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Abstract In the article Llibre and Vulpe (Rocky Mt J Math 38:1301–1373, 2006)
the family of cubic polynomial differential systems possessing invariant straight lines
of total multiplicity 9 was considered and 23 such classes of systems were detected.
We recall that 9 invariant straight lines taking into account their multiplicities is the
maximum number of straight lines that a cubic polynomial differential systems can
have if this number is finite. Here we complete the classification given in Llibre and
Vulpe (Rocky Mt J Math 38:1301–1373, 2006) by adding a new class of such cubic
systems and for each one of these 24 such classes we perform the corresponding first
integral as well as its phase portrait. Moreover we present necessary and sufficient
affine invariant conditions for the realization of each one of the detected classes of
cubic systems with maximum number of invariant straight lines when this number is
finite.
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1 Introduction and Preliminaries

Polynomial differential systems on the plane are systems of the form

ẋ = P(x, y), ẏ = Q(x, y), (1)

where P, Q ∈ R[x, y], i.e., P and Q are the polynomials over R. We can associate to
systems (1) the vector field

X = P(x, y)
∂

∂x
+ Q(x, y)

∂

∂y
. (2)

We call cubic system a cubic polynomial differential system (1) with degree m =
max{deg P, deg Q} = 3.

There are several open problems on polynomial differential systems, especially on
the class of all cubic systems (1) (we denote in the following by CS the whole class of
such systems). In this paper we are concerned with the algebraic integrability in the
sense of Darboux and the classification of all phase portraits of CS. These problems
are very hard even in the simplest case of quadratic differential systems.

A straight line f (x, y) = ux + vy + w = 0, (u, v) �= (0, 0) satisfies

X( f ) = uP(x, y) + vQ(x, y) = (ux + vy + w)K (x, y)

for some polynomial K (x, y) if and only if it is invariant under the flow of X. If some
of the coefficients u, v, w of an invariant straight line belongs to C\R, then we say
that the straight line is complex; otherwise the straight line is real. Note that, since
systems (1) are real, if a system has a complex invariant straight line ux+vy+w = 0,

then it also has its conjugate complex invariant straight line ūx + v̄y + w̄ = 0.

To a line f (x, y) = ux + vy + w = 0, (u, v) �= (0, 0) we associate its projective
completion F(X,Y, Z) = uX + vY + wZ = 0 under the embedding C

2 ↪→ P2(C),
(x, y) �→ [x : y : 1]. The line Z = 0 in P2(C) is called the line at infinity of the
affine plane C2. It follows from the work of Darboux (see, for instance, [12]) that each
system of differential equations of the form (1) over C yields a differential form on the
complex projective plane P2(C) which is the compactification of the differential form
Qdx − Pdy = 0 in C

2. The line Z = 0 is an invariant straight line of this complex
form.

Definition 1 [25] We say that an invariant affine straight line f (x, y) = ux+vy+w =
0 (respectively the line at infinity Z = 0) for a cubic vector field X has multiplicity
m if there exists a sequence of real cubic vector fields Xk converging to X, such
that each Xk has m (respectively m − 1) distinct invariant affine straight lines f j

i =
u j
i x + v

j
i y + w

j
i = 0, (u j

i , v
j
i ) �= (0, 0), (u j

i , v
j
i , w

j
i ) ∈ C

3, converging to f = 0
as k → ∞ (with the topology of the coefficients), and this does not occur for m + 1
(respectively m).

We remark that the above definition is a particular case of the definition of geometric
multiplicity given in paper [11], and namely the notion of “strong geometric multi-
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plicity” with the restriction, that the corresponding perturbations belong to the same
class of cubic systems.

The set CS of cubic differential systems depends on 20 parameters and for this
reason people began by studying particular subclasses of CS. Here we deals with
CS possessing invariant straight lines. We mention some papers devoted to polyno-
mial differential systems possessing invariant straight lines. For quadratic systems see
[13,21,22,25–29]; for cubic systems see [4–9,15,16,18,19,23,32,32,33]; for quartic
systems see [31,34].

The existence of sufficiently many invariant straight lines of planar polynomial
systems could be used for integrability of such systems. During the last 15 years
several articles were published on this theme. Investigations concerning polynomial
differential systems possessing invariant straight lines were done by Artes, Dai Guo
Ren, Gassul, Kooij, Llibre, Popa, Schlomiuk, Sibirski, Sokulski, Vulpe, Zhang Xi
Kang as well as Dolov and Kruglov.

According to [1] the maximum number of invariant straight lines taking into account
their multiplicities for a polynomial differential system of degree m is 3m when we
also consider the infinite invariant straight line, and when this number is finite. This
bound is always reached if we consider the real and the complex invariant straight
lines, see [11].

So the maximum number of the invariant straight lines (including the line at infinity
Z = 0) for cubic systems with non-degenerate infinity is 9. A classification of all cubic
systems possessing the maximum number of invariant straight lines taking into account
their multiplicities has been made in [16]. The authors used the notion of configuration
of invariant lines for cubic systems (as introduced in [25], but without indicating the
multiplicities of real singularities) and detected 23 such configurations. Moreover
using invariant polynomials with respect to the action of the group A f f (2,R) of
affine transformations and time rescaling in that paper, the necessary and sufficient
conditions for the realization of each one of 23 configurations were detected. A new
class of cubic systems omitted in [16] was constructed in [4].

Definition 2 [29] Consider a planar cubic system (1). We call configuration of invari-
ant straight lines of this system, the set of (complex) invariant straight lines (which
may have real coefficients) of the system, each endowed with its own multiplicity
and together with all the real singular points of this system located on these invariant
straight lines, each one endowed with its own multiplicity.

It was observed that the configurations of invariant straight lines which were
detected for various families of systems (1) using Poincaré compactification (see for
details [10]), could serve as a base to complete the whole phase portrait of the system
in the Poincaré disc, i.e. to give the full topological classification of such systems. For
example, in papers [26,28] for quadratic systems with invariant straight lines grater
than or equal to 4, it was proved that the existence of 57 distinct configurations of
invariant straight lines leads to the existence of 135 topologically distinct phase por-
traits. In [23,24,32,33] for cubic systems with invariant straight lines of total parallel
multiplicity six or seven (see definition of parallel multiplicity in the quoted papers),
taking into consideration constructed configurations of invariant straight lines it was
proved the existence of 113 topologically distinct phase portraits.
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In this paper we approach the earlier mentioned problems for a specific class of cubic
systems, i.e.CS possessing invariant straight lines of total multiplicity 9, including the
line at infinity and considering their multiplicities (we denote this family by CSL9).

The goal of this article is to present a full study of this class by:

• improving the classification theorem from [16] of systems belonging to CSL9 (we
construct the necessary and sufficient conditions for the realization of the detected
class of systems);

• constructing the integrating factors and the first integrals (rational) for systems
belonging to CSL9 via the method of Darboux;

• determining all topologically distinct phase portraits of the systems in this class
together with the invariant criteria for their realization (we have 18 such phase
portraits).

Let C[x, y] denote the ring of polynomials in two variables x and y with complex
coefficients. The method of integration of Darboux uses multiple-valued complex
functions of the form:

F = eG(x,y) f1(x, y)
λ1 . . . fs(x, y)

λs , G = G1/G2, Gi ∈ C[x, y], (3)

and fi irreducible polynomials over C[x, y]. It is clear that F(x, y) is well defined at
least in the points (x, y) ∈ C

2\({G2(x, y) = 0} ∪ { f1(x, y) = 0} ∪ . . . ∪ { fs(x, y) =
0}).

Suppose that (1) has a solution curve which is not a singular point, contained in
an algebraic curve f (x, y) = 0. It is clear that the derivative of f with respect to

t must vanish on the algebraic curve f (x, y) = 0, so
d f

dt
| f =0 = (d f

∂x
P(x, y) +

d f

∂y
Q(x, y)

)| f=0 = 0. By the Hilbert’s Nullstellensatz theorem this is equivalent to

the existence of a polynomial K = K (x, y) such that X( f ) = K f .
In 1878 Darboux introduced the notion of the invariant algebraic curve for differen-

tial equations on the complex projective plane. This notion can be adapted for systems
(1). According to [12] the next definition follows.

Definition 3 An algebraic curve f (x, y) = 0 in C
2 with f ∈ C[x, y] is an invari-

ant algebraic curve (an algebraic partial integral) of a polynomial system (1) if
X( f ) = K f for some polynomial K (x, y) ∈ C[x, y] called the cofactor of the
invariant algebraic curve f (x, y) = 0.

It could be observed that for the points of the curve f (x, y) = 0 the right hand side
of (1) is zero. This means that the gradient (∂ f/∂x, ∂ f/∂y) is orthogonal to the vector
field X = (P, Q) at these points. Therefore the vector field X is tangent to the curve
f = 0. This explains why the algebraic curve f = 0 is invariant under the flow of the
vector field X.

The next proposition shows that we can work with irreducible invariant algebraic
curves.

Proposition 1 We suppose that f ∈ C[x, y] and let f = f n1
1 · · · f nrr be its fac-

torization in irreducible factors over C[x, y]. Then, for a polynomial system (1),



First Integrals and Phase Portraits of Planar Polynomial. . . 331

f = 0 is an invariant algebraic curve with the cofactor K f if and only if fi = 0
is an invariant algebrain curve for each i = 1, . . . , r with cofactor K fi . Moreover
K f = n1K f1 + · · · + nr K fr .

Darboux showed that if a system (1) possesses a sufficient number of such invariant
algebraic solutions fi (x, y) = 0, fi ∈ C[x, y], i = 1, 2, . . . , s, then the system has
a first integral of the form (3).

According to [12], we say that a system (1) has a Darboux first integral (respectively
Darboux integrating factor) if it admits a first integral (respectively integrating factor)
of the form

∏s
i=1 fi (x, y)λi , where fi ∈ C[x, y], deg fi ≥ 1, i = 1, 2, . . . , s, fi

irreducible over C[x, y] and λi ∈ C.
Let C(x, y) be the set of all rational functions with coefficients in C. According

to [10] the notion of Darboux first integral was extended as follows. From now on a
Darboux first integral is a function of the form

eG(x,y)
s∏

i=1

fi (x, y)
λi , (4)

where G(x, y) ∈ C(x, y) and fi ∈ C[x, y], deg fi ≥ 1, i = 1, 2, . . . , s, fi irreducible
over C[x, y] and λi ∈ C. If a system (1) has an integrating factor (or first integral) of
the form (4) then ∀i ∈ {1, . . . , s}, fi = 0 is an algebraic invariant curve of (1).

In [12] Darboux proved the following remarkable theorem of integrability using
invariant algebraic solutions of systems (1):

Theorem 2 Consider a differential system (1)with P, Q ∈ C[x, y]. Assume that m =
max(deg P, deg Q) and that this system admits s algebraic solutions fi (x, y) = 0,
i = 1, 2, . . . , s (deg fi ≥ 1). Then we have:

I. If s = m(m + 1)/2 then there exists λ = (λ1, . . . , λs) ∈ C
s\{0} such that

R = ∏s
i=1 fi (x, y)λi is an integrating factor of (1).

II. If s ≥ m(m + 1)/2 + 1 then there exists λ = (λ1, . . . , λs) ∈ C
s\{0} such that

F = ∏s
i=1 fi (x, y)λi is a first integral of (1).

The Darboux theory of integrability stated in Theorem 2 has been improved using
the notion of exponential factor, see for details [10].

Let h, g ∈ C[x, y] and assume that h and g are relatively prime in the ring C[x, y].
Then the function exp(g/h) is called an exponential factor of the polynomial system
(1) if for some polynomial K ∈ C[x, y] of degree at most n − 1 it satisfies equation

X

(
exp

(g
h

))
= K exp

(g
h

)
.

As before we say that K is the cofactor of the exponential factor exp(g/h).

Theorem 3 Suppose that a polynomial system (1) of degree m admits p invariant
algebraic curves fi = 0 with cofactors Ki for i = 1, . . . , p, q exponential factors
exp(g j/h j ) with cofactors L j for j = 1, . . . , q.
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(a) If there exists λi , μ j ∈ C not all zero such that
∑p

i=1 λi Ki + ∑q
j=1 μ j L j = 0,

then the (multi-valued) function

f λ1
1 . . . f

λp
p

(
exp

(
g1

h1

))μ1

. . .

(
exp

(
gq
hq

))μq

(5)

is a first integral of the system (1).
(b) If there exists λi , μ j ∈ C not all zero such that

∑p
i=1 λi Ki +∑q

j=1 μ j L j =
−div(P, Q), then function (5) is an integrating factor of system (1).

In 1979 Jouanolou proved the next theorem which improves part II of Darboux’s
Theorem.

Theorem 4 Consider a polynomial differential system (1) over C and assume that
it has s algebraic solutions fi (x, y) = 0, i = 1, 2, . . . , s (deg fi ≥ 1). Suppose
that s ≥ m(m + 1)/2 + 2. Then there exists (n1, . . . , ns) ∈ Z

s\{0} such that F =∏s
i=1 fi (x, y)ni is a first integral of (1). In this case F ∈ C(x, y), i.e. F is rational

function over C.

The following theorem from [11,17] improves the Darboux theory of integrability
and the above result of Jouanolou taking into account not only the invariant algebraic
curves (especially invariant straight lines) but also their algebraic multiplicities.

Theorem 5 [11,17] Assume that the polynomial vector field X in C2 of degree d > 0
has invariant algebraic curves.

(a) If some of these irreducible invariant algebraic curves has no defined algebraic
multiplicity, then the vector field X has a rational first integral.

(b) Suppose that all the irreducible invariant algebraic curves fi = 0 have defined
algebraic multiplicity qi for i = 1, . . . , p.

(b1) If
∑p

i=1 qi ≥ N + 1, then the vector field X has a Darboux first integral,

where N = (2+d−1
2 )

(b2) If
∑p

i=1 qi ≥ N + 2, then the vector field X has a rational first integral.

As it was mentioned earlier our work here is based on the result of the paper [16]
where the classification theorem according to the configurations of invariant straight
lines for systems in CSL9 were proved (see further below). In what follows we recall
some results of [16] which will be needed to state the mentioned theorem [16, Main
Theorem]. Consider generic cubic systems of the form:

dx

dt
= p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ P(a, x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ Q(a, x, y), (6)

with real homogeneous polynomials pi and qi (i = 0, 1, 2, 3) of degree i in x, y. We
introduce the following polynomials:
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Ci = ypi (x, y) − xqi (x, y), Dj = ∂p j

∂x
+ ∂q j

∂y
,

for i = 0, 1, 2, 3 and j = 1, 2, 3 which in fact are GL–comitants, see [30].
In order to state the classification theorem we need to construct some T -comitants

andCT -comitants which will be responsible for the existence of the maximum number
of invariant straight lines for system (6). They are constructed by using the polynomials
Ci and Di via the differential operator ( f, g)(k) called transvectant of index k (see for
instance [20]) which acts on R[a, x, y] as follows:

( f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂k f

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

Here f (x, y) and g(x, y) are polynomials in x and y of the degree r and s, respectively,
and a ∈ R

20 is the 20–tuple formed by all the coefficients of system (6).
In order to define the needed invariant polynomials it is necessary to construct the

following comitants of second degree with respect to the coefficients of the initial
system:

S1 = (C0,C1)
(1) , S8 = (C1,C2)

(2) , S15 = (C2, D2)
(1) , S22 =(D2, D3)

(1) ,

S2 = (C0,C2)
(1) , S9 = (C1, D2)

(1) , S16 = (C2,C3)
(1) , S23 = (C3,C3)

(2) ,

S3 = (C0, D2)
(1) , S10 = (C1,C3)

(1) , S17 = (C2,C3)
(2) , S24 = (C3,C3)

(4) ,

S4 = (C0,C3)
(1) , S11 = (C1,C3)

(2) , S18 = (C2,C3)
(3) , S25 = (C3, D3)

(1) ,

S5 = (C0, D3)
(1) , S12 = (C1, D3)

(1) , S19 = (C2, D3)
(1) , S26 = (C3, D3)

(2) ,

S6 = (C1,C1)
(2) , S13 = (C1, D3)

(2) , S20 = (C2, D3)
(2) , S27 = (D3, D3)

(2) .

S7 = (C1,C2)
(1) , S14 = (C2,C2)

(2) , S21 =(D2,C3)
(1) ,

We shall use here the following invariant polynomials constructed in [16] to char-
acterize the system in CSL9:

D1(a) = 6S3
24 −

[
(C3, S23)

(4)
]2

,

D2(a, x, y) = −S23,

D3(a, x, y) = (S23, S23)
(2) − 6C3(C3, S23)

(4),

D4(a) = (C3, D2)
(4),V1(a, x, y) = S23 + 2D2

3,V2(a, x, y) = S26,

V3(a, x, y) = 6S25 − 3S23 − 2D2
3 ,V4(a, x, y) = C3

[
(C3, S23)

(4) + 36 (D3, S26)
(2)

]
,

L1(a, x, y) = 9C2 (S24 + 24S27) 12D3 (S20 + 8S22) − 12 (S16, D3)
(2) − 3 (S23,C2)

(2)

−16 (S19,C3)
(2) + 12 (5S20 + 24S22,C3)

(1) ,

L2(a, x, y) = 32 (13 S19 + 33 S21, D2)
(1)

+84 (9 S11 − 2 S14, D3)
(1)

−448 (S18,C2)
(1) + 8D2 (12S22 + 35S18 − 73S20) − 56 (S17,C2)

(2)

−63 (S23,C1)
(2) + 756D3S13 − 1944D1S26 + 112 (S17, D2)

(1)

−378 (S26,C1)
(1) + 9C1 (48S27 − 35S24) ,
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L3(a, x, y) = (S23, D3)
(2)[(D2, S22)

(1) − D1S27], L4(a, x, y) = S25,

U1(a) = S24 − 4S27, U2(a, x, y) = 6(S23 − 3S25, S26)
(1) − 3S23(S24 − 8S27)

−24S2
26 + 2C3(C3, S23)

(4) + 24D3(D3, S26)
(1) + 24D2

3S27,

N1(a, x, y) = 4C2(27D1D3 − 8D2
2) + 2C2(20S15 − 4S14 + 39S12) + 18C1(3S21 − D2D3)

+54D3(3S4 − S7) − 288C3S9 + 54(S7,C3)
(1) − 567(S4,C3)

(1) + 135C0D
2
3 ,

N2(a, x, y) = 2C2D3 − 3C3D2, N3(a, x, y) = C2D3 + 3S16,

N4(a, x, y) = D2D3 + 9S21 − 2S17, N5(a, x, y) = S17 + 2S19,

N6(a, x, y) = 6C3(S12 + 6S11) − 9C1(S23 + S25) − 8(S16,C2)
(1) − C3D

2
2 ,

N7(a, x, y) = 6C3(12S11 − S12 − 6D1D3) − 21C1S23 − 24(S16,C2)
(1) + 3C1S25

+4D2(S16 + 2D2C3 − C2D3), N8(a, x, y) = D2
2 − 4D1D3,

N9(a, x, y) = C2
2 − 3C1C3, N10(a, x, y) = 2C2D1 + 3S4, N11(a) = S13,

N12(a, x, y) = −32D2
3 S2 − 108D1D3S10 + 108C3D1S11 − 18C1D3S11 − 27S10S11

+4C0D3(9D2D3 + 4S17) + 108S4S21,

N13(a, x, y) = −S2
14 − 2D2

2(3S14 − 8S15) − 12D3(S14,C1)
(1)

+D2(−48D3S9 + 16(S17,C1)
(1)),

N14(a, x, y) = 36D2D3(S8 − S9) + D1(108D2
2 D3 − 54D3(S14 − 8S15))

+2S14(S14 − 22S15) − 8D2
2(3S14 + S15) − 9D3(S14,C1)

(1) − 16D4
2 .

We apply a translation x = x ′ + x0, y = y′ + y0 to the polynomials
P(a, x, y) and Q(a, x, y) from the right-hand part of (6). Therefore we obtain
P̃(ã(a, x0, y0), x ′, y′) = P(a, x ′+x0, y′+y0), Q̃(ã(a, x0, y0), x ′, y′) = Q(a, x ′+
x0, y′ + y0). We construct the following polynomials:

�i (a, x0, y0) ≡ Resx ′
(
Ci

(
ã(a, x0, y0), x

′, y′),C0
(
ã(a, x0, y0), x

′, y′))/(y′)i+1,

G̃i (a, x, y) = �i (a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2, 3)

where Resx ′ is the resultant of the above polynomials with respect the variable x ′.

Notation 6 AssumeGi (a, X,Y, Z) (i = 1, 2, 3) be the homogenization of G̃i (a, x, y),
i.e.

G1(a, X,Y, Z) = Z8G̃1(a, X/Z ,Y/Z),

G2(a, X,Y, Z) = Z10G̃2(a, X/Z ,Y/Z),

G3(a, X,Y, Z) = Z12G̃3(a, X/Z ,Y/Z),

and H(a, X,Y, Z) = gcd
(
G1(a, X,Y, Z),G2(a, X,Y, Z),G3(a, X,Y, Z)

)
∈ R[a,

X,Y, Z ].
The geometrical meaning of the above defined affine comitants is given by the follow-
ing two lemmas (see [16]):

Lemma 7 The straight line L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) �=
(0, 0) is an invariant straight line for a vector field X if and only if L(x, y) is a
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common factor of the polynomials G̃1(a, x, y), G̃2(a, x, y) and G̃3(a, x, y) overC, i.e.
G̃i (a, x, y) = (ux + vy + w)W̃i (x, y) (i = 1, 2, 3), where W̃i (x, y) ∈ C[x, y].
Lemma 8 Consider a cubic system (6) and let a ∈ R

20 be its 20-tuple of coefficients.

(a) If L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) �= (0, 0) is an invariant
straight line of multiplicity k for this system then [L(x, y)]k | gcd(G̃1, G̃2, G̃3) in
C[x, y], i.e. there exist Wi (a, x, y) ∈ C[x, y] (i = 1, 2, 3) such that

G̃i (a, x, y) = (ux + vy + w)kWi (a, x, y), i = 1, 2, 3. (7)

(b) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(G1,G2,G3), i.e.
we have Zk−1 | H(a, X,Y, Z).

We underline that by P�(X,Y, Z), Q�(X,Y, Z) we denote the homogeneous poly-
nomials associated to the polynomials P(a, x, y), Q(a, x, y), i.e.

P�(X,Y, Z) = Zn P(X/Z ,Y/Z), Q�(X,Y, Z) = ZnQ(X/Z ,Y/Z) (8)

and C�(X,Y, Z) = Y P�(X,Y, Z) − XQ�(X,Y, Z).

In order to determine the degree of the common factor of the polynomials G̃i (a, x, y)
for i = 1, 2, 3, we shall use the notion of the kth subresultant of two polynomials with
respect to a given indeterminate (see for instance, [20]).

We say that the k–th subresultant with respect to variable z of the two polynomials
f (z) and g(z) is the (m + n − 2k) × (m + n − 2k) determinant

R(k)
z ( f, g) =

∣∣∣
∣∣∣∣∣∣
∣

a0 a1 a2 . . . . . . am+n−2k−1
0 a0 a1 . . . . . . am+n−2k−2
. . . . . . . . . . . . . . . . . . . . . . . .

0 b0 b1 . . . . . . bm+n−2k−2
b0 b1 b2 . . . . . . bm+n−2k−1

∣∣∣
∣∣∣∣∣∣
∣

⎫
⎪⎪⎬

⎪⎪⎭
(m − k) − t imes

.

⎫
⎪⎪⎬

⎪⎪⎭
(n − k) − t imes

(9)

in which there are m − k rows of a’s and n − k rows of b’s, and ai = 0 for i > n, and
b j = 0 for j > m.

For k = 0 we obtain the standard resultant of two polynomials. In other words we
can say that the k–th subresultant with respect to the variable z of the two polynomials
f (z) and g(z) can be obtained by deleting the first and the last k rows and columns
from its resultant written in the form (9) when k = 0.

The geometrical meaning of the subresultants is based on the following lemma.

Lemma 9 (see [20]) Polynomials f (z) and g(z) have precisely k roots in common
(considering their multiplicities) if and only if the following conditions hold:

R(0)
z ( f, g) = R(1)

z ( f, g) = R(2)
z ( f, g) = · · · = R(k−1)

z ( f, g) = 0 �= R(k)
z ( f, g).



336 C. Bujac et al.

For the polynomials in more than one variables it is easy to deduce from Lemma 9
the following result.

Lemma 10 Two polynomials f̃ (x1, x2, . . . , xn) and g̃(x1, x2, . . . , xn) have a com-
mon factor of degree k with respect to the variable x j if and only if the following
conditions are satisfied:

R(0)
x j ( f̃ , g̃) = R(1)

x j ( f̃ , g̃) = R(2)
x j ( f̃ , g̃) = · · · = R(k−1)

x j ( f̃ , g̃) = 0 �= R(k)
x j ( f̃ , g̃),

where R(i)
x j ( f̃ , g̃) = 0 in R[x1, . . . x j−1, x j+1, . . . , xn].

Next we consider the differential operator L = x · L2 − y · L1 constructed in [3]
and acting on R[a, x, y], where

L1 = 3a00
∂

∂a10
+ 2a10

∂

∂a20
+ a01

∂

∂a11
+ 1

3
a02

∂

∂a12
+ 2

3
a11

∂

∂a21
+ a20

∂

∂a30

+3b00
∂

∂b10
+ 2b10

∂

∂b20
+ b01

∂

∂b11
+ 1

3
b02

∂

∂b12
+ 2

3
b11

∂

∂b21
+ b20

∂

∂b30
,

L2 = 3a00
∂

∂a01
+ 2a01

∂

∂a02
+ a10

∂

∂a11
+ 1

3
a20

∂

∂a21
+ 2

3
a11

∂

∂a12
+ a02

∂

∂a03

+3b00
∂

∂b01
+ 2b01

∂

∂b02
+ b10

∂

∂b11
+ 1

3
b20

∂

∂b21
+ 2

3
b11

∂

∂b12
+ b02

∂

∂b03
.

Using this operator and the affine invariantμ0 = Resultantx
(
p3(a, x, y), q3(a, x, y)

)
/

y9 we construct the following polynomials: μi (a, x, y) = 1

i !L
(i)(μ0), i = 1, . . . , 9,

where L(i)(μ0) = L(L(i−1)(μ0)) and L(0)(μ0) = μ0.
The geometrical meaning of these polynomial is revealed in the next lemma.

Lemma 11 (see [2,3]) Assume that a cubic system (S) with coefficients ã belongs to
the family (6). Then:

(a) The total multiplicity of all finite singularities of this system equals 9 − k if
and only if for every i ∈ {0, 1, . . . , k − 1} we have μi (ã, x, y) = 0 in the
ring R[x, y] and μk(ã, x, y) �= 0. In this case the factorization μk(ã, x, y) =∏k

i=1(ui x − vi y) �= 0 over C indicates the coordinates [vi :ui :0] of those finite
singularities of the system (S)which“have gone” to infinity.Moreover the number
of distinct factors in this factorization is less than or equal to four (the maximum
number of infinite singularities of a cubic system) and the multiplicity of each
one of the factors ui x − vi y gives us the number of the finite singularities of the
system (S) which have collapsed with the infinite singular point [vi :ui :0].

(b) The system (S) is degenerate (i.e. gcd(P, Q) �= const) if and only ifμi (ã, x, y) =
0 in R[x, y] for every i = 0, 1, . . . , 9.

Let L(x, y) = Ux+V y+W = 0 be an invariant straight line of cubic systems (S).
Then, according to the definition of an invariant line, we haveU P(x, y)+V Q(x, y) =
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(Ux + V y + W )(Ax2 + 2Bxy + Cy2 + Dx + Ey + F), and this identity provides
the following 10 relations:

Eq1 = (a30 − A)U + b30V = 0,

Eq2 = (3a21 − 2B)U + (3b21 − A)V = 0,

Eq3 = (3a12 − C)U + (3b12 − 2B)V = 0, Eq4 = a03U + (b03 − C)V = 0,

Eq5 = (a20 − D)U + b20V − AW = 0,

Eq6 = (2a11 − E)U + (2b11 − D)V − 2BW = 0,

Eq7 = a02U + (b02 − E)V − CW = 0, Eq8 = (a10 − F)U + b10V − DW = 0,

Eq9 = a01U + (b01 − F)V − EW = 0, Eq10 = a00U + b00V − FW = 0. (10)

2 The Classification Theorem in Terms of Configurations of Invariant
Straight Lines for the Family of Systems CSL9

Taking into account [4,16] we prove the next result.

Theorem 12 Any cubic system having invariant straight lines of total multiplicity 9
including the line at infinity and considering their multiplicities via an affine trans-
formation and time rescaling can be written as one of the following 24 systems. In the
figure associated to each system is presented the configuration of its invariant straight
lines in the Poincaré disc (see Fig.1). Moreover, every system has associated a set of
affine invariant conditions which characterize it.

• D1 > 0, D2 > 0, D3 > 0, V1 = V2 = L1 = L2 = N1 = 0:
1. L3 < 0 ⇔ ẋ = x(x2 − 1), ẏ = (y2 − 1)y; ⇔ Fig. 1(1);
2. L3 > 0 ⇔ ẋ = x(x2 + 1), ẏ = (y2 + 1)y; ⇔ Fig. 1(2);
3. L3 = 0 ⇔ ẋ = x3, ẏ = y3; ⇔ Fig. 1(3);

• D1 > 0, D2 > 0, D3 > 0, V3 = V4 = L1 = L2 = N1 = 0:
4. L3 > 0 ⇔ ẋ = 2x(x2 − 1), ẏ = (y2 − 1)(3x − y); ⇔ Fig. 1(4);
5. L3 < 0 ⇔ ẋ = 2x(x2 + 1), ẏ = (y2 + 1)(3x − y); ⇔ Fig. 1(5);
6. L3 = 0 ⇔ ẋ = 2x3, ẏ = y2(3x − y); ⇔ Fig. 1(6);

• D1 < 0, V1 = V2 = L1 = L2 = N1 = 0:
7. L3 �= 0, L4 < 0 ⇔ ẋ = x(x2 + 1), ẏ = (1 − y2)y; ⇔ Fig. 1(7);
8. L3 = 0, L4 < 0 ⇔ ẋ = x3, ẏ = −y3; ⇔ Fig. 1(8);
9. L3 �= 0, L4 > 0 ⇔ ẋ = x(1 + x2 − 3y2), ẏ = y(1 + 3x2 − y2); ⇔

Fig. 1(9);
10. L3 = 0, L4 > 0 ⇔ ẋ = x(x2 − 3y2), ẏ = y(3x2 − y2); ⇔ Fig. 1(10);
11. L3 < 0, ⇔ ẋ = 2x(x2 − 1), ẏ = y(3x2 + y2 + 1); ⇔ Fig. 1(11);
12. L3 > 0, ⇔ ẋ = 2x(x2 + 1), ẏ = y(3x2 + y2 − 1); ⇔ Fig. 1(12);
13. L3 = 0, ⇔ ẋ = 2x3, ẏ = y(3x2 + y2); ⇔ Fig. 1(13);

• D1 = D3 = D4 = V1 = N1 = N2 = N3 = 0, D2 �= 0 :
L4 < 0:
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Fig. 1 Configurations of cubic systems in Poincaré disc
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14. N7 = 0, N8 < 0 ⇔ ẋ = x(x2 − 1), ẏ = 2y; ⇔ Fig. 1(14);
15. N7 = 0, N8 > 0 ⇔ ẋ = x(x2 + 1), ẏ = −2y; ⇔ Fig. 1(15);
16. N6 = 0, N8 > 0 ⇔ ẋ = x(x2 − 1), ẏ = −y; ⇔ Fig. 1(16);
17. N6 = 0, N8 < 0 ⇔ ẋ = x(x2 + 1), ẏ = y; ⇔ Fig. 1(17);
18. N6 = 0, N8 = 0 ⇔ ẋ = x3, ẏ = 1; ⇔ Fig. 1(18);
L4 > 0:
19. N6 = 0, N8 > 0 ⇔ ẋ = x(x2 −1), ẏ = y(3x2 −1); ⇔ Fig. 1(19);
20. N6 = 0, N8 < 0 ⇔ ẋ = x(x2 +1), ẏ = y(3x2 +1); ⇔ Fig. 1(20);
21. N7 = 0, N8 >0 ⇔ ẋ = 2x(x2 − 1), ẏ= y(3x2+1); ⇔ Fig. 1(21);
22. N7 = 0, N8 <0 ⇔ ẋ=2x(x2+1), ẏ = y(3x2 − 1); ⇔ Fig. 1(22);

• D1 = D2 = D3 = V1 = N2 = N3 = N9 = N10 = 0 ⇔
23. ẋ = x, ẏ = y − x3; ⇔ Fig. 1(23);

• D1 = D3 = D4 = V1 = N1 = N11 = N12 = N13 = N14 = 0, D2N2 �=
0, L4 < 0 ⇔
24. ẋ = x(9x2 − 4), ẏ = 2y(9x − 2); ⇔ Fig. 1(24).

Remark 13 Real invariant straight lines are represented by continuous lines, whereas
complex invariant straight lines are represented by dashed lines. If in a configuration
an invariant straight line has multiplicity k > 1, then the number k appears near
the corresponding straight line and this line is in bold face. We indicate next to the
real singular points of the system, located on the invariant lines, their corresponding
multiplicities. By the notation (a, b) we point out the maximum number a (respectively
b) of infinite (respectively finite) singularities which can be obtained by perturbation
of the multiple point.

Proof of Theorem 12 We remark that the first 23 configurations of invariant lines as
well as the corresponding affine invariant conditions where constructed in paper [16].
On the other hand in article [4] a new class of planar cubic systems possessing invariant
lines of total multiplicity 9, which was omitted in [16] was presented. So it remains to
find out the necessary and sufficient conditions for the realization of this new class.

First of all we mention that the omitted misstep in paper [16] was localized in Section
7 and namely, it is related with the case of systems (66), i.e. systems of the form

ẋ = a + cx + dy + 2hxy + ky2 + x3, ẏ = b + ex + f y + lx2 + 2mxy + ny2.

(11)

For this system we have C3(x, y) = x3y and therefore, there exist two directions
for the possible invariant straight lines: x = 0 and y = 0.

Direction x = 0. From (10) forU = 1, V = 0 it was obtained A = 1, B = C = 0,

D = −W, E = 2h, F = W 2 + c, Eq7 = k = 0, Eq9 = −2hW + d = 0 and
Eq10 = −W 3 −cW +a = 0. The last equations imply the conditions k = h = d = 0
(in order to have the maximum number of invariant straight lines).

Direction y = 0. In this case U = 0, V = 1 and, from (10) we get
A = B = C = 0, D = 2m, E = n, F = −nW + f and

Eq5 = l, Eq8 = −2mW + e, Eq10 = nW 2 − f W + b. (12)
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Evidently the condition Eq5 = 0 is equivalent to l = 0, whereas the condition
Eq8 = 0 implies two possibilities: (α) m = 0 (then e = 0) and (β) m �= 0 (then
W = e/(2m)). The first case was examined in [16], whereas the second case when
m �= 0 was omitted. Here further below we show that in the case m �= 0 systems (11)
also possess invariant lines of total multiplicity 9 and we present the corresponding
configuration. Furthermore we construct necessary and sufficient conditions to get this
configuration in terms of invariant polynomials.

It is worth to point out that if for perturbed systems some condition U (x, y) = 0
holds, where U (x, y) is an invariant polynomial, then this condition must hold also
for the initial (not-perturbed) systems. So considering Theorem 12 (more exactly its
part related with the configurations Figs. 1–13 which was proved in [16]) we arrive at
the next remark.

Remark 14 The condition L1 = L2 = 0 is necessary for any cubic system possessing
invariant lines of total multiplicity 9.

The casem �= 0. Thus in what follows we considerm �= 0. It was shown above that for
a system (11) to possess at least 4 invariant lines in two directions (x = 0 and y = 0) the
conditions k = h = d = l = 0 are necessary. So considering Remark 14 we calculate
L1 = 0 and L2 = 20736nx(mx − 3ny). It is evident that the polynomial L2 vanishes
if and only if n = 0. In this case applying the rescaling (x, y, t) �→ (mx, y, t/m2) we
can set m = 1 and systems (11) become ẋ = a+ cx + x3, ẏ = b+ ex + f y+2xy.
Considering (12) we get Eq8 = −2W + e = 0, Eq10 = − f W + b = 0. These
equations have a common solution if and only if the resultant RW (Eq8, Eq10) =
−2b + f e = 0, i.e. b = e f/2 (see Lemma 9). So, the conditions k = h = d = l =
n = 0,m = 1 and b = e f/2 yield the following systems of equations

ẋ = a + cx + x3 ≡ P(x), ẏ = ( f + 2x)(e + 2y)/2 ≡ (e + 2y)Q(x). (13)

Remark 15 It is clear that systems (13) are degenerate if and only if the polynomials
P(x) and Q(x)have a non-constant common factor (depending on x). So, the following
condition must hold:

	 ≡ R(0)
x (P(x), Q(x)) �= 0. (14)

For systems (13) we calculate H(X, Z) = 2−1Z(2Y + eZ)(X3 + cX Z2 + aZ3)

for which deg H = 5. On the other hand for a system in CSL9 the corresponding
polynomial H must have the degree eight.

Considering Lemmas 7 and 8 we determine the conditions to get a common factor
of degree three of the polynomials Gi/H, i = 1, 2, 3. For systems (13) we calculate

G1/H = 4X3 + (s f − 4)X2Z − 4 f X Z2 + (c f − 2a − f 2)Z3,

G2/H = (3X − 2Z))(2X + f Z)(X3 + cX Z2 + aZ3).

Since the polynomials Gi/H, (i = 1, 2) do not depend on Y we conclude that
the common factor of degree 3 of these two polynomials must depend on X . So by
Lemma 9 the following condition is necessary in order to have a such a factor:
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R(0)
X (G2/H,G1/H) = R(1)

X (G2/H,G1/H) = R(2)
X (G2/H,G1/H) = 0.

Calculations yield

R(2)
X (G2/H,G1/H) = −2(64 + 288a + 64c + 48 f − 96c f + 12 f 2 − 27 f 3)Z3 = 0

and this implies a = (96c f −64−64c−48 f −12 f 2 +27 f 3)/288. Then we obtain

R(1)
X (G2/H,G1/H) = (4 + 3 f )2(4 + 9 f )2(16 + 16c + 3 f 2)2Z8/576 = 0,

	 = R(0)
x (P(x), Q(x)) = (4 + 3 f )(16 + 16c + 3 f 2)/288 �= 0

and clearly the above relations imply 4 + 9 f = 0, i.e. f = -4/9. Herein we calculate

R(0)
X (G2/H,G1/H) = 2163−31(4 + 9c)3(28 + 27c)3Z15 = 0,

	 = R(0)
x (P(x), Q(x)) = 4(28 + 27c)/729 �= 0

and therefore we obtain c = −4/9 = f which implies a = 0.
Thus for systems (11) with m �= 0 (then we assume m = 1) we get the set of

conditions

k = h = d = l = n = a = 0, f = c = −4/9, b = −2e/9 (15)

which leads to a system belonging to CSL9. Moreover applying the transformation
(x, y, z) �→ (x, (2y − e)/2, 9t) this system could be brought to the form

ẋ = x(9x2 − 4), ẏ = 2y(9x − 2). (16)

For this system we have H(X,Y, Z) = −18X2Y (3X − 2Z)3Z(3X + 2Z).
Considering Lemma 11 we calculate: μ0 = · · · = μ5 = 0, μ6 = 373248x6 �= 0.

By the same lemma six finite singular points from 9 have gone to infinity and collapsed
with the singular point [0, 1, 0] located on the “end” of the invariant line x = 0. On
the other hand system (16) possesses three finite singular points (0, 0) and (±2/3, 0)

and the invariant straight lines:

L1,2 : x = 0, L3 : y = 0, L4,5,6 : 3x − 2 = 0, L7 : 3x + 2 = 0, L7,8 : Z = 0.

In this case the configuration of invariant lines of the system (16) corresponds to
Fig. 1(24).

Invariant conditions for the realization of the configuration given by Fig. 1(24)

Now we construct the necessary and sufficient conditions in terms of affine invariant
polynomials using the theory of algebraic invariants developed by Sibirschi’s school
(see for instance, [30]).

From [16, Proposition 28] we need the following result:
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Proposition 16 If for a cubic system (6) the conditionsD1 = D3 = D4 = 0, D2 �= 0
andV1 = 0 hold, then via a linear transformation and time rescaling the homogeneous
cubic part of this system becomes into the form p3 = x3, q3 = 0 for L4 < 0.

So, we get systems (11) (with (p3, q3) = (x3, 0)) and, as it was earlier showed, in
the case m �= 0 (then we may assume m = 1 due to a rescaling) the conditions (15)
(which are in terms of the coefficient of these systems) are necessary and sufficient
for a system (11) to have 9 ILs. We calculate

N3 = −12x2(lx3 + (2h − n)xy2 + 2ky3)

and taking into consideration Remark 14 and the fact that L2 = 0 ⇔ n = 0 from
the page 13 we obtain that N3 = L2 = 0 ⇔ l = k = n = h = 0.

In this case we calculate N2 = −18mx4y and therefore the condition m �= 0 is
governed by the invariant polynomial N2 and in what follows we assume N2 �= 0, i.e.
m = 1.

We continue with the calculation of N11 = 12d = 0, i.e. d = 0 and this implies
N12 = 1296(e f − 2b)x6. It is evident that N12 = 0 ⇔ e f − 2b = 0, i.e. b = e f/2.
In this case the calculations yield

N13 = 5184(c − f )x4, N14 = 2592(4 + 6c + 3 f )x4.

It is not too hard to see that N13 = N14 = 0 is equivalent with f = c = −4/9 and
these leads to N1 = −1944ax4y and clearly the condition N1 = 0 gives a = 0.

This completes the proof of Theorem 12. �

3 Main Results: First Integrals and Phase Portraits of Cubic Systems
with the Maximum Number of Invariant Straight Lines

Theorem 17 Consider systems (6) in CSL9. Then these systems with five exceptions
have the polynomial inverse integrating factors as well as the rational first integrals
corresponding to each one of the 24 canonical forms as it is indicated in Table 1. This
table also lists all phase portraits P.1–P.24 corresponding to the configurations Fig.
1(1)–(24) of invariant straight lines of such systems. Moreover using the geometrical
(numeric) invariants (see Remark 18) in the diagram fromFig. 2 it is shown that among
these 24 phase portraits only 18 are topologically distinct.

Remark 18 In order to distinguish topologically the phase portraits of the systems we
obtained, we use the following geometric invariants:

• The number I SR of real infinite singularities.
• The number FSR of real finite singularities.
• The number Sep f of separatrices associated to finite singularities.
• The number Sep∞ of separatrices associated to infinite singularities.
• The number FSep of separatrices connecting finite singularities.
• The number SC of separatrix connections.
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Table 1 First integrals, integrating factors and phase portraits
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Table 1 continued
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Table 1 continued
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Fig. 2 Topologically distinct phase portraits

Proof Using Theorems 12 and 3 it follows after some easy calculations the expressions
for the integrating factors and the first integrals of Table 1.

The phase portraits of polynomial differential equations are usually presented in the
Poincaré disc using the so called Poincaré compactification, see for details Chapter
5 of [14]. The existence of the 9 invariant straight lines taking into account their
multiplicities and the knowledge of the rational first integrals allows us to drown the
24 phase portraits of the systems given in Theorem 17. After we prove that only 18 of
these phase portraits are topologically different using Remark 18. They are given in
Fig. 2.

We note that the systems in Theorem 12 have no parameters and the study of
their phase portraits also can be done using the algebraic program P4, see for details
Chapters 9 and 10 of [14].

We also observe that the inverse integrating factors described in Table 1 are all
polynomial except 5 of them. �
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directions. Bul. Acad. Ştiinţe Repub. Mold. Mat. 2(60), 111–130 (2009)
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