
Qual. Theory Dyn. Syst. (2017) 16:223–234
DOI 10.1007/s12346-016-0187-y

Qualitative Theory
of Dynamical Systems

Complex Backward–Forward Derivative Operator
in Non-local-In-Time Lagrangians Mechanics

Rami Ahmad El-Nabulsi1

Received: 9 October 2015 / Accepted: 16 January 2016 / Published online: 1 February 2016
© Springer International Publishing 2016

Abstract In this paper we introduce non-local-in-time complexified Lagrangians
characterized by an expanded complex backward–forward derivative operator which
generalize the classical complex derivative operator. We developed the Euler–
Lagrange equations and solved them for some special case. We discuss their
implications in Newtonianmechanics where a number of applications were illustrated.
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1 Introduction

The theory of non-local-in-time mechanics is not new and was addressed in literature
long time ago since the work of Nelson in his derivation of the Schrödinger equation
from classical mechanics [18]. Other related approach concerns the work of Nottale on
scale relativity characterized by the fractal spacetime concept which amount to con-
sider both the forward and backward motion simultaneously [19]. This concept leads
to relate the Schrödinger equation to the complexified Newtonian mechanics. In real-
ity, considering concurrently forward and backward motion was addressed since 1948
by Richard Feynman [10,11] in his spacetime approach to non-relativistic quantum
mechanics where position differences of the particle are shifted with respect to each
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other. This approach was used recently in [21] where extended Newtonian mechan-
ics was obtained after replacing the kinetic energy of the particles in motion by a
non-local-in-time kinetic energy (in fact this was first proposed by Suykens [21] and
then further extended by Li et al. [13]). In [20], this approach was used to deal with
nonconservative systems and in [6] it was generalized for the case of deformed or non-
standard Lagrangians type. It is notable that for non-differentiable particles curves as
in quantum mechanics, the classical Lagrangian formalism fails [11]. This problem
was addressed in literature by introducing the scale derivative by means of a complex
backward–forward derivative operator (CBFDO) which applies to non-differentiable
functions [2,19] and was generalized in [19] for the case of fractional embedding the-
ory [4], fractional actionlike variational approach [7,8] and equations on time scales
[5,14–16]. These theories seem to be promising, yet lots of work are still required.
In this paper, we would like to extend Newton’s law by means of a non-local-in-time
complexified Lagrangians characterized by an expanded E-CBFDOwhich generalizes
the work done in [6,13,21]. Our main aim is to explore the main consequences of the
E-CBFDO in Newtonian mechanics and not to solve the list of higher-order nonlinear
differential equations obtained.

The paper is organized as follows: in Sect. 2, we introduce the basic Lagrangian
setups of our model: we derive the modified Euler–Lagrange equation and we discuss
some of its main consequences; in Sect. 3, we illustrate by discussing the dynamics
of some specific Lagrangian models; in the same section we construct the resulting
Newton’s law and we discuss some of its main impacts; in Sect. 3, we illustrate
by discussing some physical applications; conclusions and perspectives are given in
Sect. 4.

2 Complexified Nonlocal-In-Time Lagrangian from E-CBFDO: The
Complex Euler–Lagrange Equation and the Corresponding Newton’s
Law

We start by introducing the basic setups of our approach.

Definition 2.1 Let X be a coordinate of a given dynamical system, t be the proper
time and τ a positive constant. The backward and forward displacement are given
respectively by X(t − τ) and X(t + τ). We define the CBFDO D of X by [19]:

dX
dt

≡ DX � 1

2

(
dX(t + τ)

dt
+ dX(t − τ)

dt

)
− i

2

(
dX(t + τ)

dt
− dX(t − τ)

dt

)
,

≡ 1

2
(DX(t + τ) + DX(t − τ)) − i

2
(DX(t + τ) − DX(t − τ))

≡ 1 − i

2
DX(t + τ) + 1 + i

2
DX(t − τ), (1)

where i = √−1 ∈ C and D = d/dt .
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Remark 2.1 In fact we can write the D as:

D = 1

2

(
d

dt

∣∣∣∣
B

+ d

dt

∣∣∣∣
F

)
− i

2

(
d

dt

∣∣∣∣
B

− d

dt

∣∣∣∣
F

)
≡ 1

2
(DB + DF ) − i

2
(DB − DF ) ,

where DBX ≡ DX(t + τ) and DFX ≡ DX(t − τ) are respectively for “backward”
and “forward” temporal derivative. Remark that D holds for only first-order temporal
derivative therefore we denote it by D1.

Definition 2.2 Using the Taylor-series expansions:

X(t + τ) ≈ X(t) + τDX(t) + 1

2!τ
2D2X(t) + · · · + 1

n!τ
nD(n)X(t)

= X(t) +
n∑

k=1

1

k!τ
k D(k)X(t), (2)

X(t − τ) ≈ X(t) − τDX(t) + 1

2!τ
2D2X(t) + · · · + (−1)n

n! τ nD(n)X(t)

= X(t) +
n∑

k=1

(−1)k

k! τ k D(k)X(t), (3)

we define the E-CBFDO acting on X(t) by:

DnX(t) = 1 − i

2

(
DX(t) +

n∑
k=1

1

k!τ
k D(k+1)X(t)

)

+ 1 + i

2

(
DX(t) +

n∑
k=1

(−1)k

k! τ k D(k+1)X(t)

)
,

≡ DX(t) + 1 − i

2

n∑
k=1

1

k!τ
k D(k+1)X(t)

+ 1 + i

2

n∑
k=1

(−1)k

k! τ k D(k+1)X(t),

= DX(t) + 1

2

n∑
k=1

(1 + (−1)k)
1

k!τ
k D(k+1)X(t)

− i

2

n∑
k=1

(1 − (−1)k)
1

k!τ
k D(k+1)X(t). (4)
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Definition 2.3 We define the non-local-in-time generalized coordinates by:

Yn
τ = X(t + τ) + X(t − τ)

2
− i

X(t + τ) − X(t − τ)

2
,

≡ X(t)+ 1

2

(
n∑

k=1

1

k! (1+(−1)k)τ k D(k)X(t)−i
n∑

k=1

1

k!τ
k(1 − (−1)k)D(k)X(t)

)
,

(5)

and its corresponding E-CBFDO by:

Dn = D + 1

2

n∑
k=1

(1 + (−1)k)
1

k!τ
k D(k+1)

− i

2

n∑
k=1

(1 − (−1)k)
1

k!τ
k D(k+1) ≡ D + Dn

R − iDn
I , (6)

where

Dn
R � 1

2

n∑
k=1

(1 + (−1)k)
1

k!τ
k D(k+1), (7)

Dn
I = 1

2

n∑
k=1

(1 − (−1)k)
1

k!τ
k D(k+1), (8)

Clearly, for n = 1, Y1
τ = X(t) − iτ Ẋ(t), D1 = D − iτD(2) and therefore:

D1Y1
τ = (D − iτD(2))(X(t) − iτ Ẋ(t)) = Ẋ(t) − 2iτ Ẍ(t) − τ 2

...
X(t),

whereas for n = 2,Y2
τ = X(t)+ 1

2 (τ
2Ẍ(t)−2iτ Ẋ(t)),D2 = D+ 1

2 (τ
2D(3)− i

2τD
(2))

and accordingly:

D2Y2
τ = Ẋ(t) − 9

4
τ Ẍ(t) + 3

4
τ 2X(3)(t) − 9

8
iτ 3X(4)(t) + 1

4
τ 4X(5)(t),

and so on.
In order to construct the complexifiedLagrangian formalism,we letLn(DnYn

τ ,Yn
τ , t)

∈ C2([a, b] × C
n × C

n;C) be an admissible smooth complexified Lagrangian func-
tion with (DnYn

τ ,Yn
τ , t) → Ln(DnYn

τ ,Yn
τ , t) assumed to be aC2 function with respect

to all its arguments, i.e. continuously differentiable with respect to all of its argu-
ments. The corresponding complexified action function is given in our arguments by:
S = ∫ b

a Ln(DnYn
τ ,Yn

τ , t)dt whereYn
τ ∈ C1[a, b] is sufficient in our arguments.We can

now find using the standard variational approach the function Yn
τ for which the action

functional subject to given boundary conditions Yn
τ (a) = Yn

τ,a and Yn
τ (b) = Yn

τ,b has
an extremum.
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Remark 2.2 Before we proceed to explore the complexified Lagrangian dynamics,
it is notable to mention that classical mechanics is extended in our formalism into
the complex domain. Though in our paper we deal with the Lagrangian approach, we
expect naturally that the Hamiltonian formalism is complexified and its corresponding
analytic Hamilton function satisfies a family of Cauchy–Riemann conditions depend-
ing on the value of n. In reality, complexified Hamiltonian systems are obtained by
complexifying the canonical variables whereas in our approach the complexification
is obtained by means of non-local coordinates. The phase space structure of certain
complexified dynamical systems described by higher-order Lagrangians is under con-
struction. We expect that the new complexified Hamiltonian formalism will lead to a
generalized structure of the phase space. In physics and mathematics, many methods
have been constructed to jump from the real space to the complex space. To the best
of our knowledge, the formalism addressed in this paper was not attacked before in
literature and it represents a novel way to encode higher-order derivatives to the usual
first-order classical mechanics. This may have interesting features in complexified
quantum mechanics.

Theorem 2.1 Given the action functional S = ∫ b
a Ln(DnYn

τ ,Yn
τ , t)dt. If Yn

τ are solu-
tions, then the following complexified Euler–Lagrange equation (CELE) holds:

∂Ln(DnYn
τ ,Yn

τ , t)

∂Yn
τ

− Dn
(

∂Ln(DnYn
τ ,Yn

τ , t)

∂DnYn
τ

)
= 0. (9)

Lemma 2.1 In terms of the derivative operators D andDn, the CELE takes the form:

∂Ln(DnYn
τ ,Yn

τ , t)

∂Yn
τ

− D

(
∂Ln(DnYn

τ ,Yn
τ , t)

∂DnYn
τ

)
− Dn

R

(
∂Ln(DnYn

τ ,Yn
τ , t)

∂DnYn
τ

)

+ iDn
I

(
∂Ln(DnYn

τ ,Yn
τ , t)

∂DnYn
τ

)
= 0. (10)

Remark 2.3 It is obvious that the complexified Lagrangian Ln(DnYn
τ ,Yn

τ , t) contains
higher-order derivatives terms and accordingly, one can always write Eq. (9) as a
higher-order complexified Euler–Lagrange equations depending on the value of n.

To clarify, for n = 1, we have L1(D1Y1
τ ,Y

1
τ , t) = L1(Ẋ(t) − 2iτ Ẍ(t) −

τ 2
...
X(t),X(t) − iτ Ẋ(t), t) ≡ L1 and therefore the corresponding CELE (10) takes

the form:

∂L1
∂Y1

τ

− D

(
∂L1

∂D1Y1
τ

)
− D1

R

(
∂L1

∂D1Y1
τ

)
+ iD1

I

(
∂L1

∂D1Y1
τ

)
= 0,

which is also written using Eqs. (7) and (8) as:

∂L1
∂Y1

τ

− d

dt

(
∂L1

∂D1Y1
τ

)
+ iτ

d2

dt2

(
∂L1

∂D1Y1
τ

)
= 0.
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For n = 2, we have: L2(Ẋ(t) − 9
4τ Ẍ(t) + 3

4τ
2X (3)(t) − 9

8 iτ
3X(4)(t) + 1

4τ
4X(5)(t),

X(t) + 1
2 (τ

2Ẍ(t) − 2iτ Ẋ(t)), t) ≡ L2 and the corresponding CELE is:

∂L2
∂Y2

τ

− D

(
∂L2

∂D2Y2
τ

)
− D2

R

(
∂L2

∂D2Y2
τ

)
+ iD2

I

(
∂L2

∂D2Y2
τ

)
= 0,

which also may be written as:

∂L2
∂Y2

τ

− d

dt

(
∂L2

∂D2Y2
τ

)
− τ 2

2

d3

dt3

(
∂L2

∂D2Y2
τ

)
+ iτ

d2

dt2

(
∂L2

∂D2Y2
τ

)
= 0,

and so on for larger values of n.
One quick consequence of the CELE concerns the Lagrangian Ln(DnYn

τ ,Yn
τ , t) =

1
2D

nYn
τD

nYn
τ − 1

2Y
n
τY

n
τ which is similar in form to the harmonic oscillator Lagrangian.

However, this is a complexified Lagrangian of higher-order of n. The equation of
motion as derived from Eq. (10) takes the form:

− Yn
τ − D(DnYn

τ ) − Dn
R(DnYn

τ ) + iDn
I (D

nYn
τ ) = 0. (11)

For n = 1, we haveY1
τ = X(t)−iτ Ẋ(t),D1 = D−iτD(2),D1Y1

τ = Ẋ(t)−2iτ Ẍ(t)−
τ 2
...
X(t) and the following relations hold accordingly:

D(D1Y1
τ ) = Ẍ(t) − 2iτX(3)(t) − τ 2X(4)(t), (12)

D1
R(D1Y1

τ ) = 0, (13)

D1
I (D

1Y1
τ ) = τD(2)(D1Y1

τ ) = τX(3)(t) − 2iτ 2X(4)(t) − τ 3X(5)(t), (14)

and the equation of motion takes the form:

iτ 3X(5)(t) − 3τ 2X(4)(t) − 3iτX(3)(t) + Ẍ(t) − iτ Ẋ(t) + X(t) = 0, (15)

which is a higher-order nonlinear complexified differential equation. Notice that for
τ = 0, Eq. (15) is reduced to Ẍ(t)+X(t) = 0 which corresponds for the second-order
differential equation for a classical oscillator.

For n = 2, we have Y2
τ = X(t) + 1

2 (τ
2Ẍ(t) − 2iτ Ẋ(t)), D2 = D + 1

2 (τ
2D(3) −

i
2τD

(2)) and the corresponding derivative D2Y2
τ = Ẋ(t) − 9

4τ Ẍ(t) + 3
4τ

2X(3)(t) −
9
8 iτ

3X(4)(t) + 1
4τ

4X(5)(t). The following relations hold consequently:

D(D2Y2
τ ) = Ẍ(t) − 9

4
τX(3)(t) + 3

4
τ2X(4)(t) − 9

8
iτ3X(5)(t) + 1

4
τ4X(6)(t), (16)

D2
R(D2Y2

τ ) = 1

2
τ2

(
X(4)(t) − 9

4
τX(5)(t) + 3

4
τ2X(6)(t) − 9

8
iτ3X(7)(t) + 1

4
τ4X(8)(t)

)
,

(17)

D2
I (D

2Y2
τ ) = τ

(
X(3)(t) − 9

4
τX(4)(t) + 3

4
τ2X(5)(t) − 9

8
iτ3X(6)(t) + 1

4
τ4X(7)(t)

)
,

(18)
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and the equation of motion takes the form:

−1

8
τ 6X(8)(t) + 13

16
iτ 5X(7)(t) + 1

2
τ 4X(6)(t) + 15i − 9

8
τ 3X(5)(t)

−5 + 9i

4
τ 2X(4)(t) + 9 + 4i

4
τX(3)(t) + 1

2
(τ 2 − 2)Ẍ(t) + iτ Ẋ(t) − X(t) = 0.

(19)

Once again for τ = 0, Eq. (19) is reduced to the second-order differential equation
for a classical oscillator Ẍ(t) + X(t) = 0. It is obvious that this approach generates
complex ordinary differential equations for the dynamical variables. One naturally
expects that the present complexified Lagrangians formalisms will generate complex
classical Hamiltonians which will satisfy complex ordinary differential equations and
therefore the study of complex ordinary differential equations is crucial. These classes
of Hamiltonians were discussed largely in literature in classical and quantum theories
[1,2]. It will be of interest to study in a future work the matching Noether operators
in the complex domain.

It is noteworthy that if one pick a deformed Lagrangian of the form Ln(DnYn
τ ,Yn

τ , t)
= Yn

τY
n
τ + Yn

τD
nYn

τ , its equation of motion is Yn
τ = 0. For n = 1, Y1

τ =
X(t) − iτ Ẋ(t) = 0 which gives X(t) = c1t−i t/τ whereas for n = 2, we have
τ 2Ẍ(t) − 2iτ Ẋ(t) + 2X(t) = 0 and the solution is given by X(t) = c2e−i(

√
3−1)t/τ +

c3ei(
√
3+1)t/τ and so on. Here c j , j = 1, 2, ... are constants of integration. It is striking

that in the standard formalism, the solution is simply: X(t) = 0.
In order at this stage to discuss the implications of the E-CBFDO on Newton’s law,

we consider the Lagrangian Ln(DnYn
τ ,Yn

τ , t) = 1
2D

nYn
τD

nYn
τ −V(Yn

τ ),V(Yn
τ ) being

the potential of the system in motion. From Eq. (9) we find effortlessly:

DnDnYn
τ = −∂V(Yn

τ )

∂Yn
τ

, (20)

For n = 1, Eq. (20) is reduced to:

iτ 3X(5)(t) − 3τ 2X(4)(t) − (2i + 1)τX(3)(t) + Ẍ(t) = −∂V(Y1
τ )

∂Y1
τ

, (21)

whereas for n = 2, we find:

−1

2
τ 6X(8)(t) + 13

16
iτ 5X(7)(t) + 1

2
τ 4X(6)(t)

+ 9

8
(1 + 2i)τ 3X(5)(t) − 5 + 9i

4
τ 2X(4)(t)

+ 9 + 4i

4
τ X (3)(t) − Ẍ(t) = −∂V(Y2

τ )

∂Y2
τ

. (22)

and so on. These give an extended complexified Newton’s law holding higher-order
derivative terms.
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Lemma 2.2 For the case of deformed Lagrangians of the form Ln(DnYn
τ ,Yn

τ , t) =
Yn

τD
nYn

τ + kV(Yn
τ ), k ∈ R, the equation of motion is ∂V(Yn

τ )/∂Yn
τ = 0 and a

dynamics still occurs for power-law potential V(Yn
τ ) ∝ (Yn

τ )N , N = 2, 3, 4, . . .

Proof The proof is straightforward and is obtained from Eq. (9). For N = 2, 3, 4 . . .

we find Yn
τ = 0 and therefore for n = 1, 2, 3, . . . a dynamics still occur as shown in

the previous section. �	

Remark 2.4 For the case of the deformed Lagrangian Ln(DnYn
τ ,Yn

τ , t) = Yn
τD

nYn
τ +

kV(Yn
τ ), k ∈ R, we can pick a periodic potential of the form V(Yn

τ ) = cos(Yn
τ )

which gives sin(Yn
τ ) = 0 or Yn

τ = nπ,n ∈ Z. For n = 1 the solution is given by
X(t) = nπ + c4e−i t/τ .

Definition 2.4 Let Ln(DnYn
τ ,Yn

τ , t) be an admissible smooth Lagrangian function.
We define the higher-order force by

Fn = ∂Ln(DnYn
τ ,Yn

τ , t)

∂Yn
τ

, (23)

and the higher-order momentum by:

Pn = ∂Ln(DnYn
τ ,Yn

τ , t)

∂DnYn
τ

. (24)

Lemma 2.3 The second complexified higher-order Newton’s law is expressed by:

Fn = DnPn = (D + Dn
R − iDn

I )Pn ≡ (D + Dn
R)Pn − iDn

IPn

= (Fn)R + i(Fn)I , (25)

where (Fn)R � (D + Dn
R)Pn and (Fn)I � −Dn

IPn are respectively the real and
imaginary part of the complexified force.

For n = 1, (F1)R � (D + D1
R)P1 = Ṗ1, (F1)I � −D1

IP1 = −τD(2)P1 = −τ P̈1

and therefore the Newton’s law is F1 = Ṗ1 − iτ P̈1.

3 Physical Implications of the Complexified Nonlocal-In-Time
Lagrangian from E-CBFDO

A: One interesting consequence of our approach concerns the E-CBFDO of a given
function f (Yn

τ , t). For illustration purpose, we choose n = 1. Its derivative is then
given by:

D1 f (Y1
τ , t) = (D − iτD(2)) f (Y1

τ , t) ≡
(
d

dt
− iτ

d2

dt2

)
f (Y1

τ , t). (26)
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Expanding its total differential to the first order gives for D:

d f (Y1
τ , t)

dt
= ∂ f (Y1

τ , t)

∂t
+ ∇ f (Y1

τ , t) · d(X(t) − iτ Ẋ(t))

dt

= ∂ f (Y1
τ , t)

∂t
+ (v − iτγ ) · ∇ f (Y1

τ , t), (27)

and for D(2):

d2 f (Y1
τ , t)

dt2
= ∂2 f (Y1

τ , t)

∂t2
+ (γ − iτJ) · ∇ f (Y1

τ , t)

+ 2 ((v · ∇) − iτ (γ · ∇))
∂ f (Y1

τ , t)

∂t
+ (v2 − τ 2γ 2)� f (Y1

τ , t) − 2iτ ((v · ∇) γ

+ (γ · ∇) v) · ∇ f (Y1
τ , t), (28)

where J is the jerk, i.e. the rate of change of the vector acceleration γ and v is the
velocity vector. Accordingly, Eq. (26) gives:

D1 f (Y1
τ , t) = (1 − τ 2(γ · ∇) − 2iτ (v · ∇))

∂ f (Y1
τ , t)

∂t

− iτ
∂2 f (Y1

τ , t)

∂t2
+ (v − 2iτγ ) · ∇ f (Y1

τ , t)

− iτ(v2 − τ 2γ 2)� f (Y1
τ , t) + 2τ 2

(
(v · ∇) γ + (γ · ∇) v − 1

2
J
)

·∇ f (Y1
τ , t). (29)

For τ = 0, this equation is reduced to D1 = ∂
∂t − v · ∇ as it is expected. At first sight,

we observe that the material derivative, i.e. the time rate of change of a function while
moving with the particle, is complexified. For the case of a constant velocity, Eq. (29)
is reduced to:

D1 f (Y1
τ , t) = (1 − 2iτv∇)

∂ f (Y1
τ , t)

∂t
− iτ

∂2 f (Y1
τ , t)

∂t2

+ v∇ f (Y1
τ , t) − iτv2� f (Y1

τ , t). (30)

As a simple application, we consider a small volume V whose boundary moves with
a fluid of density ρ assumed to be constant inside the volume [22]. Assuming that the
mass of the fluid M = ρV is conserved as the fluid moves with velocity v assumed
to be constant without loss of generality, then for n = 1, we can write using Eq. (30):
D1M = VD1ρ = 0 which gives D1ρ = 0. Using Eq. (28) we find:

(1 − 2iτv∇)
∂ρ

∂t
− iτ

∂2ρ

∂t2
− iτv2�ρ = 0, (31)
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which is the modified continuity equation. If the fluid density is constant in time but
varies with distance, e.g. height, than Eq. (31) is reduced to the Laplace equation
�ρ = 0. For the case of a stationary fluid, the energy density varies as ρ(t) =
c5 + c6e−i t/τ which tends to a constant for very large time. A number of implications
in fluid mechanics are under construction.

B: In order to have a simple idea about the implications of the present approach in
classical theory, we consider the action S = ∫ b

a L1(D1Y1
τ ,Y

1
τ , t)dt as a functional of

the upper limit of integration, the variation of the action gives the complex momentum
P1 = ∇S and the complex energyE1 = −∂S/∂t [19]. For given system characterized
by the Lagrangian L1(D1Y1

τ ,Y
1
τ , t) = 1

2mD1Y1
τD

1Y1
τ − � where � is the classical

potential and m is the mass of the particle, Eq. (9) gives mD1D1Y1
τ = −∇� from we

deduce the complex momentum P1 = mD1Y1
τ which already gives D1Y1

τ = ∇S/m.
By introducing a complex function 	 = eiαS where α is a real constant, we obtain
D1Y1

τ = −(i/mα)∇ ln	 and from mD1D1Y1
τ = −∇� we find at the end ∇� =

iD1(∇ ln	)/α. Using Eqs. (26)–(28), we find after some algebra:

α

i
∇� = (1 − 2iτ ((v · ∇) − iτ (γ · ∇)))

∂(∇ ln	)

∂t
− iτ

∂2(∇ ln	)

∂t2

+(v − 2iτγ − τ 2J + 2τ 2 ((v · ∇) γ + (γ · ∇) v))

·∇(∇ ln	) − iτ(v2 − τ 2γ 2)�(∇ ln	). (32)

Assuming for simplicity a constant velocity, i.e. J = γ = 0, then Eq. (32) is approxi-
mated by:

α

i
∇� = (1 − 2iτv∇)

∂(∇ ln	)

∂t
− iτ

∂2(∇ ln	)

∂t2

+ v∇(∇ ln	) − iτv2�(∇ ln	). (33)

By letting φ = ∇ ln	 and � = ∇� we can write Eq. (33) as:

α

i
� = (1 − 2iτv∇)

∂φ

∂t
− iτ

∂2φ

∂t2
+ v∇φ − iτv2�φ. (34)

This equation may be splitted into two partial differential equations:

∂φ

∂t
+ v∇φ = 0, (35)

v2�φ + ∂2φ

∂t2
+ 2v∇ ∂φ

∂t
= α

τ
�. (36)

Deriving Eq. (35) with respect to time and replacing into Eq. (36) we find:

�φ − 1

v2

∂2φ

∂t2
= α

τv2
�, (37)
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which is the wave equation with a source term. In this case one may rewrite the given
complex nonlinear differential equations splitting the complex from real parts and
then investigate the dynamics of the resulting differential partial equations. One then
expects this approach to have interesting consequences in quantum mechanics.

4 Conclusions

In thiswork, we have introduced the notion of a complex backward–forward derivative
operator applied to non-local-in-time generalized coordinates of a given Lagrangian
system. We have constructed the Lagrangian formalism and derived the correspond-
ing equations of motion in particular the Euler–Lagrange equation and the Newton’s
equations of motion. It was observed that the present formalism generates dynamical
equations of motion holding higher-order derivatives terms and the extended complex-
ified Newton’s law holds higher-order derivative terms. This gives hope to construct
Newtonian’s theory with higher-order corrections terms which is useful in quantum
physics. It was observed that the present formalism may have some motivating conse-
quences in fluid mechanics and quantum mechanics. The corresponding Hamiltonian
formalism and a list of physical applications are under progress. It should be men-
tioned that complexified Lagrangian mechanics was discussed in literature through
different aspects [3,9,12,17,20] and have many important applications in quantum
theory, yet our approach generalizes these approach by the present of the E-CBFDO
and non-local-in-time generalized coordinates. The complexified Lagrangians will
yield naturally complexified Hamiltonian dynamical systems and complex differen-
tial equations which render the study of complex ordinary and partial differential
equations crucial and we expect to have several physically interesting applications.
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