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Abstract There is a folklore about the equivalence between theMelnikovmethod and
the averaging method for studying the number of limit cycles, which are bifurcated
from the period annulus of planar analytic differential systems. But there is not a
published proof. In this short paper, we prove that for any positive integer k, the
kth Melnikov function and the kth averaging function, modulo both Melnikov and
averaging functions of order less than k, produce the same number of limit cycles of
planar analytic (or C∞) near-Hamiltonian systems.
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1 Introduction

For the so-called near–Hamiltonian systems of the form

ẋ = Hy + ε f (x, y, ε), ẏ = −Hx + εg(x, y, ε), (x, y) ∈ R
2 (1.1)

where ε > 0 is a small parameter, and the functions H , f and g are polynomials, or
C∞ smooth, or Cω, there are plenty of papers concerning the problem on limit cycles
which are bifurcated from the period annulus of system (1.1) with ε = 0. Here Cω

denotes the class of analytic functions defined in a suitable open subset of R2. This
problem is closely related to the weaken Hilbert’s 16th problem introduced by Arnold
[1] in 1977.

There are various methods to study the number of limit cycles of system (1.1). To
our knowledge, among them the two important and widely used ones are the method
ofMelnikov function (see for instance, [3,4,8,9,12–14,17]) and the averagingmethod
(see for instance, [2,5–7,15,16,18]. In the world of the people working in these two
methods, ones want to knowwhether these twomethods can produce the same number
of limit cycles for the same system (1.1). As we know, the answer is yes only for the
first order Melnikov function and the first order averaging function (Llibre, J.: Private
communication). But for the higher order cases there is not a definite answer. It is
only a folklore that the two methods can play the same role, that is, the kth order
Melnikov function and the kth order averaging function have the same number of
zeroes taking into account the multiplicity provided that the Melnikov functions and
averaging functions of order less than k all identically vanish.

The main purpose of this paper is to give a positive answer to the folklore. Further-
more we establish a concrete relation between the kth order Melnikov function and
the kth order averaging function for any k ∈ N. Consequently, we have proved that the
two methods are equivalent for studying the number of limit cycles of system (1.1).

This paper is organized as follows. In the next section we will introduce the method
of Menilkov function and the averaging method, which will be used in the statement
of our main results and their proof. Section 3 will state our main results and present
their proof.

2 The Melnikov Method and Averaging Method

For convenience to state our main results, we need to recall the method of Melnikov
functions and the averaging method. In the next subsection we first state the method
of Melnikov functions.

2.1 The Method of Melnikov Functions

We first recall the definition of Melnikov functions. To introduce the Melnikov func-
tions of arbitrary order, one must assume that the unperturbed Hamiltonian system
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ẋ = Hy, ẏ = −Hx (2.1)

has a family of periodic orbits, denoted by Lh , which are defined by the level curve
H(x, y) = h for h ∈ J with J being an open interval. We first take a cross section,
say l, which is transversal to all periodic orbits inside the period annulus. Such a
cross section can be constructed as follows. For any given h0 ∈ J one can take a
point A0 ∈ Lh0 , then there exists a curve l passing through A0 and transversal to
the periodic orbits of system (2.1). For example, one can take l to be the orbit of the
gradient system

ẋ = Hx , ẏ = Hy

passing through A0. In this case l has the same regularity as that of system (1.1).
For all h near h0, the periodic orbit Lh intersects the curve l at a unique point

A(h) such that H(A(h)) = h. Note that A(h0) = A0. Thus, we get a function
A(h) : J −→ l, which has the same regularity as that of system (1.1). Consequently
we can write l as

l = {A(h)| h ∈ J }. (2.2)

Now we consider the positive orbit of (1.1) starting at A(h). Let B(h, ε) denote the
first intersection point of the orbit with l. Then as we know, one has by (1.1)

H(B) − H(A) = ε

∫ τ̃

0
(Hx f + Hyg)dt ≡ εF(h, ε), (2.3)

where τ̃ = τ̃ (h, ε) denotes the time of the orbit running from A = A(h) to B =
B(h, ε) in the positive direction. Since system (1.1) is C∞, we have for any integer
k ≥ 1

εF(h, ε) =
k∑

i=1

εi Mi (h) + O
(
εk+1). (2.4)

The function Mi in (2.4) is usually called the Melnikov function of order i . From (2.3)
it follows easily that

M1(h) =
∮
Lh

gdx − f dy|ε=0, h ∈ J.

The following result is well-known and it is easy prove using the Rolle Theorem
(see, for example, [3,14]).

Lemma 2.1 Assume that for some k ≥ 1 integer Mk(h) �≡ 0, and M j (h) ≡ 0 for
j = 1, . . . , k − 1. If Mk has at most m zeros on J taking into account multiplicity,
then for ε > 0 sufficiently small system (1.1) has at most m limit cycles bifurcated
from the period annulus {Lh | h ∈ J }.
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2.2 The Averaging Method of Higher Order

In this subsection we recall the averaging method for studying limit cycle bifurcation.
Let (x, y) = q(t, h) with 0 ≤ t < T (h) be the time–parameter representation of

the periodic orbit Lh of system (1.1) with ε = 0 satisfying q(0, h) = A(h), where
T (h) denotes the minimal positive period of the periodic orbit Lh . The following
result was proved in [10] and generalized to the perturbation of completely integrable
systems in higher dimensional space in [11], which will be one of the key points in
the proof of our main results.

Lemma 2.2 The change of variables of the form

(x, y) = q

(
T (h)

2π
θ, h

)
≡ G(θ, h), 0 ≤ θ < 2π, h ∈ J (2.5)

carries system (1.1) into

θ̇ = 2π

T (h)

(
1 − ε

∂G

∂h
∧ ( f (G, ε), g(G, ε))

)
,

ḣ = ε
(
Hy(G),−Hx (G)

) ∧ ( f (G, ε), g(G, ε)) ,

(2.6)

where a ∧ b = a1b2 − a2b1.

The variables h and θ in (2.5) can be considered as a kind of action-angle variables.
However, they are different from the ones appeared in [1]. Here, we take h, the value of
the function H , to be the action variable. A natural reason for this choice is that h is the
variable of theMelnikov function Mi in (2.4). Further, the conclusion in Lemma 2.2 is
valid for a general system of the form (1.1) whose unperturbed system is Hamiltonian.
If a system is a perturbation of an integrable but not Hamiltonian system, one can
multiply the perturbed system by an integrating factor of the unperturbed system such
that the resulting system is of the form (1.1), and then Lemma 2.2 applies. In some
special cases, one can introduce a transformation different from (2.5) in order to apply
the averaging method, see [2]. However, as we will see, in order to obtain conclusions
in Lemma 2.3 and Theorem 3.1 the transformation (2.5) is crucial.

Note that the functions in the right–hand side of Eq. (2.6) are 2π–periodic in θ .
From (2.6) one obtains the C∞ smooth and 2π–periodic equation of the form

dh

dθ
= εR(θ, h, ε). (2.7)

From [10] we know that for ε > 0 sufficiently small and for any h0 ∈ J , the orbit
of system (1.1) starting at A(h0) is periodic if and only if the solution of Eq. (2.7)
satisfying h(0) = h0 is 2π -periodic. To deduce a more precise result, let h(θ, h0, ε)
denote the solution of Eq. (2.7) satisfying h(0, h0, ε) = h0. Then the Poincaré map
of Eq. (2.7) is P(h0, ε) = h(2π, h0, ε). We can prove the following
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Lemma 2.3 For any integer k ≥ 1, we have

P(h, ε) − h = εF(h, ε) =
k∑

i=1

εi Mi (h) + O(εk+1) (2.8)

for h ∈ J and ε > 0 sufficiently small.

Proof Let (θ(t, h0, ε), h(t, h0, ε))denote the solution of (2.6) satisfying θ(0, h0, ε) =
0 and h(0, h0, ε) = h0. The function θ = θ(t, h0, ε) has an inverse in t , we denote its
inverse function as t = δ(θ, h0, ε). Let τ(h0, ε) = δ(2π, h0, ε). Then θ(τ, h0, ε) =
2π . By (2.6) it follows

θ(t, h0, 0) = 2π

T (h0)
t, h(t, h0, 0) = h0.

Hence, τ(h0, 0) = T (h0). Then a direct calculation shows that

h(θ, h0, ε) = h (δ(θ, h0, ε), h0, ε) . (2.9)

Now let (x(t, h0, ε), y(t, h0, ε)) denote the solution of system (1.1) satisfying

(x(0), y(0)) = A(h0) = q(0, h0).

Then by (2.5) we have

(x(t, h0, ε), y(t, h0, ε)) = G
(
θ(t, h0, ε), h(t, h0, ε)

)
.

In particular,

(x(τ, h0, ε), y(τ, h0, ε)) = G(2π, h(2π, h0, ε)) = q(0, h(2π, h0, ε)) ∈ l. (2.10)

Now we come back to the definition of B(h, ε) and τ̃ in (2.3). Recall that B(h, ε) is
the first return point on the cross section l that the orbit of system (1.1) starting at
A(h) ∈ l runs in the positive direction, and that τ̃ = τ̃ (h, ε) is the time that the orbit
runs from A(h) to B(h, ε). Since B(h, ε) ∈ l, it follows from (2.2) that there exists
an h̃ = h̃(h0, ε) ∈ J such that

B(h0, ε) = A
(
h̃(h0, ε)

)
= q

(
0, h̃(h0, ε)

)
∈ l.

Clearly we have h̃(h0, 0) = h0. Comparing the above equations with (2.10) gives
immediately the following

τ(h0, ε) = τ̃ (h0, ε), h̃(h0, ε) = h(2π, h0, ε).
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Therefore,

B(h0, ε) = A(P(h0, ε)), (2.11)

where P is the Poincarémap of Eq. (2.7). Thus, by Eq. (2.11) and noting H(A(h)) = h
for all h ∈ J , we have

H(B) − H(A) = H(A(P)) − H(A(h)) = P(h, ε) − h.

Hence, formula (2.8) follows from the expressions (2.3) and (2.4).
We have completed the proof of the lemma. 
�
This last lemma verifies that to seek the limit cycles of system (1.1) bifurcated from

the period annulus, we only need to search for the 2π–periodic solutions of Eq. (2.7).
For this purpose we use the averaging method. The following result is known as the
averaging theorem of higher order. See for instance, [2,6,7,18].

Lemma 2.4 For any integer k ≥ 1, there exists aC∞ smooth and 2π–periodic change
of variables of the form

ρ = h + εϕk(θ, h, ε) (2.12)

which transforms the Eq. (2.7) into a C∞ smooth and 2π–periodic equation of the
form

dρ

dθ
=

k∑
i=1

εi Ri (ρ) + εk+1Rk+1(θ, ρ, ε), (2.13)

where

R1(ρ) = 1

2π

∫ 2π

0
R(θ, ρ, 0)dθ.

Moreover, if the following conditions hold:

(1) For some integer k ≥ 1, Rk(ρ) �≡ 0, R j (ρ) ≡ 0 for j = 1, . . . , k − 1;
(2) Rk(ρ) has at most m zeros on J taking into account multiplicity,

then for ε > 0 sufficiently small each of the Eqs. (2.7) and (2.13) has at most m
2π–periodic solutions with initial values in J .

The function Rk in (2.13) is called the kth order average function of (2.7). By
Lemma 2.4 we see that one can apply averaging methods for any periodic system of
the form (2.7). We say that Eq. (2.7) is in the standard form for applying the averaging
methods. If a periodic system with a small parameter is not in the standard form, one
cannot apply the method to it directly. However, if one can find a periodic change of
variables which carries the perturbed system into the standard form, then the method
can be applied to the resulting system. See [5] for some examples.
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Note that the periodic equation obtained from system (1.1) via our action–angle
variable change of coordinates has always the standard form (2.7). So even though
there are other type of periodic differential systems than (2.7) for applying averaging
methods, we need not take care of them when we prove the equivalence between the
Melnikov method and averaging method applying to system (1.1).

Combining Lemmas 2.3 and 2.4 we get that under the two conditions in Lemma 2.4
system (1.1) for ε > 0 sufficiently small has at mostm limit cycles bifurcated from the
period annulus {Lh | h ∈ J }. Thus, considering Lemma 2.1 we can establish a relation
between the kth order average function Rk(ρ) and the kth order Melnikov function
Mk(h) for any k ∈ N, which will be presented in the next section.

3 Statement of Main Result and its Proof

Having the preparation in the last section we now can state our main result, which
characterize the equivalence between theMelnikovmethod and the averagingmethod.

Theorem 3.1 For the kth order Melnikov functions Mk defined in (2.4) and the kth
order averaging function Rk defined in (2.13), k = 1, 2, . . ., we have

M1(h) = 2πR1(h),

and for 2 ≤ l ∈ N

Ml(h) = 2πRl(h) if Mj (h) ≡ 0, j = 1, . . . , l − 1.

Proof Let ρ(θ, ρ0, ε) denote the solution of Eq. (2.13) satisfying ρ(0, ρ0, ε) = ρ0.
Then the Poincaré map of Eq. (2.13) is P(ρ0, ε) = ρ(2π, ρ0, ε).

By (2.12) we have easily

ρ0 = h0 + εϕk(0, h0, ε), P(ρ0, ε) = P(h0, ε) + εϕk(2π, P(h0, ε), ε),

where P is the Poincaré map of Eq. (2.7). Note that since ϕk is 2π–periodic in θ , we
get from this last expression that

P(ρ0, ε) − ρ0 = P(h0, ε) − h0 + ε (ϕk(0, P(h0, ε), ε) − ϕk(0, h0, ε))

= (1 + O(ε))(P(h0, ε) − h0), (3.1)

where we have used the fact that

ϕk(0, P(h0, ε), ε) − ϕk(0, h0, ε) = ∂ϕk

∂h
(0, h, ε) (P(h0, ε) − h0)

for some h between h0 and P(h0, ε), which follows from the well-known differential
mean value theorem.
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For any integer k ≥ 1, we have the Taylor expansions

P(h0, ε) = h0 +
k∑

i=1

εk Pi (h0) + O(εk+1), (3.2)

and

P(ρ0, ε) = ρ0 +
k∑

i=1

εk Pi (ρ0) + O(εk+1). (3.3)

From the Eqs. (3.1)–(3.3) and noting ρ0 = h0 + O(ε) we can obtain

P1(h0) = P1(h0),
Pl(h0) = Pl(h0), if l ≥ 2 and Pj (h0) ≡ 0, j = 1, . . . , l − 1.

(3.4)

On the other hand, using the expression of Eq. (2.13) and the expansion of its solution
ρ(θ, ρ0, ε) with respect to ε, one can prove easily

P1(ρ0) = 2πR1(ρ0),

Pl(ρ0) = 2πRl(ρ0) if l ≥ 2 and P j (ρ0) ≡ 0, j = 1, . . . , l − 1.
(3.5)

Note that by (2.8) and (3.2)

Mi (h) = Pi (h) for all i ≥ 1.

Then the proof follows from (3.4) and (3.5).
We complete the proof of the theorem. 
�
Aswe have seen, the conclusion in Theorem 3.1 is established through 4main steps

as follows.

Step 1 (Lemma 2.2) A suitable action-angle change of variables to transform the
planar system into a periodic scalar system in the region filled with periodic orbits has
been found. The action variable was chosen in a natural way to be the value of the
Hamiltonian H .

Step 2 (Lemma 2.3) The coincidence of the Poincaré map of the planar system (con-
structed when considering a transversal section with the parametrization given by the
value of H ) with the Poincarémap of the periodic scalar equation has been established.

Step 3 (Lemma 2.4) Averagingmethod has been applied to the periodic scalar equation
to produce the average equation of higher order and the average function of each order
as well.

Step 4 A relationship of the Poincaré maps of the original scalar equation and its
equation of averaging has been found. Together with step 2 this leads to the desired
conclusion.



Equivalence of the Melnikov Function Method... 479

By Theorem 3.1, we see that to study the number of limit cycles of system (1.1)
any results obtained by using averaging method of arbitrary order can also be obtained
by using the method of Melnikov function of the same order, and vice versa . In this
sense, we say that the two methods are equivalent to each other. For the case of the
first order, the relation M1(h) = 2πR1(h) is trivial, and has been noticed in [1] using
a different angle variable.

The general procedure for finding both the higher order Melnikov function and the
higher order averaging function has been developed in [4] and [5], respectively.
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13. Jebrane, A., Żoła̧dek, H.: A note on higher order Melnikov functions. Qual. Theory Dyn. Syst. 6(2),

273–287 (2005)
14. Li, J.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos

13(1), 47–106 (2003)
15. Llibre, J., Mereu, A.C., Novaes, D.D.: Averaging theory for discontinuous piecewise differential sys-

tems. J. Differ. Equ. 258, 4007–4032 (2015)
16. Llibre, J., Zhang, X.: Hopf bifurcation in higher dimensional differential systems via the averaging

method. Pac. J. Math. 240(2), 321–341 (2009)
17. Roussarie, R.: Melnikov functions and Bautin ideal. Qual. Theory Dyn. Syst. 2(1), 67–78 (2001)
18. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, second

ed. In: Applied Mathematical Sciences, vol. 59. Springer, New York (2007)


	Equivalence of the Melnikov Function Method  and the Averaging Method
	Abstract
	1 Introduction
	2 The Melnikov Method and Averaging Method
	2.1 The Method of Melnikov Functions
	2.2 The Averaging Method of Higher Order

	3 Statement of Main Result and its Proof
	Acknowledgments
	References




