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Abstract We prove the equivalence between the Melnikov functions method and
the averaging method as tools for finding limit cycles of analytic planar differential
systems which are perturbations of a period annulus. We consider any possible change
of variables to transform the planar system into a scalar periodic equation which
perturbs a continuum of constant solutions. We prove that the Poincaré return map of
the planar system and the Poincaré translation map of the scalar equation coincide. For
distinct specific changes of variables this was stated before in 2004 by Buică–Llibre
and proved in 2015 by Han–Romanovski–Zhang.
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1 Introduction

The Melnikov functions method and the averaging method are two widely used tools
for proving the existence of limit cycles of planar differential systems which are
perturbations of a period annulus. As far as we know, arguments to support the idea of
their equivalence appeared for the first time in [1], and recently, Han–Romanovski–
Zhang in [7] discussed new aspects of this idea.
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Remind that the application of the averaging method for a planar system depends
on the change of variables used to transform the planar system into a scalar periodic
equation which perturbs a continuum of constant solutions. The ones used in [1] and
[7], respectively, are essentially different. So it remained to clarify whether there are
other such changes of variables and, in case of positive answer,whether the equivalence
of the methods holds in each case. In this paper we give a positive answer to each of
these two questions. More exactly, we prove that the Poincaré translation map of
the corresponding scalar equation is some Poincaré return map of the planar system.
So Theorem 6 in Sect. 2 of this paper generalizes and provides a unified proof of
Theorems 5.1 and 5.2 in [1] and Lemmas 2.2 and 2.3 in [7]. Note also that the proof
of [1, Theorem 5.2] (that states the equivalence between the two methods) is omitted
saying that “is a direct consequence of Theorem 5.1 and the definition of displacement
and Melnikov functions”. (In [1] the displacement map is equivalently used instead
of the Poincaré return map.) But [7, Lemma 2.3] is presented with a detailed proof.

Remind also that the Melnikov functions are defined via some Poincaré return
map which depends on a transversal section and its parametrization. We discuss the
relations between the Melnikov functions obtained for distinct transversal sections
and parameterizations (Theorem 7 in Sect. 2), and relate these with the application of
the averaging method.

We end this paper with some conclusions presented in Sect. 3.
In the sequel the averaging method for scalar periodic equations, the Melnikov

functionsmethod for planar systems and, respectively, the averagingmethod for planar
systems are presented.

In this article we work only with real analytic differential equations and we will
not mention this each time. I ⊂ R will denote a nonempty and open interval, and
S1 = R/2πZ.
The averagingmethod for scalar periodic equations. For a scalar 2π -periodic equa-
tion

dh

dθ
= εF(θ, h, ε), (1)

with F : S1×I×R → R,wedenote by h̃(θ, h, ε) its solution satisfying h̃(0, h, ε) = h.
A solution h̃(θ, h∗(ε), ε) is 2π -periodic if and only if h∗(ε) is a fixed point of the

Poincaré translation map P̃(·, ε) defined by

P̃(h, ε) = h̃(2π, h, ε), h ∈ I, |ε| � 1.

There exist some k̃ ≥ 1 and some non-null real analytic function fk̃ : I → R such
that

P̃(h, ε) − h = εk̃ fk̃(h) + O(εk̃+1).

Various tools like the Implicit FunctionTheorem,Brouwer TopologicalDegree, Prepa-
ration Theorems can be employed to study the fixed points of P̃(·, ε) via the zeros of
fk̃ .
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The averaging method of order k̃ for proving existence of 2π -periodic solutions of
(1) consists in finding a representation for the function fk̃ , finding the number of its
zeros and their respective multiplicities [1,5,6]. The function fk̃ is called averaging/

bifurcation function of order k̃.
Note that we are not interested in transforming (1) in the so-called averaged equa-

tion. This aspect and its relation with the above ideas were studied in [7].
The Melnikov functions method for planar systems. We consider now a family of
planar analytic vector fields of the form

ẋ = X0(x) + εX (x, ε) (2)

which also depends on the parameter ε. We assume that the unperturbed system

ẋ = X0(x) (3)

has a period annulus P ⊂ R
2 without equilibria. More exactly, P is a nonempty, open

and connected subset of R2, filled with closed orbits of system (3). Note that

X0(x) �= 0 for all x ∈ P.

The problem we consider is to find branches of limit cycles of the family (2) that
bifurcate from the closed orbits in P of (3).

We consider an analytic transversal section � = {γ (h) : h ∈ I } to the flow
of (3) in P . Remind that this means that � ⊂ P , γ : I → � is analytic and
γ ′(h) ∧ X0(γ (h)) �= 0 for any h ∈ I . The wedge product ∧ between two planar
vectors is the determinant of the matrix which have them as columns. We have that,
for |ε| � 1, � is also a transversal section to the flow of (2) in P . Take some �′ ⊂ �

such that the orbit of (2) that starts in �′ returns to �. We denote by

Pγ (h, ε), h ∈ I ′ ⊂ I, |ε| � 1,

the Poincaré first return map to � of the flow of (2) in P . In the sequel, the interval
I ′, which may be smaller than I , will be denoted also by I . We have that h∗(ε) is a
fixed point of Pγ (·, ε) if and only if the orbit of (2) passing through the point of �

corresponding to the parameter h∗(ε) is a closed orbit. There exist some k ≥ 1 and
some analytic function Mk : I → R (called Melnikov function of order k) such that

Pγ (h, ε) − h = εkMk(h) + O(εk+1).

The Melnikov functions method of order k for proving existence of limit cycles of (2)
consists in finding a representation for the function Mk , finding the number of its
zeros and their respective multiplicities. Like we mentioned in the discussion on the
averaging method, knowing all these about Mk one can provide information on the
number of limit cycles of (2) that bifurcates from P .

Note that Mk may depend on the transversal section � and its parametrization
γ : I → �.
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The averaging method for planar systems.We consider again the planar system (2)
such that the unperturbed system (3) has a period annulus P ⊂ R

2 without equilibria.
The averaging method to study the existence of limit cycles of system (2) consists in
two steps. The first step is to find a change of variables

(h, θ) = �(x), h ∈ I, θ ∈ S1, x ∈ P

to transform the planar system (2) into some 2π -periodic scalar equation (1) such that,
for any |ε| � 1, the orbits of (2) are

�h = {�−1(h̃(θ, h, ε), θ) : θ ∈ R}, h ∈ I,

which assures that h̃(θ, h∗(ε), ε) is a 2π -periodic solution of (1) if and only if �h∗(ε)
is a closed orbit of (2).

The second step is to apply the averaging method to (1) in order to find its 2π -
periodic solutions.

2 Main results

Like in the Introduction, we consider a family of analytic planar vector fields of the
form

ẋ = X0(x) + εX (x, ε) (2)

which depends on the small parameter ε. We assume that the unperturbed system

ẋ = X0(x) (3)

has a period annulus P ⊂ R
2 without equilibria. Denote by ϕ0(t, q), t ∈ R, q ∈ P ,

the flow of (3) in P .

2.1 Polar-like coordinates in a period annulus

Westartwith some explanations. Saying that some vectorial function
 : I×S1 → R
2

is analytic means that 
 : I × R → R
2 is 2π -periodic in the second variable and

analytic.
Saying that some map A : P → S1 is analytic means that for each x∗ ∈ P

there exists a nonempty open neighborhood V ⊂ P of x∗ and an analytic function
a : V → R such that A(x) = {a(x) + 2kπ : k ∈ Z}, the equivalence class of a(x)
in S1 = R/2πZ. Note that, in this case, taking a1 : V1 → R and a2 : V2 → R such
that V1 ∩ V2 �= ∅, we have that the function a1 − a2 : V1 ∩ V2 → R is constant. Thus,
defining ∇A(x) = ∇a(x) for all x ∈ V and for all x∗ we have that, for some analytic
map A : P → S1, ∇A : P → R

2 is an analytic vectorial function.
In this paper we will work with variables (h, θ) as in the next definition.
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Definition 1 Let � = (H, A) : P → I × S1 be a real analytic map. We say that
(h, θ) = �(x) are polar-like coordinates (or action-angle like variables) of system (3)
in P if

(i) � : P → I × S1 is a diffeomorphism and
(ii) H : P → R is a first integral of (3).

These new variables (h, θ) are called in this paper action-angle like variables
since, in particular, the action-angle variables as defined in [2, Section 7.3] satisfy
the conditions in the above definition. Moreover, they are also called polar-like since
when (3) is, in particular, the linear harmonic oscillator ẋ1 = −x2, ẋ2 = x1, the usual
polar coordinates are polar-like.

Note that condition (i) in Definition 1 is imposed just to have a genuine change
of variables that maintain the analyticity, and condition (ii) reflects the fact that, for
ε = 0, Eq. (1) implies that h must be constant along each orbit of (3).

In practice it is useful to work with the next equivalent definition.

Proposition 2 Let H : P → Rbeafirst integral of (3).Wehave that (h, θ) = �(x) =
(H(x), A(x)) are polar-like coordinates of system (3) in P if and only if there exists
an invertible analytic map 
 : I × S1 → P such that � = 
−1, H(
(h, θ)) = h
and the Jacobian determinant J
(h, θ) �= 0 for all (h, θ) ∈ I × S1.

Proof When (h, θ) = �(x) are polar-like coordinates as in Definition 1 it is clear that

 = �−1 satisfies the required properties. We would like to discuss in more detail the
reversed implication. So, we have an invertible analytic map 
 : I × S1 → P with
the inverse � : P → I × S1. The condition H(
(h, θ)) = h for all (h, θ) ∈ I × S1

clearly implies that the first component of � is H : P → I , which, by hypothesis, is
a first integral of (3). It remained to prove only that � = (H, A) : P → I × S1 is
analytic. From now on we see 
 as 
 : I ×R → P , which, by hypothesis, is a local
analytic diffeomorphism and is 2π -periodic with respect to the second variable. Let
x∗ ∈ P and (h∗, θ∗) ∈ I ×R be such that h∗ = H(x∗) and θ∗ ∈ A(x∗). We have that
there exist some neighborhoods U ⊂ I × R of (h∗, θ∗) and V ⊂ P of x∗ and a local
analytic inverse φ : V → U of 
. Clearly the first component of φ is H , hence H is
analytic. Denoting its second component by a : V → U we have that a(x) ∈ A(x)
for all x ∈ V , which proves the analyticity of A : P → S1, too. The proof is finished.

��
The following result holds.

Lemma 3 Assume that (h, θ) = �(x) are polar-like variables of (3), and let 
 =
�−1. Let T (h) denote the main period of ϕ0(·, q) where H(q) = h. Then

(i) the first integral H : P → R has no critical points and, for each θ∗ ∈ S1,
� = {
(h, θ∗) : h ∈ I } is a transversal section to the flow of (3) in P;

(ii) the change to the polar-like variables (h, θ) transforms (3) in the analytic system

ḣ = 0, θ̇ = �0(h, θ), (4)

where �0 : I × R → R is 2π -periodic in the second variable and of definite
sign;
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(iii) there exists a real analytic function τ : I × R → R, τh(t) = τ(h, t), with
the properties τh(0) = 0, τh : R → R is a diffeomorphism, τh(t + T (h)) =
τh(t) + 2π , for each (h, t) ∈ I × R, such that


(h, θ) = ϕ0(τ
−1
h (θ),
(h, 0)), for all (h, θ) ∈ I × R.

Proof (i) The gradient vector ∇H(x) is not null for any x ∈ P due to the fact that
is the first line in the Jacobian matrix D�(x) which is invertible for any x ∈ P . In
addition, this fact also assures that ∇H ∧ ∇A �= 0 in P . Since

∇H · X0 = 0 in P

the following relation, which will be useful in the sequel, holds true

∇A · X0 �= 0 in P.

We remind that the relation ∇H · X0 = 0 is valid due to the fact that, by Definition 1,
H is a first integral of X0. In order to show that � = {
(h, θ∗) : h ∈ I } is a
transversal section, it is sufficient to prove that

∂


∂h
(h, θ) ∧ X0(
(h, θ)) �= 0 for all (h, θ) ∈ I × S1. (5)

For this, we use that the product of the Jacobian matrices D� and D
 is the

identity matrix. Since D� =
(∇H

∇A

)
and D
 =

(
∂


∂h

∂


∂θ

)
we have that

∇A(
(h, θ)) · ∂


∂h
(h, θ) = 0 for all (h, θ) ∈ I × S1. This and ∇A · X0 �= 0 in

P prove (5).
(ii) Note first that the change to the polar-like variables (h, θ) transforms (3) in the

analytic system

ḣ = ∇H · X0|x=
(h,θ), θ̇ = �0(h, θ) = ∇A · X0|x=
(h,θ). (6)

The relations proved at (i) show that system (6) has the form (4), where �0 :
I × R → R is 2π -periodic in the second variable and satisfies �0(h, θ) �= 0 for all
(h, θ) ∈ I × R. This assures that �0 has definite sign in I × R.

(iii) In the sequel we denote, for each h ∈ I , by τh(t) = τ(h, t) the unique solution
of the IVP θ̇ = �0(h, θ), θ(0) = 0. It is clear that τh(0) = 0, and, since �0(h, ·)
is bounded and of definite sign, τh : R → R is a real analytic diffeomorphism. Let
Q(h) > 0 be such that τh(Q(h)) = 2π . Then, the 2π -periodicity of �0(h, ·) assures
that τh(t + Q(h)) = τh(t) + 2π for all t ∈ R.
The following relation holds between the flows of systems (3) and, respectively, (4),


(h, τh(t)) = ϕ0(t, 
(h, 0)), for all t ∈ R.
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If we put here t = τ−1
h (θ) the relation from the conclusion is obtained. Also, from

this relation one can get that Q(h) = T (h). ��
Next we present examples of polar-like coordinates (h, θ) in the period annulus P

of some planar system ẋ = X0(x).
• The first example presents the classical polar coordinates. We consider

X0(x1, x2) = (−x2, x1), P = R
2\{0}, H(x1, x2) =

√
x21 + x22 , I = (0,∞)

and


 : (0,∞) × S1 → R
2\{0}, 
(h, θ) = (h cos θ, h sin θ).

It is easy to proveusingProposition2 that (h, θ) = �(x),with� = 
−1, are polar-like
coordinates in the sense of Definition 1. Denote� = (H,A).We consider that it worth
to make some more comments with respect to the polar angle mapA : R2\{0} → S1.
For this we consider the following four analytic functions

a1 : {(x1, x2) : x1 > 0} → (−π

2
,
π

2
), a1(x) = arctan

x2
x1

a2 : {(x1, x2) : x1 < 0} → (
π

2
,
3π

2
), a2(x) = π + arctan

x2
x1

a3 : {(x1, x2) : x2 > 0} → (0, π), a3(x) = arccot
x1
x2

a4 : {(x1, x2) : x2 < 0} → (π, 2π), a4(x) = π + arccot
x1
x2

.

Note that the union of their domains of definition is R2\{0} and that, for any i ∈
{1, 2, 3, 4}, ai (x) ∈ A(x) for all x for which ai (x) is defined. This proves that A :
R
2\{0} → S1 is analytic. In addition, one can easily see that

∇A(x) = 1

|x |2 x⊥ for all x ∈ R
2\{0},

where |x |2 = x21 + x22 and x⊥ = (−x2, x1).
Another remark is that the function arctan(x2/x1) is defined almost everywhere in

R
2\{(0, 0)} and is the expression of both a1(x) and a2(x) − π . This explains why the

polar angle is many times used as having the expression θ = arctan(x2/x1).
• The second example presents the quasi homogeneous polar coordinates of Lya-

punov. We consider

X0(x1, x2) = (−x32 , x1), P = R
2 \ {0}, H(x1, x2) = 4

√
2x21 + x42 , I = (0,∞)

and


 : (0,∞) × S1 → R
2\{0}, 
(h, θ) = (h2 Cs θ, h Sn θ),
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where (Cs t,Sn t) = ϕ0(t, (1/
√
2, 0)) for all t ∈ R and are periodic functions with

the main period T > 0. The expression of T is given, for example, in [4]. This time S1

denotes R/TZ. Using the classical properties 2Cs2 θ +Sn4 θ = 1, (Cs θ)′ = −Sn3 θ ,
(Snθ)′ = Csθ (which follows immediately by the definition of Cs and Sn), one can
easily prove using Proposition 2 that (h, θ) are polar-like coordinates for ẋ = X0(x).

• For another example we consider
X0(x1, x2) = (−x2(1+x1), x1(1+x1)), P = {(x1, x2) ∈ R

2\{0} : x21+x22 < 1},
H(x1, x2) =

√
x21 + x22 , I = (0, 1) and


 : (0, 1) × S1 → P, 
(h, θ) = (h cos θ, h sin θ).

Again Proposition 2 assures that (h, θ) are polar-like coordinates for ẋ = X0(x).
• An example from [1] considers
X0(x1, x2) = (−x2+x21 , x1+x1x2), P = {(x1, x2) ∈ R

2\{0} : x21−2x2−1 < 0},

H(x1, x2) =
√
x21 + x22
x2 + 1

, I = (0, 1) and


 : (0, 1) × S1 → P, 
(h, θ) =
(

h cos θ

1 − h sin θ
,

h sin θ

1 − h sin θ

)
.

Again, using Proposition 2 one can prove that (h, θ) are polar-like coordinates in the
sense of Definition 1 for the system ẋ = X0(x). Note that


(h, θ) = h

1 − h sin θ
(cos θ, sin θ) ,

thus, θ is also the polar angle coordinate (like in the previous examples, except the
Lyapunov coordinates).

The next result characterizes the vector fields X0 for which the polar angle map
can be used to define polar-like coordinates.

Proposition 4 Let H : P → R be an analytic first integral of system (3) without
critical points. Assume that 0 belongs to the bounded component of R2\P .

If x⊥ · X0(x) �= 0 for all x ∈ P then (h, θ) = (H(x),A(x)) (whereA is the polar
angle map) are polar-like coordinates of (3).

The reversed implication is also valid.

Proof Since H has no critical points in P (which is an open and connected subset of
the plane), we have that I = H(P) is an open interval of real numbers and that two
distinct closed orbits have two distinct energy levels. Also, the fact that the origin of
the plane belongs to the bounded component ofR2\P , implies that any closed orbit in
P encircles the origin, which, in turn, gives that the polar angle map takes any value in
S1 along each closed orbit. All these assure that the map � = (H,A) : P → I × S1

is surjective. Moreover, � is one-to-one if and only if for each h ∈ I the map A|�h

is one-to-one. Here �h is the closed orbit of energy level h. We claim that A|�h is
one-to-one for each h ∈ I . Then � is invertible.
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On theother hand, since∇A(x) = 1
|x |2 x

⊥ wehave that the condition x⊥·X0(x) �= 0
implies that∇A·X0 �= 0, which, in turn, since∇H ·X0 = 0, implies that∇H∧∇A �=
0. Note that the Jacobian determinant J� = ∇H ∧ ∇A. Hence, � is a local analytic
diffeomorphism. Remind that we proved before that � = (H,A) is invertible and
that, by hypothesis, H is a first integral of X0. This is sufficient to conclude that �

satisfies all the conditions in Definition 1.
Nowwe prove the claim. For fixed h ∈ I denote by ϕ(t) the solution corresponding

to the orbit �h . Let ϑ : R → R be an analytic function such that ϑ(t) ∈ A(ϕ(t)).
Then ϑ̇ = (∇A · X0) ◦ϕ = ( 1

|x |2 x
⊥ · X0) ◦ϕ �= 0. Then the function ϑ is one-to-one.

This implies that A|�h is one-to-one. The claim is proved.
We skip the proof of the reversed implication since it is easy. ��
The next result is a reciprocal of Lemma 3 (iii), thus another characterization of

the notion of polar-like coordinates is obtained. It also shows that given a transversal
section � = {γ (h) : h ∈ I }, there exists polar-like variables such that 
(h, 0) =
γ (h).

Proposition 5 Let � = {γ (h) : h ∈ I } be an analytic transversal section to the flow
of (3) in P . Denote T (h) > 0 the main period of ϕ0(·, γ (h)).

Let τ : I ×R → R τh(t) = τ(h, t), be a real analytic function with the properties
τh(0) = 0, τh : R → R is a diffeomorphism, τh(t + T (h)) = τh(t) + 2π , for each
(h, t) ∈ I × R. Consider the map


 : I × R → P, 
(h, θ) = ϕ0(τ
−1
h (θ), γ (h)), for all (h, θ) ∈ I × R.

Then (h, θ) = 
−1(x) are polar-like coordinates of (3).

Proof First we remind that, given the analytic transversal section to the flow of (3)
in P , � = {γ (h) : h ∈ I }, there exists a unique analytic first integral H : P → R

without critical points such that H(γ (h)) = h for all h ∈ I .
Nownote that
 is 2π -periodic in the secondvariable. Indeed, for any (h, θ) ∈ I×R

we have


(h, θ + 2π) = ϕ0(τ
−1
h (θ + 2π), γ (h)) = ϕ0(τ

−1
h (θ) + T (h), γ (h)) = 
(h, θ).

Hence
 : I×S1 → P is well-defined and using its expression, it is not difficult to see
that 
 is an invertible analytic map and that H(
(h, θ)) = h for all (h, θ) ∈ I × S1.
Using Proposition 2 it remained to prove that the Jacobian determinant J
(h, θ) �= 0
for all (h, θ) ∈ I × S1.

We have that

J
 = ∂


∂h
∧ ∂


∂θ
,

∂


∂h
= X0(
(h, θ))

d

dh
(τ−1

h (θ)) + Dqϕ0(τ
−1
h (θ), γ (h))γ ′(h),

∂


∂θ
= X0(
(h, θ))

d

dθ
(τ−1

h (θ)).
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We claim that for any (h, t) ∈ I ×R, the vectors y1(t) and y2(t) are linearly indepen-
dent, where

y1(t) = Dqϕ0(t, γ (h))γ ′(h) and y2(t) = X0(ϕ0(t, γ (h))).

It is not difficult to see that this implies that the vectors
∂


∂h
and

∂


∂θ
are linearly

independent, thus J
(h, θ) �= 0, for all (h, θ) ∈ I × R.

In order to prove the claim note that the functions y1(t) and y2(t) satisfy the linear
variational system

ẏ = DX0(ϕ0(t, γ (h)))y.

Then the linear independence of y1(0) and y2(0) implies the linear independence
of y1(t) and y2(t) for all t ∈ R. Using that ϕ0(0, q) = q and the Jacobian matrix
Dqϕ0(0, q) is the identity, we get

y1(0) = γ ′(h) and y2(0) = X0(γ (h)).

These vectors are linearly independent due to the fact that� is transversal to X0. Thus
the claim is proved and also the proposition. ��

Remark that polar-like coordinates for Hamiltonian systemswere defined in [7] like
in the above proposition, with H being the Hamiltonian and the angle as function of
time given by τh(t) = 2π

T (h)
t . Of course, if one prefers to work with the angle variable

as function of time, this is the most simple formula to consider.

2.2 Poincaré maps and the averaging method

Theorem 6 Let� = (H, A) : P → I × S1 be such that (h, θ) = �(x) are polar-like
coordinates of system (3) in P . Let 
 = �−1. Then

(i) this change of variables transforms system (2) into an analytic system of the form

ḣ = εF(h, θ, ε), θ̇ = �(h, θ) + εR(h, θ, ε), h ∈ I, θ ∈ S1, (7)

where � : I × S1 → R has definite sign, and for which {θ = 0} is a transversal
section;

(ii) the orbits of (2) are

�h = {
(h̃(θ, h, ε), θ) : θ ∈ S1}, h ∈ J,

where h̃(·, h, ε) satisfies h̃(0, h, ε) = h and is a solution of the scalar equation

dh

dθ
= ε

F(h, θ, ε)

�(h, θ) + εR(h, θ, ε)
, |ε| � 1, h ∈ J, θ ∈ S1; (8)
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where J is an open and bounded interval such that its closure J ⊂ I ;
(iii) the Poincaré 2π -translation map of (8) is the Poincaré first return map of (2)

associated to the transversal section � = {
(h, 0) : h ∈ J }.

Proof (i) follows directly from Definition 1 and Lemma 3.
(ii) Denote by (χ(t, h, ε), τ (t, h, ε)) the solution of system (7) satisfying h(0) = h,

θ(0) = 0. Since {θ = 0} is a transversal section to (7), the orbits of (2) are

�h = {
(χ(t, h, ε), τ (t, h, ε)) : t ∈ R}, h ∈ I. (9)

The fact that � : J × S1 → R has definite sign and is bounded assures that, for
|ε| � 1, the right-hand side of the second equation in (7) also has definite sign and
is bounded on J × S1. Then the function τ(·, h, ε) : R → R is a diffeomorphism.
Moreover, this assures that Eq. (8) is well-defined in J × R. Then

h̃(θ, h, ε) = χ(t, h, ε) when θ = τ(t, h, ε).

The conclusion follows after we replace this relation in (9).
(iii) We use the description of the orbits of (2) as at (ii). When starting from the

point 
(h, 0) ∈ �, the first return of �h to � is at the point 
(h̃(2π, h, ε), 2π) ∈ �.
Then, by definition, the Poincaré return map to � of (2) is

P(h, ε) = h̃(2π, h, ε)

and the proof is finished. ��

When (h, θ) = (H(x),A(x)) (where A is the polar angle coordinate, the (partial)
proof of this result has been given in [1, Theorems 5.1 and 5.2], while when the angle
as function of time is θ = 2π t/T (h) (where T (h) is the main period of the closed
orbit of level h), the proof was given in [7, Lemmas 2.2 and 2.3].

2.3 Melnikov functions

In the Introduction we defined the Poincaré return map Pγ (h, ε) of (2) associated to
an analytic transversal section� = {γ (h) : h ∈ I }. Given some analytic first integral
of (3), H : P → R, without critical points we say that � is parameterized with the
values of H when H(γ (h)) = h for all h ∈ I . Note that, when considering another
parametrization of the same transversal section, γ̃ : J → �, then � is parameterized
with the values of the first integral H̃ = γ̃ −1 ◦ γ ◦ H , which is also analytic and
without critical points in P .

In the next result we will consider two distinct parameterizations for �, γ : I →
� and γ̃ : J → �, and a geometrically distinct to � transversal section S, both
parameterized with the values of the same first integral H .
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Theorem 7 Let Pγ and P γ̃ be the Poincaré return maps of (2) associated to γ : I →
� and, respectively, γ̃ : J → �. Let k, k̃ ≥ 1 be such that

Pγ (h, ε) = h + εkMγ

k (h) + O(εk+1) and P γ̃ (s, ε) = s + εk̃ M γ̃

k̃
(s) + O(εk̃+1) .

Then the corresponding Melnikov functions satisfy

k̃ = k and M γ̃

k (s)γ̃ ′(s) = Mγ

k (h)γ ′(h) for s = (γ̃ −1 ◦ γ )(h).

We consider now two analytic transversal sections � and S both parameterized with
the values of the same first integral H of (3). Denote the corresponding Poincaré maps
by P(h, ε) and R(h, ε) and let k, l ≥ 1 be such that

P(h, ε) = h + εkMk(h) + O(εk+1) and R(h, ε) = h + εlμl(h, ε) + O(εl+1) .

Then the corresponding Melnikov functions satisfy

k = l and Mk(h) = μk(h).

Proof Let h ∈ I and s = (γ̃ −1 ◦ γ )(h). By the definitions of Poincaré map and
transversal section, we have

γ (Pγ (h, ε)) = γ̃ (P γ̃ (s, ε)).

Hence

γ (h + εkMγ

k (h) + O(εk+1)) = γ̃ (s + εk̃ M γ̃

k̃
(s) + O(εk̃+1)).

After taking the derivative with respect to ε in the above relation we get

γ ′(h + εkMγ

k (h) + O(εk+1))(kεk−1Mγ

k (h) + O(εk+1))

= γ̃ ′(s + εk̃ M γ̃

k̃
(s) + O(εk+1))(k̃εk̃−1M γ̃

k̃
(s) + O(εk+1)).

Assuming that k̃ < k, we obtain that theMelnikov function M γ̃

k̃
is identically 0, which

contradicts the definition of k̃. Because of the symmetry we get k̃ = k. The relation
from the conclusion is obtained after dividing by kεk−1 and then taking ε = 0.

We consider now the case of two transversal sections. Denote by πε(h) = π(ε, h)

the transition map between � and S along the flow of (2). Note that π0(h) = h, hence
π ′
0(h) = 1. Then

πε ◦ Pε = Rε ◦ πε,

which further gives

π(h + εkMk(h) + O(εk+1), ε) = π(h, ε) + εlμl(π(h, ε)) + O(εl+1) . (10)
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It can be proved that

lim
ε→0

π(h + εkMk(h) + O(εk+1), ε) − π(h, ε)

εl
= 0 when l < k.

Assuming that l < k, after dividing by εl relation (10) and taking the limit as ε → 0,
we would obtain that the Melnikov function μl(π0(h)) = μl(h) is identically 0. This
contradicts the definition of l. Because of the symmetry it is not necessary to consider
the case l > k. Hence l = k. It can be proved that

lim
ε→0

π(h + εkMk(h) + O(εk+1), ε) − π(h, ε)

εk
= Mk(h).

Now, the relation between the Melnikov functions is obtained after dividing by εk

relation (10) and taking the limit as ε → 0. ��

3 Conclusions

We conclude that, from theoretical point of view, the averaging method for finding
limit cycles of planar systems, applied using any possible polar-like coordinates, is
nothing else than the study of some Poincaré return map. If, for a given system studied
with both methods, Mk denotes the Melnikov function and fk̃ denotes the averaging
function, then k = k̃ and either Mk(h) = fk(h) (when the first integral H used to
parameterize the transversal section associated toMk is also the first integral associated
to the polar-like coordinates), or Mk(h)γ ′(h) = fk(s)γ̃ ′(s) for s = (γ̃ −1 ◦ γ )(h) and
γ̃ (s) = 
(s, 0).

From practical point of view, the computations necessary to find a representation
(or even the expression in some concrete examples) of fk and, respectively, of Mk ,
are totally different. We do not discuss here the complexity of these computations in
neither of these two methods. Hence, we do not conclude on the efficiency of these
methods. The application of one method or another (or the choosing of the polar-like
variables when applying the averaging method) is a matter of personal taste and skills,
as it is mentioned also by Li in [3, Section 3.4]. Just as a simple example, remind
that the first order Melnikov function for a near-Hamiltonian system with the period
annulus P = {�h : h ∈ I }, where h is the level of the Hamiltonian H , has the
representation

M1(h) =
∮

�h

Q(x)dx1 − P(x)dx2,

where (P, Q) are the components of X0(x) from (3), and (x1, x2) are the components
of x . It can be proved that, performing the polar-like change of variables in the above
contour integral one arrives to the bifurcation/averaging function f1,

f1(h) =
∫ 2π

0

F(h, θ, 0)

�(h, θ)
dθ ,



560 A. Buică

where F and � are as in Eq. (8). It is known that the computation of higher order
Melnikov functions and, respectively, bifurcation functions, is more involved [5,8].
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