ1(t)) − c(t)y(t)

myγ (t)+x(t)

]
,

y′ = y(t)
[
−d(t) + a(t)x(t−σ2)

myγ (t−σ2)+x(t−σ2)

]
,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

t �= tk , k=1, 2, . . . , 0 < γ ≤ 1,

x(t+k ) − x(tk) = θ1k x(tk),

y(t+k ) − y(tk) = θ2k y(tk),

}

t = tk , k = 1, 2, . . . ,

(1.1)

with initial condition

x(t) = ϕ(t), x ′(t) = ϕ′(t),
ϕ ∈ C([−σ, 0], [0,+∞)) ∩ C1([−σ, 0], [0,+∞)), ϕ(0) > 0,

y(t) = ψ(t), y′(t) = ψ ′(t),
ψ ∈ C([−σ, 0], [0,+∞)) ∩ C1([−σ, 0], [0,+∞)), ψ(0) > 0, (1.2)

where x and y represent prey and predator densities at time t , respectively.
a(t), b(t), c(t), d(t), r(t), τ (t), σ1(t) are continuous nonnegative T -periodic func-
tions. m, ρ and γ are positive constants, σ2 is a small positive constant. θik > −1, i =
1, 2, k ∈ N+ = 1, 2, . . . . Furthermore, σ := maxt∈[0,T ]{τ(t), σ1(t), σ2}.
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By using the Mawhin coincidence theory, we establish some criteria to guarantee
the existence of positive periodic solutions of systems (1.1) and (1.2). Our results show
that the impulsive neutral delay model (1.1) and (1.2) preserve the original periodicity
without the neutral term and impulse under appropriate periodic impulse perturbations.
From Theorem 3.1 of this paper, we can easily see that the condition [A3] of Theorem
3.1 in paper [2] could be removed.

2 Preliminaries

Definition 2.1 (x(t), y(t))T ∈ C([−σ,+∞), (0,+∞), (0,+∞)) is said to be a solu-
tion of the initial value problem (1.1) and (1.2) on [−σ,+∞) if

(i) x(t), y(t) are absolutely continuous on each interval (0, t1] and (tk, tk+1], k ∈
N+;

(ii) for any tk, k ∈ N+, (x(t+k ), y(t+k ))T and (x(t−k ), y(t−k ))T exist and
(x(t−k ), y(t−k ))T = (x(tk), y(tk))T ;

(iii) (x(t), y(t))T satisfies (1.1) and (1.2) for almost everywhere (a.e.) in [0,∞)\{tk}
and satisfies x(t+k )−x(tk) = θ1k x(tk), y(t+k )− y(tk) = θ2k y(tk), for t = tk, k ∈
N+.

We make the following assumptions

[H1] 0 < t1 < t2 < · · · < tk < · · · are fixed points and limk→∞ tk = +∞;
[H2] {θik} are real sequences such that θik > −1 and

∏
0<tk<t (1+ θik), i = 1, 2 are

T -periodic functions.

Under the assumptions [H1] and [H2], we consider the following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N ′
1(t) = N1(t)

[

r(t) − B(t)N1(t − τ(t)) − δN ′
1(t − σ1(t)) − C(t)N2(t)

MNγ
2 (t)+θN1(t)

]

,

N ′
2(t) = N2(t)

[

−d(t) + A(t)N1(t−σ2)

MNγ
2 (tσ2)+θN1(t−σ2)

]

,

0 < γ ≤ 1,

(2.1)

with initial condition

p(t) = ϕ(t), p′(t) = ϕ′(t),
ϕ ∈ C([−σ, 0], [0,∞)) ∩ C1([−σ, 0], [0,∞)), ϕ(0) > 0,

q(t) = ψ(t), q ′(t) = ψ ′(t),
ψ ∈ C([−σ, 0], [0,∞)) ∩ C1([−σ, 0], [0,∞)), ψ(0) > 0, (2.2)

where
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A(t) = a(t)
∏

0<tk<t

(1 + θ1k), δ = ρ
∏

0<tk<t−σ(t)

(1 + θ1k),

B(t) = b(t)
∏

0<tk<t−τ(t)

(1 + θ1k), C(t) = c(t)
∏

0<tk<t

(1 + θ2k),

M = m

⎛

⎝
∏

0<tk<t

(1 + θ2k)

⎞

⎠

γ

, θ =
∏

0<tk<t

(1 + θ1k). (2.3)

Lemma 2.1 Suppose that [H1] and [H2] hold, then
(i) if (N1(t), N2(t))T is a solution of (2.1) and (2.2), then (x(t), y(t))T is a solution

of (1.1) and (1.2), where

x(t) =
∏

0<tk<t

(1 + θ1k)N1(t), y(t) =
∏

0<tk<t

(1 + θ2k)N2(t);

(ii) if (x(t), y(t))T is a solution of (1.1) and (1.2), then (N1(t), N2(t))T is a solution
of (2.1) and (2.2), where

N1(t) =
∏

0<tk<t

(1 + θ1k)
−1x(t), N2(t) =

∏

0<tk<t

(1 + θ2k)
−1y(t).

Proof (i) It is easy to see that x(t) = ∏
0<tk<t (1 + θ1k)N1(t), y(t) = ∏

0<tk<t (1 +
θ2k)N2(t) are absolutely continuous on every interval (tk, tk+1]. For any t �= tk, k ∈
N+, one has

x ′(t) − x(t)

[

r(t) − b(t)x(t − τ(t)) − ρx ′(t − σ1(t)) − c(t)y(t)

myγ (t) + x(t)

]

=
∏

0<tk<t

(1 + θ1k)N
′
1(t) −

∏

0<tk<t

(1 + θ1k)N1(t)

×
⎡

⎣r(t) − b(t)
∏

0<tk<t−τ(t)

(1 + θ1k)N1(t − τ(t))

= −ρ
∏

0<tk<t−σ1(t)

(1 + θ1k)N1(t − σ(t))

− c(t)
∏

0<tk<t (1 + θ2k)N2(t)

m
(∏

0<tk<t (1 + θ2k)
)γ

N γ
2 (t) +∏

0<tk<t (1 + θ1k)N1(t)

⎤

⎥
⎦

=
∏

0<tk<t

(1+θ1k)

⎧
⎨

⎩
N ′
1(t)−N1(t)

⎡

⎣r(t) − b(t)
∏

0<tk<t−τ(t)

(1 + θ1k)N1(t − τ(t))

− ρ
∏

0<tk<t−σ1(t)

(1 + θ1k)N1(t − σ(t))
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− c(t)
∏

0<tk<t (1 + θ2k)N2(t)

m
(∏

0<tk<t (1 + θ2k)
)γ

N γ
2 (t) +∏

0<tk<t (1 + θ1k)N1(t)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

=
∏

0<tk<t

(1 + θ1k)
{
N ′
1(t) − N1(t)

[
r(t) − B(t)N1(t − τ(t)) − δN ′

1(t − σ1(t))

− C(t)N2(t)

MN γ
2 (t) + θN1(t)

]}

= 0. (2.4)

y′(t) − y(t)

[

−d(t) + a(t)x(t − σ2)

myγ (t − σ2) + x(t − σ2)

]

∏

0<tk<t

(1 + θ2k)

{

N ′
2(t) − N2(t)

[
− d(t) + A(t)N1(t − σ2)

MN γ
2 (t − σ2) + θN1(t − σ2)

]}

= 0. (2.5)

On the other hand, for any t = tk, k ∈ N+, we have

x(t+k ) = lim
t→t+k

∏

0<t j<t

(1 + θ1 j )N1(t) =
∏

0<t j≤tk

(1 + θ1 j )N1(tk),

y(t+k ) = lim
t→t+k

∏

0<t j<t

(1 + θ2 j )N2(t) =
∏

0<t j≤tk

(1 + θ2 j )N2(tk),

and

x(tk) =
∏

0<t j<tk

(1 + θ1 j )N1(tk), y(tk) =
∏

0<t j<tk

(1 + θ2 j )N2(tk).

Thus we obtain

x(t+k ) = (1 + θ1k)x(tk), y(t+k ) = (1 + θ2k)y(tk). (2.6)

From (2.2)–(2.6), we know that (x(t), y(t))T is a solution of (1.1) and (1.2).
(ii) Since x(t) =

∏

0<tk<t
(1 + θ1k)N1(t), y(t) =

∏

0<tk<t
(1 + θ2k)N2(t) are

absolutely continuous on every interval (tk, tk+1], k ∈ N+. According to definition
2.1, ∀ k ∈ N+, we have

N1(t
+
k ) =

∏

0<t j≤tk

(1 + θ1 j )
−1x(t+k ) =

∏

0<t j<tk

(1 + θ1 j )
−1x(tk) = N1(tk),

N2(t
+
k ) =

∏

0<t j≤tk

(1 + θ2 j )
−1y(t+k ) =

∏

0<t j<tk

(1 + θ2 j )
−1y(tk) = N2(tk),
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and

N1(t
−
k ) =

∏

0<t j≤tk−1

(1 + θ1 j )
−1x(t−k ) = N1(tk),

N2(t
−
k ) =

∏

0<t j≤tk−1

(1 + θ2 j )
−1y(t−k ) = N2(tk),

which implies that N1(t), N2(t) are continuous on [−σ,+∞). It is easy to prove that
N1(t), N2(t) are absolutely continuous on [−σ,+∞).

Similar to the proof of the case (i), we could show that

N1(t) =
∏

0<tk<t

(1 + θ1k)
−1x(t), N2(t) =

∏

0<tk<t

(1 + θ2k)
−1y(t)

are the solutions of systems (2.1) and (2.2). The proof of Lemma 2.1 is completed.

From Lemma 2.1, we only study the existence of positive periodic solutions of
systems (2.1) and (2.2) and obtain the existence of positive periodic solutions of
systems (1.1) and (1.2).

In order to present sufficient conditions for guaranteeing the existence of positive
periodic solutions for the systems (2.1) and (2.2), we introduce the coincidence degree
theorem.

Let X and Y be two Banach spaces, L : DomL ⊂ X → Y is a linear map, and
N : X → Y is a continuous map. If dim KerL = codim ImL < +∞ and ImL ∈ Y
is closed, then we call the operator L is a Fredholm operator with index zero. And
if L is a Fredholm operator with index zero and there exist continuous projections
P : X → X and Q : Y → Y such that ImP = KerL , ImL = KerQ = Im(I − Q),
then L|DomL∩Ker P : (I − P)X → ImL has an inverse function, we set it as Kp.
Assume 
 ∈ X is any open set, if QN (
) is bounded and Kp(I − Q)N (
) ∈ X is
relative compact, then we say N ∈ 
 is L-compact.

Lemma 2.2 [17] Let X and Y be both Banach spaces, L : DomL ⊂ X → Y be a
Fredholm operator with index zero, 
 ∈ Y be an open bounded set, and N : 
 → X
be L-compact on 
. If all the following conditions hold

[C1] Lx �= λNx, for x ∈ ∂
 ∩ DomL , λ ∈ (0, 1);
[C2] Nx /∈ ImL, for x ∈ ∂
 ∩ KerL;
[C3] deg{J QN ,
 ∩ KerL , 0} �= 0, where J : ImQ → KerL is an isomorphism;

then the equation Lx = Nx has at least one solution on 
 ∩ DomL .

Lemma 2.3 [18,19] If τ ∈ C1(R, R) with τ(t + T ) = τ(t) and τ ′(t) < 1 for
t ∈ [0, T ], then the function δ(t) = t − τ(t) has a unique inverse δ−1(t) satisfying
δ ∈ C(R, R) with δ−1(s + T ) = δ−1(s) + T for s ∈ [0, T ].

For convenience, we denote
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f̄ = 1

T

∫ T

0
f (t)dt, f L = min

t∈[0,T ] f (t), f M = max
t∈[0,T ] f (t),

where f is a nonnegative T -periodic continuous function.

3 Main Results

Theorem 3.1 Assume that [H1], [H2] and the following conditions hold

[H3] τ ′(t) < 1;
[H4] 1 > δeR, where R is defined in the proof;

[H5] Mr > C, eR AM

dM
> θ, A

d
> θ.

Then systems (1.1) and (1.2) have at least one T -periodic solution.

Proof It is not difficult to see that the solution of system (2.1) remains positive for all
t ∈ R. Let

N1(t) = eu(t), N2(t) = ev(t).

Then system (2.1) can be reformulated in the following form

⎧
⎨

⎩

u′(t) = r(t) − B(t)eu(t−τ(t)) − δeu(t−σ1(t))u′(t − σ1(t)) − C(t)ev(t)

Meγ v(t)+θeu(t) ,

v′(t) = −d(t) + A(t)eu(t−σ2)

Meγ v(t−σ2)+θeu(t−σ2) .

(3.1)

In order to apply Lemma 2.2 to study the existence of positive periodic solutions to
above system, set

X = Y = {z(t) = (u(t), v(t))T ∈ C(R, R2) : z(t + ω) ≡ z(t)}

and denote

|z| = |u| + |v|, |z|∞ = max
t∈[0,ω] |z| and ‖z‖ = |z|∞ + |z′|∞.

Then X and Y are both Banach spaces when they are endowed with the norms ‖ · ‖
and | · |∞, respectively.

Define operators L , P and Q as follows, respectively

L : DomL ∩ X → Y, Lz = dz

dt
; p(z) = 1

T

∫ T

0
z(t)dt; Q(z) = 1

T

∫ T

0
z(t)dt,

where DomL = {z|z ∈ X : z(t) ∈ C1(R, R2)}, and define N : X → Y by the form

Nz =
(

�1(z, t)
�2(z, t)

)

,
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where

�1(z, t) = r(t) − B(t)eu(t−τ(t)) − δeu(t−σ1(t))u′(t − σ1(t)) − C(t)ev(t)

Meγ v(t) + θeu(t)
,

�2(z, t) = −d(t) + A(t)eu(t−σ2)

Meγ v(t−σ2) + θeu(t−σ2)
.

Then KerL = R2, and ImL = {z ∈ Y : ∫ T
0 z(t)dt = 0} is closed in Y . Furthermore,

dim KerL = codim ImL , and P , Q are both continuous projections satisfying

ImP = KerL , ImL = KerQ = Im(I − Q).

So L is a Fredholm operator with index zero, which implies that L has a unique inverse.
Define Kp : ImL → KerP ∩ DomL being the inverse of L . By simply calculating,
one has

Kp(z) =
∫ t

0
z(s)ds − 1

ω

∫ T

0

∫ t

0
z(s)dsdt =

∫ t

T
z(s)ds + 1

T

∫ T

0
sz(s)ds.

Therefore

QNz =
⎛

⎝
1
T

∫ T
0 �∗

1(z, s)ds

1
T

∫ T
0 �2(z, s)ds

⎞

⎠ ,

where �∗
1(z, t) = r(t) − B(t)eu(t−τ(t)) − C(t)ev(t)

Meγ v(t)+θeu(t) . Then we obtain

Kp(I−Q)Nz =
⎛

⎝

∫ t
T �1(z, s)ds + 1

T

∫ T
0 s�1(z, s)ds + ( 1

2 − t
T

) ∫ T
0 �∗

1(z, s)ds
∫ t
T �2(z, s)ds + 1

T

∫ T
0 s�2(z, s)ds + ( 1

2 − t
T

) ∫ T
0 �2(z, s)ds

⎞

⎠ .

Obviously, it is not difficult to check by the Lebesgue convergence theorem that
QN and Kp(I − Q)N are both continuous. By using Arzela-Ascoli Theorem, we
know that operator Kp(I − Q)N (
) is compact and QN (
) is bounded for any open
set 
 ∈ X . So N ∈ 
 is L-compact on 
.

Corresponding to operator equation Lz = λNz for λ ∈ (0, 1), we have

⎧
⎪⎨

⎪⎩

u′(t) = λ
[
r(t) − B(t)eu(t−τ(t)) − δeu(t−σ1(t))u′(t − σ1(t)) − C(t)ev(t)

Meγ v(t)+θeu(t)

]
,

v′(t) = λ
[

− d(t) + A(t)eu(t−σ2)

Meγ v(t−σ2)+θeu(t−σ2)

]
.

(3.2)
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Assume that (u(t), v(t))T ∈ X is a T -period solution of (3.2) for a certain λ ∈
(0, 1). Integrating (3.2) over the interval [0, T ], we obtain

∫ T

0

[
B(t)eu(t−τ(t)) + C(t)ev(t)

Meγ v(t) + θeu(t)

]
dt = r̄ T, (3.3)

∫ T

0

[ A(t)eu(t−σ2)

Meγ v(t−σ2) + θeu(t−σ2)

]
dt = d̄T . (3.4)

In view of Lemma 2.3 and [H3], one has
∫ T

0
B(t)eu(t−τ(t))dt =

∫ T−τ(T )

−τ(0)

B(δ−1(s))eu(s)

1 − τ ′(δ−1(s))
ds =

∫ T

0

B(δ−1(s))eu(s)

1 − τ ′(δ−1(s))
ds.

It follows from (3.3) that

T r̄ =
∫ T

0

B(δ−1(s))eu(s)

1 − τ ′(δ−1(s))
ds +

∫ T

0

C(t)ev(t)

Meγ v(t) + θeu(t)
dt,

which implies

∫ T

0
eu(t)dt ≤ T r̄

PL
:= TU1, (3.5)

where P = B(δ−1(s))
1−τ ′(δ−1(s))

.

Multiplying both sides of the second equation of (3.2) by eγ v(t), and integrating
them from 0 to T , we have

∫ T

0
v′(t)eγ v(t)dt = λ

∫ T

0

[
− d(t)eγ v(t) + A(t)eu(t−σ2)+γ v(t)

Meγ v(t−σ2) + θeu(t−σ2)

]
dt,

which leads to

∫ T

0
d(t)eγ v(t)dt =

∫ T

0

A(t)eu(t−σ2)+γ v(t)

Meγ v(t−σ2) + θeu(t−σ2)
dt <

AM

M

∫ T

0
eu(t−σ2)dt.

Then

∫ T

0
Meγ v(t)dt <

AM

dLM

∫ T

0
eu(t−σ2)dt ≤ AMTU1

dLM
:= TU2. (3.6)

Now we prove by the following two cases: v(t) ≥ 0 and v(t) < 0.

Case 1 If v(t) ≥ 0, then eγ v(t) ≥ 1. Together with (3.6) yields

U2 ≥ 1

T

∫ T

0
eγ v(t)dt ≥ 1,
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which implies that there exists ξ1 ∈ [0, T ] such that v(ξ1) ≤ lnU2
γ

, therefore

U1 ≥ 1

T

∫ T

0
eu(t)dt >

dLM

T AM

∫ T

0
eγ v(t)dt ≥ MdL

AM
. (3.7)

Thus there exists η1 ∈ [0, T ] such that u(η1) ≤max{|lnU1|, |ln MdL

AM |}.
Case 2 If v(t) < 0, then eγ v(t) < 1. According to (3.3), we have

Tr < BM
∫ T

0
eu(t)dt + T

M
C,

which implies

∫ T

0
eu(t)dt >

T

BM

(

r − C

M

)

:= T L1. (3.8)

Again from (3.4), one has U1 > 1
T

∫ T
0 eu(t)dt > L1. So there exists η2 ∈ [0, T ]

such that u(η2) ≤ max
{|lnU1|, |lnL1|

}
. We can choose η ∈ [0, T ] such that u(η) ≤

max{|lnU1|, |lnL1|, |ln MdL

AM |} := W1.

By the mean value theorem of differential calculus, we have

rT >

∫ T

0
B(t)eu(t−τ(t))dt = B(ζ1)

∫ T

0
eu(t−τ(t))dt.

In view of (3.3) and Lemma 2.3, one has

rT >

∫ T

0
B(t)eu(t−τ(t))dt =

∫ T

0

B(δ−1(t))

1 − τ ′(δ−1(t))
eu(t)dt = E(ζ2)

∫ T

0
eu(t)dt,

where E(t) = B(δ−1(t))
1−τ ′(δ−1(t))

. Thus

B(ζ1)

∫ T

0
eu(t−τ(t))dt + E(ζ2)

∫ T

0
eu(t)dt < 2rT .

There exists ζ3 ∈ [0, T ] such that

B(ζ1)e
u(ζ3−τ(ζ3)) + E(ζ2)e

u(ζ3) < 2r(ζ3).

Since
∫ T
0 r(t)dt > 0, rM > 0, we obtain u(ζ3) < ln 2rM

EL and u(ζ3−τ(ζ3)) < 2rM

BL .

Therefore
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u(t) + λδeu(t−τ(t)) ≤ u(ζ3) + λδeu(ζ3−τ(ζ3)) +
∫ T

0

∣
∣
∣
∣
d

dt
u(t) + λδeu(t−τ(t))

∣
∣
∣
∣ dt

< ln
2rM

EL
+ δ

2rM

EL
+ 2rT := R,

which implies that u(t) < R.

From (3.2) and (3.3), we have

∫ T

0

∣
∣
∣
∣
d

dt

[
u(t) + λδeu(t−τ(t))

]∣∣
∣
∣ dt

= λ

∫ T

0

∣
∣
∣
∣
∣
r(t) − B(t)eu(t−τ(t)) − C(t)ev(t)

Meγ v(t) + θeu(t)

∣
∣
∣
∣
∣
dt

≤
∫ T

0

[

r(t) + B(t)eu(t−τ(t)) + C(t)ev(t)

Meγ v(t) + θeu(t)

]

dt = 2rT .

By the mean value theorem of differential calculus, we see that there exists ξ1 ∈ [0, T ]
such that

∫ T

0
E(t)eu(t)dt = E(ξ1)

∫ T

0
eu(t)dt = E(ξ1)

∫ T

0

eu(t−τ(t))

1 − τ ′(t)
dt < rT .

Thus

∫ T

0
|u′(t)|dt ≤

∫ T

0
r(t)dt +

∫ T

0

[

B(t)eu(t−τ(t)) + C(t)ev(t)

Meγ v(t) + θeu(t)

]

dt

+
∫ T

0

∣
∣
∣δeu(t−τ(t))u′(t − τ(t))

∣
∣
∣ dt

≤ 2rT + δeR
∫ T

0
|u′(t)|dt,

which implies that

∫ T

0
|u′(t)|dt <

2rT

1 − δeR
:= R1.

It is easy to see that

|u(t)| ≤ |u(η)| +
∫ T

0
|u′(t)|dt < W1 + R1 := M1.

According to the second equation of (3.2), one has

dT =
∫ T

0

A(t)eu(t−σ2)

Meγ v(t−σ2) + θeu(t−σ2)
dt < AM

∫ T

0

1

θ + M
eR
eγ v(t−σ2)

dt.
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By the mean value theorem of differential calculus, there exists ζ ∈ [0, T ] such that

dT

AM
<

T

θ + M
eR
eγ v(ζ−σ2)

,

which yields that

ev(ζ−σ2) <

(
eR AM

dM
− θ

) 1
γ := R2 i.e. v(ζ ) < lnR2.

It is not difficult to see that
∫ T
0 |v′(t)|dt < 2dT, thus

|v(t)| ≤ |v(ζ − σ2)| +
∫ T

0
|v′(t)|dt < 2dT + lnR2 := M2.

In view of (3.2), we get

|u′| ≤ 1

1 + δe−M1

(

rM + BM + CMeM2

Me−γ M2 + θe−γ M1

)

:= M3,

|v′| ≤ dM + AMeM

Me−γ M2 + θe−γ M1
;= M4.

Now it is easy to see that

‖z‖ =
∥
∥
∥(u, v)T

∥
∥
∥ = |z|∞ + |z′|∞ ≤ M1 + M2 + M3 + M4 := M5.

M5 is independent of λ. Set M∗ = M5 + 1, and take 
 = {z = (u, v)T : z < M∗}. It
is clear that 
 verifies the condition [C1] in Lemma 2.2.

When z = (u, v)T ∈ ∂
 ∩ KerL = ∂
 ∩ R2, z = (u, v)T is a constant vector in
R2 with ||z|| = M∗, we have

QNz =
⎛

⎝
r̄ − B̄eu − Cev

Meγ v+θeu

−d̄ + Aeu
Meγ v+θeu

⎞

⎠ �= 0.

This prove that condition [C2] in Lemma 2.2 is satisfied.
Finally, we will show that condition [C3] in Lemma 2.2 holds.
Define the homotopy φ : DomL × [0, 1] → X by

φ(u, v, μ) =
(

r̄ − B̄eu(t)

−d̄ + Aeu(t)

Meγ v(t)+θeu(t)

)

+ μ

(

− Cev(t)

Meγ v(t)+θeu(t)

0

)

,

where μ ∈ [0, 1] is a parameter. When (u, v)T ∈ ∂
 ∩ KerL = ∂
 ∩ R2, (u, v)T

is a constant vector in R2 with ‖(u, v)T ‖ = W. We will show that when (u, v)T ∈
∂
 ∩ KerL , φ((u, v)T , μ) �= 0. The following algebraic equation
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φ(u, v, 0) = 0

has a unique solution (u∗, v∗)T , which satisfy eu
∗ = r

B
, eγ v∗ = r

MB

( A
d

− θ
)
. Define

the homomorphism J : ImQ → KerL , J z ≡ z, a direct calculation shows that

deg{J QN ,
 ∩ KerL, 0} = deg{QN ,
 ∩ KerL, 0} = deg{φ(u, v, 1),
 ∩ KerL, 0}
= deg{φ(u, v, 0),
 ∩ KerL, 0} = 1 �= 0.

Therefore, we have verified all the requirements of Mawhin coincidence theorem in


and the system (3.1) has at least one positive T -periodic solution. Then, by Lemma 2.2,
we derive that systems (1.1) and (1.2) have at least one positive T -periodic solution.
This completes the proof. ��
Remark 3.1 In (1.1) and (1.2), if ρ = θik = 0, i = 1, 2, k ∈ N+, then the model
discussed in [2] is a special case of (1.1) and (1.2). From the proof of our main result,
we know that the condition [A3] of Theorem 3.1 in [2] could be removed. So our main
result generalized Theorem 3.1 in [2].

Remark 3.2 In (1.1) and (1.2), if τ(t) = σ1, σ1(t) = σ2, γ = 1, θ1k = θ2k = 0, we
can obtain that the model in [7] is a special case of (1.1) and (1.2).

4 Example

Considering the following neutral delay predator–preymodel with HV-type functional
response and impulse

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′ = x(t)
[
6+cost−(5+cost)x(t− sint

2 )−10−10x ′(t − cost)− (2+sint)y(t)
100yγ (t)+x(t)

]
,

y′ = y(t)
[
3 + sint + (10+cost)x(t−0.1)

100yγ (t−0.1)+x(t−0.1)

]
,

⎫
⎪⎪⎬

⎪⎪⎭

t �= 2kπ, k ∈ Z , 0<γ <1,

x(t+k ) − x(tk) = −0.1x(tk),

y(t+k ) − y(tk) = 0.1y(tk).

⎫
⎪⎬

⎪⎭
t = 2kπ, k ∈ Z ,

It is easy to calculate τ ′(t) = cost
2 < 1, θ < 1, , R > 24π, δeR � 1, r = 6, C =

2θ, M = 4θ, d = 3, A = 10θ, AM > 11. We can check that all the conditions of
Theorem 3.1 hold, then the system has at least one 2π−periodic solution.
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