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Abstract In the present paper, we consider the restricted planar (N+1)-body problem
where N ≥ 3 bodies (called primaries) interacting with one another according to
Newtonian law which are in the vertices of a regular N-gon with the origin at the
center of masses of the coordinate system. We prove that the simultaneous binary
collision between the infinitesimal mass and any primary are regularizable, through
the implementation of Birkhoff-type transformation.
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1 Introduction and Main Result

The classical N-body problem is concerned with the motion of N mass points moving
in the space according to theNewtonian law.While the restricted (N+1)-bodyproblem
studies the motion of an infinitesimal mass mN+1 under the effects of the Newtonian
gravitational force exerted by the N primaries q1, . . . , qN of masses m1, . . . ,mN ,
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respectively. In our approach we will assume that the configuration of the primaries is
a regular N-gon central configuration. Let q be the vector position of the infinitesimal
mass mN + 1 which moves on the xy-plane. Consider now N ≥ 3 particles of mass
m1, . . . ,mN moving on the same plane under the influence of the mutual gravitational
attraction and describing circular orbits around their center of mass fixed at the origin
of the coordinate system. This system rotates with the same angular velocity ω �=
0 with respect to the inertial frame. Then, the position vector of the primaries is
q j (t) = eiωt q0j (i.e., the motion of the primaries consists of circular orbits around their

center of gravity) where i2 = −1 for j = 1, 2, . . . , N , while the initial configuration
(q01 , . . . , q

0
N ) is of course a central configuration (see details in [8]).

It is a well-known that the 3-gon corresponds to an equilateral triangle, that is, it
corresponds to Lagrage’s central configuration solution of the 3-body problem, which
exist for any value of the masses. Moreover, Perko and Walter [7] and Elmabsout [5]
proved that N ≥ 4 point masses located at the vertices of a regular N-polygon form
a central configuration, if and only if, all the masses are equal. In this work we must
have in mind only these two possibilities, which will be discussed later.

In an inertial reference frame and choosing suitable units, the equations of motion
of the infinitesimal mass mN+1 are

q̈ = ∇V (q, t), (1.1)

where the Newtonian potential is given by

V (q,m1, · · · ,mN ; t) =
N∑

j=1

m j

‖q − q j (t)‖ , (1.2)

and m j are the masses of the primaries. Now we establish the equations of motion in
the rotating coordinate system given by (x, y), (see [6] for details). Thus the equations
of motion of body with mass mN + 1 in (1.1) are expressed as

ẍ − 2 ẏ = �x ,

ÿ + 2ẋ = �y,
(1.3)

where

� = �(x, y) = 1

2
(x2 + y2) + W (x, y). (1.4)

In order towrite theHamiltonian function associated to (1.3) system, let us introduce
the generalized coordinates and the generalized momenta variables

x = x, y = y,
X = ẋ − y, Y = ẏ + x .
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Then the motion ofmN+1 is governed by the autonomous and two degrees of freedom
Hamiltonian function given by

H = H(x, y, X,Y ) = 1

2
(X2 + Y 2) + yX − xY − W (x, y), (1.5)

where

W = W (x, y) =
N∑

j=1

m j

ρ j
, (1.6)

and ρ j =
√

(x − x j )2 + (y − y j )2, j = 1, 2, · · · , N such that the bodies have posi-
tions q j = (x j , y j ), j = 1, 2, · · · , N forming a central configuration solution of the
N-body problem and their center ofmass is fixed at the origin of the coordinate system.

The phase space where the equations of motions (1.3) are well defined is

M =
{
(x, y, X,Y ) ∈ R

2 × R
2 | (x, y) �= (x j , y j ), j = 1, · · · , N

}

and the points that have been removed correspond to the binary collisions between the
infinitesimal particle mN+1 and one of the primaries.

Since the motion of all bodies is carried out in a plane, we introduce the complex
variables by z = x + iy (i = √−1), then the equations (1.3) can be written as

z̈ + 2i ż = 2
∂�

∂ z̄
, (1.7)

where

�(z, z̄) = 1

2
|z|2 + V (z, z̄), (1.8)

with

V (z, z̄) =
N∑

j=1

m j

r j
, (1.9)

and

r j = |z − z j | =
√

(x − x j )2 + (y − y j )2, (1.10)

representing the distances from the infinitesimal mass to the primaries. The conjugate
momenta X and Y associated with the coordinate x and y, respectively, will be denoted
by Z = X + iY ≡ i z + ż. So, the Hamiltonian function associated to (1.7) is given
by

H = 1

2
|Z |2 + Im(z Z̄) + 1

2
|z|2 − �(z, z) (1.11)
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or equivalently

H = 1

2
|Z |2 + Im(z Z̄) − V (z, z). (1.12)

Let us define the set on the phase space where the singularities the equation of motion
(1.7) due to binary collision does not occur, given by

M = {
(z, Z) ∈ C × C | z �= z j where j = 1, 2, . . . , N

}
.

Since we will introduce a coordinate transformation such that the binary collision
singularities can be removed simultaneously, we introduce new coordinates such that
the barycenter of the primaries is the origin of this new system of coordinates.

Let us remark that in the equilateral triangle configuration the barycenter does
not always coincide with its center of mass, but in the regular N-gon (equal masses)
configuration, for N ≥ 4, its barycenter coincides with the center of mass.

Let zb = xb + iyb be the barycenter, so the translation u = z − zb = ξ + i η shifts
the origin into the barycenter. Therefore the equation (1.7) in coordinates relative to
the barycenter is given by

ü + 2i u̇ = 2
∂�

∂ ū
(u, ū) (1.13)

with

�(u, ū) = 1

2
|u + zb|2 +

N∑

j=1

m j

ρ j
, (1.14)

where ρ j = |u − u j |, u j = z j − zb, j = 1, 2, . . . , N . So, the Hamiltonian function
(1.12) becomes

H = 1

2
|U |2 + Im

(
(u + zb)U

) − V (u, u) (1.15)

where U = Z is the (complex) conjugate momenta of u and

V (u, u) =
N∑

j=1

m j

ρ j
=

N∑

j=1

m j

|u − u j | .

We remark that the Hamiltonian (1.15) has exactly N -points of singularities due
the binary collisions between the infinitesimal particle and any of the primaries. These
singularities cause that the differential equations describing the motion are undefined
because collision singularities occurs. In order to remove the singularities due to
collisions, we can introduce new coordinates, in such a way the orbits which approach
to the collision can be continued analytically through the collision, in a smoothmanner
with respect to time, thenwe say that the collision orbits have been regularized. Several
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regularizing techniques are found in the literature, one of these was given by Birkhoff
[4] which can be represented by a conformal mapping and a change of the physical
time. We now state our main result.

Theorem 1.1 Consider the planar restricted (N +1)-body problem in which the N ≥
3 bodies (primaries) are at the vertices of a regular N-gon. Then, the N singularities
due to binary collisions between the infinitesimal body and any of the primaries are
simultaneous regularizable by a canonical change of coordinates and a time-rescaling.

The proof of this theorem will be given in Sect. 3. A technical preliminary result is
given in Sect. 2.

2 Preliminary

The convention used here is that a dot always indicates a derivative with respect to the
time t, while a star ( )∗ indicates a derivative with respect to the complex variable w.

We are going to look for canonical transformations which help us to simplify the
regularization. Let u, w ∈ C, and u = g(w) a complex function. Now, we give the
following lemma which shows how the complex change of variables u = g(w) can
be extended in order to obtain a canonical (symplectic) transformation.

Lemma 2.1 Let the point transformation be given by u = g(w) such that g∗(w) �= 0,
then the transformation of the conjugate momenta U = W/ g∗(w) yields a canonical
transformation whenever g∗(w) �= 0, namely, (u,U ) 
→ (w,W ).

Proof Observe that the mapping (u,U ) 
→ (w,W ) is canonical, if and only if,

Re(Udu) = Re
(
Wdw)

Under the hypotheses we have

Udu = W

g∗(w)
du = W

g∗(w)
g∗(w) dw = Wdw,

from which the result follows. �

3 Proof of the Theorem 1.1

The proof will be performed by a suitably Birkhoff’s transformation. Since in the new
variable u, the N bodies (primaries) are in a same circle, in fact, they are disposed at
the vertices of a regular N-gon. Also, they have the additional property that the center
of the circle coincides with their barycenter configuration. With this in mind, easily it
follows the following relation among the bodies

q j+1 = ei2π/Nq j , j = 1, . . . , N − 1.
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Now, we proceed to construct the regularizing transformation as an extension or as a
Birkhoff–type, defined by

u = g(w) = αw + β

wN−1 , w ∈ C, (3.1)

where α and β are constants to be determined later on. It is clear that g(w) in (3.1)
is a conformal map satisfying the hypothesis of Lemma 2.1. Next, we introduce the
time transformation

dt

ds
= 1

|g∗(w)|2 , (3.2)

where s is the new time.
We derive that the Hamiltonian (1.15) in terms of the new variables is

H = 1

2

|W |2
|g∗(w)|2 + Im

(
(g(w) + zb)

W

g∗(w)

)
− V (w,w). (3.3)

In order to regularize the singularities, we apply a reparametrization of the solutions
by fixing the level energy and replacing the Hamiltonian (3.3) by one whose flow is
smoothly equivalent. Let us fix the energy level at h = −C/2 and the newHamiltonian
function assumes the form

H̃ = |g∗(w)|2(H + C/2),

or explicitly,

H̃ = |g∗(w)|2
[
1

2

|W |2
|g∗(w)|2 + Im

(
(g(w) + zb)

W

g∗(w)

)
− V (w,w) + C/2

]
,

= 1

2
|W |2 + Im

(
(g(w) + zb) g∗(w)W

)
− |g∗(w)|2V (w,w) + (C/2)|g∗(w)|2,

(3.4)

where

V (w,w) =
N∑

j=1

m j

|g(w) − u j | .

We observe that H̃ = 0 corresponds to H = −C/2.
The next step to achieve the desired regularization is to exhibit the convenient

values of the parameters α and β in (3.1). Firstly, we will require that the transforma-
tion involving g must eliminate all the singularities simultaneously, and secondly,
g(w) must fix all the primaries m1,m2, . . .mN , in the sense that w j = u j , for
j = 1, 2, · · · , N .
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According (3.4), it follows that the first statement must be satisfied, if we require
that

g∗(w j ) = 0, j = 1, 2, . . . , N . (3.5)

The second constraints require that

u j = g(w j ) = w j , j = 1, 2, . . . , N . (3.6)

Let us remark that w j+1 = ei2π/Nw j = ei2π j/Nw1 for j = 1, 2, 3, . . . , N . Now,
let us go to check that (3.6) conditions are satisfied, for which is enough to verify that
g(w1) = w1, where we get that

β = (1 − α)wN
1 . (3.7)

By definition of g in (3.1), we observe that conditions (3.5) is equivalent to have

g∗(w) = α

wN

(
wN − β

α
(N − 1)

)

= α

wN
(w − u1)(w − u2) · · · (w − uN ). (3.8)

Using the equation (3.8), we can verify that it must satisfy the following N condi-
tions:

w1 + w2 + w3 + · · · + wN = 0,

w1w2 + w1w3 + · · · + w1wN + w2w3 + w2w4 + · · · + w2wN + · · · +
wN−2wN−1 + wN−2wN + wN−1wN = 0, (3.9)

w1w2w3 + w1w2w4 + · · · + w1w2wN + w1w3w4 + w1w3w5 + · · · +
w1w3wN + · · · + w2w3w4 + w2w3w5 + · · · + w2w3wN + w2w4w5 +
w2w4w6 + · · · + w2w4wN + · · · + wN−3wN−2wN−1 +

wN−3wN−2wN + wN−2wN−1wN = 0,
...

...
...

w1w2 · · ·wN−2wN−1 + w1w2 · · · wN−2wN + w1w2 · · · wN−3wN1wN

+ · · · + w2w3 · · · wN−1wN = 0,

(−1)Nw1w2w3 · · · wN = −β

α
(N − 1).

In order to verify that the first N − 1 conditions of (3.9) are satisfied, it is enough to
check the first of them. Since w j+1 = ei2π j/Nw1, j = 1, . . . , N − 1 are N th roots of
the unity, their sum is zero, namely:

1 + ei2π/N + +ei4π/N + · · · + ei2π(N−1)/N = 0. (3.10)
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It yields the first condition of (3.9) which can be written as following

w1 + w2 + w3 + · · · + wN = w1 + ei2π/Nw1 + ei3π/Nw1 + · · · + ei(N−1)π/Nw1

= (1 + ei2π/N + +ei4π/N + · · · + ei2π(N−1)/N ))w1

= 0.

Again, as w j+1 = ei2π j/Nw1 from the last equation in (3.9) we have that

wN
1

N − 1
= β

α
. (3.11)

Combining equations (3.7) and (3.11), we obtain that

α = N − 1

N
, β = wN

1

N
. (3.12)

From the above considerations, it follows that

g(w) − w j = (w − w j )
2

wN−1 g̃(w), for j = 1, 2, . . . , N (3.13)

where

g̃(w) = N − 1

N
wN−2 + N − 2

N
w jw

N−3 + N − 3

N
w2

jw
N−4 N − 4

N
w3

jw
N−5

+ · · · + 2

N
wN−3

j w + 1

N
wN−2

j . (3.14)

Thuswe readily obtain that g̃(w j ) = (N−1)wN−1
j �= 0, j = 1, 2, . . . , N , in particular

we have

|g∗(w)|2
|g(w) − w j | = (N − 1)2

N 2|w|N
|w − w1|2|w − w2|2 · · · |w − uN |2

|g(w) − w j |
= (N − 1)2

N 2|w|N
|w − w1|2|w − u2|2 · · · |w − wN |2

|w − w j |2|g̃(w)|2

= (N − 1)2

N 2 |w|N−2

|w − w1|2|w − u2|2 · · · |w − w j−1|2|w − w j+1|2 · · · |w − uN |2
|g̃(w)|2 .

(3.15)

Therefore, the singularities due to binary collisions have been simultaneously
removed, and the theorem is proved. �

We finalize this section proving the following result.
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Proposition 3.1 Let u ∈ C be a complex number. For the number of pre-images of
u = g(w) we have two cases:

(i) u = w j for j = 1, 2, . . . , N has at the maximum N − 1 distinct pre-images.
(ii) u �= w j for j = 1, 2, . . . , N has N pre-images, each of them different of w j .

Proof The proof of item (i) follows using Eqs. (3.13) and (3.14), and observing that
g̃(w j ) �= 0 and g̃ is a complex polynomial of degree N − 2.

To prove (ii), we will use (3.1) and find the roots of the complex polynomial given
by

(N − 1)wN − NuwN−1 + wN
1 = 0. (3.16)

If u �= w j , we define the auxiliary function ζ(w) = (N − 1)wN − NuwN−1 + wN
1 .

Then, we calculate its complex derivative

ζ ∗(w) = N (N − 1)wN−1 − N (N − 1)uwN−2

= N (N − 1)wN−2(w − u).

From here ζ ∗(w) = 0, if and only if, w = 0 or w = u. But, ζ(0) = wN
1 �= 0 and

ζ(u) = wN
1 − uN , which is different from zero since u �= w j , j = 1, 2, . . . , N .

Therefore, it follows that ζ(w) has only simple zeroes. Thus, we concluded the proof.
�

4 Applications

In this section, we illustrate the usefulness of Theorem 1.1 with some examples of the
N -body problem.

Example In [1] was considered the problem of global regularization in the equilateral
triangle restricted four-body problem. This restricted problem is obtained assum-
ing that the primaries are in an equilateral or Lagrangian configuration, where the
authors assume that the primaries have masses m1 = 1 − 2μ, m2 = m3 = μ (with
μ ∈ [0, 1/2]), respectively. Since this configuration there exists for all the values of
the masses, in [3] was considered the study of the restricted equilateral problem for
different masses. Thus, here we are going to regularize the restricted equilateral prob-
lem for arbitrary masses. We choose units of length and orientation of the axes such
that the primaries forming an equilateral triangle (see Fig. 1), and the primaries are
located at P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3) where

x1 = |M1|
M1

√
M2,

y1 = 0,

x2 = − |M1|
2M1

[(m2 − m3)m3 + m1(2m2 + m3)]√
M2

,
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Fig. 1 The equilateral restricted
four–body problem

y2 =
√
3

2

m3√
M2

,

x3 = − |M1|
2

1√
M2

,

y3 = −
√
3

2

m2√
M2

(4.1)

where M = m1 + m2 + m3 = 1, M1 = m2(m3 − m2) + m1(m2 + 2m3) and
M2 = m2

2 + m2m3 + m2
3.

In this model the potential W in (1.9) is given by

W = W (x, y) =
3∑

j=1

m j

ρ j

= m1√
(x − x1)2 + y2

+ m2√
(x − x2)2 + (y − y2)2

+ m3√
(x − x3)2 + (y − y3)2

.

(4.2)

In order to apply Theorem 1.1, firstly we need to change the origin of the coordinate
system to the barycenter of the triangle. Note that the barycenter has coordinates

(xb, yb) :=
(

|M1|√
2M1

[
m2

2 − m1m2 − m1m3 + m2
3√

M2

]
,
m3 − m2

2
√
3
√
M2

)
.

Following the previous notation, let z = u + (xb, yb), where u = ξ + iη. We have
that the transformation locates the primaries at

ξ1 = m2+m3
2
√
M2sgn(M1)+m2(m3−m2))

,

η1 = m2−m3

2
√
3
√
M2

,

ξ2 = − m2
2
√
M2sgn(M1)

,

η2 = m2+2m3

2
√
3
√
M2

,

ξ3 = − m3
2
√
M1sgn(M1)

,

η3 = − 2m2+m3

2
√
3
√
M2

(4.3)

where u j = ξ j + iη j , j = 1, 2, 3.
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Therefore, according (3.12) the global regularization of the restricted equilateral
problem with arbitrary masses is given by

g(w) = αw + β

w2 ,

where

α = 2

3
, β = w3

1

3
= 1

3

(
(m2 + m3)

2
√
M2sgn(M1) + m2(m3 − m2))

+ i
m2 − m3

2
√
3
√
M2

)3

.

We observe the transformation for binary collisions given in [1] can be recovered
by taking masses m1 = 1 − 2μ, m2 = m3 = μ.

Now, we proceed to use Proposition 3.1. The pre-images in the case u = w j are
given by w j and the zeroes of the function g̃ given by (3.14) which in this case is

g̃(w) = 2

3

(
w + 1

2
w1

)
.

Therefore, in the case u = w j , there are exactly two pre-images, w = w j and

w = −w1

2
.

On the other hand, in the case u �= w j , according (3.16) the pre-images are given
by roots of

2w3 − 3uw2 + w3
1 = 0. (4.4)

Clearly, it has the following three different solutions

w̃1 = 1

2

⎛

⎝u + u2

(u3 − 2w3
1 + 2

√
−u3w3

1 + w6
1)

1/3

+ (u3 − 2w3
1 + 2

√
−u3w3

1 + w6
1)

1/3
)

,

w̃2,3 = u

2
− (1 ± i

√
3)u2

4

(
u3 − 2w3

1 + 2
√

−u3w3
1 + w6

1

)1/3

−1

4
(1 ∓ i

√
3)

(
u3 − 2w3

1 + 2
√

−u3w3
1 + w6

1

)1/3

.

Then, we conclude that for u �= w j there are exactly there pre-images.

Example Now consider the (4 + 1)-body problem with primaries in a regular 4-gon.
It is widely known that the only regular polygon with four sides is a square. Albouy
[2] showed that equal mass must be required, so we may suppose without loss of
generality that the primaries masses are m1 = m2 = m3 = m3 = 1.

We will assume that the primaries are fixed at (x1, y1) = (1, 0), (x2, y2) = (0, 1),
(x3, y3) = (−1, 0) and (x4, y4) = (0,−1), see Fig. 2.
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Fig. 2 The square four–body
problem

m1

m2

m3

m4

x

y

Let us remark that in this problem the barycenter and the center of mass coincide,
so it is not necessary to translate the coordinate system as in the last example. Now, to
performed the process of regularization, we are going to give the global regularizing
transformation, which comes from (3.12) obtaining

g(w) = 3

4
w + w4

1

4w3 .

We shall now apply the Proposition 3.1 to determine the number of pre-images of
the function g(w). From (3.14) we have the function

g̃(w) = 3

4
w2 + 1

2
w1w + 1

4
w4
1.

Thus in the case u = w j , there are three pre-images, namely w = w j and the
corresponding two roots of the quadratic polynomial p(w) = 3w2 + 2w1w + w4

1.

We also have that for u �= w j the number of pre-images of a point u under the
transformation g(w), we need to solve the equation given by (3.16). Explicitly these
are

w̃1(2) = u

3

− 1

3
√
2

√√√√2u2+ 3w4
1

(u2w4
1 −

√
u4w8

1−w12
1 )1/3

+ 3(u2w4
1−

√
u4w8

1−w12
1 )1/3

±1

2
√

�,

where

� = 8u2

9
− 2w4

1

3(u2w4
1 −

√
u4w8

1 − w12
1 )1/3

− 2

3
(u2 − w4

1 −
√
u4w8

1 − w12
1 )1/3

− 8
√
2u3

9

√
2u2 + 3w4

1

(u2w4
1−

√
u4w8

1−w12
1 )1/3

+ 3(u2w4
1 −

√
u4w8

1 − w12
1 )1/3

,
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and

w̃3(4) = u

3

+ 1

3
√
2

√√√√2u2+ 3w4
1

(u2w4
1−

√
u4w8

1−w12
1 )1/3

+3(u2w4
1−

√
u4w8

1 − w12
1 )1/3± 1

2

√
ζ ,

where

ζ = 8u2

9
− 2w4

1

3(u2w4
1 −

√
u4w8

1 − w12
1 )1/3

− 2

3
(u2 − w4

1 −
√
u4w8

1 − w12
1 )1/3

+ 8
√
2u3

9

√
2u2 + 3w4

1

(u2w4
1−

√
u4w8

1−w12
1 )1/3

+ 3(u2w4
1 −

√
u4w8

1 − w12
1 )1/3

.

We arrive thus at the conclusion that u = g(w) has four pre-images.
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