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Abstract In this work using as a main tool geometric–mechanics methods we study
the permanent rotations of a particular type of heavy triaxial gyrostat. Also, we obtain
sufficient conditions of stability of the permanent rotations found previously through
the Energy–Casimir method.
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1 Introduction

The general study of the dynamics of rigid bodies and gyrostats has been treated exten-
sively in the classic literature. Eulerian, Lagrangian and Hamiltonian formulations of
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such dynamics have been the main tools used in the formulation of these problems
(see for instance [7,8] or [20]).

It is known that a gyrostat is a mechanical system S made of a rigid body S1 to
which other bodies S2 are connected; these other bodies may be variable or rigid, but
must not be rigidly connected to S1, so that the movements of S2 with respect to S1
do not modify the distribution of mass within the compound system S.

For instance, we can envision a rigid main body S1, designated as the platform,
supporting additional bodies S2, which possess axial symmetry and are designated
as rotors. These rotors may rotate with respect to the platform in such a way that
the mass distribution within the system as a whole is not altered; this will produce
an internal angular momentum, designated as gyrostatic momentum, which will be
normally regarded as a constant. Note that when this constant vector is zero, the
motion of the system is reduced to the motion of a rigid body.

Vito Volterra was the first to introduce the concept of a gyrostat in [22], in order
to study the motion of the Earth’s polar axis and explaining variations in the Earth’s
latitude by means of internal movements that do not alter the planets’s distribution of
mass.

Among the various aspects related to these problems that are discussed in the
literature, we can highlight the following:

1. Equilibria and stabilities in rigid bodies and gyrostats, either with fixed point or in
orbit (see [1,2,5,10,14–16,18,21]).

2. Periodic solutions, bifurcations, or chaos, in various gyrostat motion problems
([6,9,19]).

3. Integrability and first integrals for the problem (see [3,4,11]).

Moving to the study of the motion of rigid bodies and gyrostats, we can consider
problems that are simpler, yet not less important, related to the motion of a gyrostat
with a fixed point. The study of its equilibria and stabilities in such gyrostats under the
gravity potential is interesting as a first approximation towards addressing complex
problems.

In this work new approaches, both for classical and modern problems, can arise
through the introduction of new mathematical tools. Using mechanics–geometry is
one way for such problems to be addressed, as well as new perspectives in their study
to be developed. In this paper, we will use such methods to describe the relative
equilibria and sufficient conditions of stability of a heavy triaxial gyrostat with a fixed
point. We are going to use as tools a variational characterization of relative equilibria
and the Energy–Casimir method, that provides sufficient conditions for the Lyapunov
stability. The permanent rotations of a heavy rigid body are called Staude rotations in
honour to O. Staude (see [17]). The Staude rotations are equilibrium solutions of the
Lie-Poisson equations of a heavy rigid body. A very detailed treatment of the Staude
rotations of a heavy rigid body are exposed in [11]. The results obtained in this work
generalize the results obtained for the heavy rigid body and recover, by these new
methods, some classical results for gyrostats in [1,2,5,18] y [14]. In fact, in [5] in
a classical way, similar to Mlozeevskii-Staude, the permanent axes of motion for a
heavy gyrostat near an inmovable point are studied; in [1] the stability of permanent
rotations of a gyrostat, by constructing a Lyapunov function as a combination of the
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first integrals of motion, is studied and sufficient conditions of stability are given, in
the case in which the vector of gyrostatic momentum passes through the center of mass
of the gyrostat and coincides with a principal axis of inertia, his results coincides with
our results; in [18] the permanent axes of rotation of a gyrostat, under the action of
forces resulting of a force functionU that depends only on the position of the gyrostat,
approximating U por U 2 are given and sufficient conditions of stability for the case
in which the gyrostatic momentum is collinear with the vector angular velocity are
obtained; in [2] as was done by Rumiantsev, using the second method of Lyapunov,
the cone of permanent axes of a gyrostat with a fixed point and the domain stability
is investigated; finally in [14] the Routh–Lyapunov theorem and its inverse is used
to investigate the satability and bifurcationn of the steady state motions of a heavy
gyrostat with a freely rotation rotor.

2 Lie–Poisson Equations of a Heavy Gyrostat with a Fixed Point

Let the rigid part of a gyrostat S be fixed in one of its points O , which will be taken
as the origin of two systems of reference; one fixed OX1X2X3 and another mobile
Ox1x2x3, fixed in the body, and whose axes are directed according to the principal
inertia directions of the gyrostat at O . We will suppose that the only external forces
come from the Newtonian attraction that a fixed point P (or a rigid body with a
spherical distribution of masses) of mass M exerts over the gyrostat S, of total mass
m. Besides, if the relative motion of its mobile part with respect to its rigid part is
supposedly known, the system of axes OX1X2X3 is chosen in such a way that the
point P is over the axis OX3, in its negative part, at a constant distance r = |OP|, so
that r = −rk, being k = (k1, k2, k3) the unitary vector of the axis OX3 expressed in
the mobile system and the mutual potential between the point P and the gyrostat S is
given by the function U , then according to the angular momentum theorem and the
kinematic equations of Poisson, the equations of motion of this problem in the mobile
system (see [11]) takes the form:

dπ1

dt
=

(
I2 − I3
I2 I3

)
π2π3 + l2π3

I3
− l3π2

I2
+ k2

∂U

∂k3
− k3

∂U

∂k2
dπ2

dt
=

(
I3 − I1
I3 I1

)
π1π3 + l3π1

I1
− l1π3

I3
+ k3

∂U

∂k1
− k1

∂U

∂k3
dπ3

dt
=

(
I1 − I2
I2 I1

)
π1π2 + l1π2

I2
− l2π1

I1
+ k1

∂U

∂k2
− k2

∂U

∂k1
dk1
dt

= k2π3

I3
− k3π2

I2
dk2
dt

= k3π1

I1
− k1π3

I3
dk3
dt

= k1π2

I2
− k2π1

I1
(1)
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where

• I = diag(I1, I2, I3) is the diagonal inertia tensor;
• π = (π1, π2, π3) is the angular momentum of the gyrostat considered as a rigid
body;

• � = π + l is the total angular momentum vector for the gyrostat, where l =
(l1, l2, l3) is the gyrostatic momentum, assumed to be constant;

• k = (k1, k2, k3) is the Poisson vector;
• v1·v2 is the scalar (vector) product in R3;
• |v| is the Euclidean norm of v ∈ R

3;
• × is the cross (vector) product in R3;
• z = (π ,k) = (π1, π2, π3, k1, k2, k3);
• ∇z f is the gradient of f with respect to the vector z ∈ R

6.

In order to apply the Energy–Casimir method, we must declare the mechanical
system in question to be a Lie–Poisson system with a certain Hamiltonian function
H, in this case it is given by the formula

H= 1

2

(
π2
1

I1
+ π2

2

I2
+ π2

3

I3

)
+U (k1, k2, k3)

Then, it is easy to see that the Eq. (1) can be written in vector form using the
following relations

dπ

dt
= (π + l) × ∇πH + k × ∇kH

dk
dt

= k × ∇πH (2)

Finally, we provide (using [12]) the following result that completely describes the
equations as a Lie–Poisson system.

Proposition 1 (Lie–Poisson brackets of a gyrostat with a fixed point). The geometric
structure associated to the motion of a gyrostat with a fixed point O and constant
gyrostatic momentum, is given by the following Lie–Poisson brackets:

{F,G}(π ,k) = −(π + l) · (∇π F × ∇πG) − k · (∇π F × ∇kG + ∇kF × ∇πG)

defined in R
3 × R

3, where F,G ∈ C∞(R3 × R
3), π = (π1, π2, π3) is the angular

momentum of the gyrostat S, considered as a rigid body, k = (k1, k2, k3) is the Poisson
vector and l = (l1, l2, l3) is the gyrostatic momentum.
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The Poisson tensor associated to the brackets, is given by the matrix:

B(π ,k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −π3 − l3 π2 + l2 0 −k3 k2
π3 + l3 0 −π1 − l1 k3 0 −k1
−π2 − l2 π1 + l1 0 −k2 k1 0
0 −k3 k2 0 0 0
k3 0 −k1 0 0 0
−k2 k1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

And the Lie–Poisson equations associated to the Hamiltonian

H= 1

2

(
π2
1

I1
+ π2

2

I2
+ π2

3

I3

)
+U (k1, k2, k3)

are expressed by the formulas (2).

Remark 2 Note that, if the gyrostatic momentum is zero then these equations are
reduced to the equations of the rigid body with a fixed point.

The problem has two Casimir functions given by

(π + l) · k = (π1 + l1)k1 + (π2 + l2)k2 + (π3 + l3)k3 = pψ

with pψ ∈ R and

| k |2= k21 + k22 + k23 = 1.

This system has, in general, three integrals of motion in involution, the Hamiltonian
H and the two previous casimir functions.

2.1 The Gravitational Potential

We consider the Newtonian attraction of a point P(x, y, z), of mass M, on a body S,

of total massm. The elementary force df with the point P attracts the point P
′
of mass

dm, of the body S, is given by

df = −GM
�

| � |3

being � = r
′ − r, the vector of P

′
related to P, and G the universal gravitational

constant.
The total force f of the point P on the body S, is

f = −GM
∫
S

�

| � |3 dm
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If we keep in mind that, with regard to the coordinates (x ′, y′, z′) of P′ and (x, y, z)
of P the following relationship is verified

∇r′(
1

| � | ) = −∇r(
1

| � | ) = − �

| � |3

we can introduce the potential function V given by

U = −GM
∫
S

1

| � |dm

obtaining

f = ∇r(U ).

Let us see that the function U can be expressed by means of a series. We consider

r =| r |, r ′ =| r′ |, h = r ′

r

with θ is the angle formed for P, O and P′ and

| � |2 = r2 + r ′2 − 2rr ′ cos θ

cos θ = r · r′

rr ′ .

For r ′ < r we obtain the following power series

1

| � | = 1

r
√
1 − 2h cos θ + h2

= 1

r

∞∑
n=0

hn Pn(cos θ)

with Pn(x) the Legendre polynomials given by

Pn(x) = 1

n!2n
dn[(x2 − 1)n]

dxn
.

The potential function U is given by the following power series

U =
∞∑
n=0

Un = −GM

r

∞∑
n=0

∫
S

hn Pn(cos θ)dm

where the series converges absolutely for r > R, being R the maximum of r ′ corre-
sponding to points of S.
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Fig. 1 The multipolar series of the potential

In this work we consider the first terms of the previous series which are

U0 = −GM

r

∫
S

dm = −GM

r
,

U1 = −GM

r

∫
S

r ′

r
cos θdm = −GM

r3

∫
S

rr ′ cos θdm = −GM

r3
r·

∫
S

r′dm

= −GMm

r3
r · r0 = mg(x0k1 + y0k2 + z0k3)

where r0 = (x0, y0, z0) is the position of the mass center of S in the mobile frame
Ox1x2x3. Note that, the first term of the multipolar development of the potential U0
is a numerical constant (Fig. 1).

2.2 Equations of Motion of a Heavy Gyrostat with a Fixed Point

In the Eq. (1) if the gravitational potential U considered is U0 +U1 then

dπ1

dt
=

(
I2 − I3
I2 I3

)
π2π3 + l2π3

I3
− l3π2

I2
+ mg (z0k2 − y0k3)

dπ2

dt
=

(
I3 − I1
I3 I1

)
π1π3 + l3π1

I1
− l1π3

I3
+ mg (x0k3 − z0k1)
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dπ3

dt
=

(
I1 − I2
I2 I1

)
π1π2 + l1π2

I2
− l2π1

I1
+ mg (y0k1 − x0k2)

dk1
dt

= k2π3

I3
− k3π2

I2
dk2
dt

= k3π1

I1
− k1π3

I3
dk3
dt

= k1π2

I2
− k2π1

I1
(3)

In the following sections we study the equilibrium solutions and sufficient conditions
for the stability of the same ones in the case of a heavy gyrostat with this particular
mass geometry and gyrostatic momentum:

• The mass center of the gyrostat lies in one of the principal axis of inertia at the
point O, the axis Ox1.

• The gyrostatic momentum is l = (l1, 0, 0).

3 Staude Rotations

Recall that the Staude rotations are the permanent rotations of the gyrostat i. e. the
equilibrium solutions of the Lie–Poisson equations of a heavy gyrostat. In this section
we characterize the equilibrium solutions of (3) under the two previous mentioned
hypotesis. In [11], pages 65–93, we obtain the following result for a heavy rigid body
in absence of gyrostatic momentum l.

Proposition 3 For a heavy rigid body with mass center in the principal inertia axis
Ox1 the only Staude rotations are the following

E1 = (π1 = I1ω sin ϕ, π2 = I2ω cosϕ, π3 = 0, k1 = sin ϕ, k2 = cosϕ, k3 = 0)

E2 = (π1 = 0, π2 = I2ω sin ϕ, π3 = I3ω cosϕ, k1 = 0, k2 = sin ϕ, k3 = cosϕ)

E3 = (π1 = I1ω sin ϕ, π2 = 0, π3 = I3ω cosϕ, k1 = sin ϕ, k2 = 0, k3 = cosϕ)

E4 = (π1 = I1ω, π2 = 0, π3 = 0, k1 = ±1, k2 = 0, k3 = 0)

E5 = (π1 = 0, π2 = I2ω, π3 = 0, k1 = 0, k2 = ±1, k3 = 0)

E6 = (π1 = 0, π2 = 0, π3 = I3ω, k1 = 0, k2 = 0, k3 = ±1)

with ω2 = mgx0
2(I1−I2) sin ϕ

for E1, ω2 = mgx0
2(I2−I3) sin ϕ

for E2 and ω2 = mgx0
2(I1−I3) sin ϕ

for
E3. On the other hand, ω ∈ R is a free parameter for E4,E5 and E6. Also for E1

Variation of ϕ Geometry of Mass
(0, π) x0 < 0, I2 < I1

x0 > 0, I2 > I1
(π, 2π) x0 < 0, I2 > I1

x0 > 0, I2 < I1

(4)
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Similar results are valid for E2 and E3.

The main result of this section is the following.

Theorem 4 For a heavy gyrostat with mass center in the principal inertia axis Ox1
and gyrostatic momentum l = (l1, 0, 0), the only Staude rotations of (3) are the
following points of R3 × S2

E1 = (π1 = I1ω sin ϕ, π2 = I2ω cosϕ, π3 = 0, k1 = sin ϕ, k2 = cosϕ, k3 = 0)

E2 = (π1 = I1ω sin ϕ, π2 = 0, π3 = I3ω cosϕ, k1 = sin ϕ, k2 = 0, k3 = cosϕ)

E3 = (π1 = I1ω, π2 = 0, π3 = 0, k1 = ±1, k2 = 0, k3 = 0)

E4 = (π1 = 0, π2 = I2ω, π3 = 0, k1 = 0, k2 = ±1, k3 = 0)

E5 = (π1 = 0, π2 = 0, π3 = mgx0
l

, k1 = 0, k2 = 0, k3 = ±1)

with

(
ω + l1

2(I1 − I2) sin ϕ

)2

= mgx0
2(I1 − I2) sin ϕ

+
(

l1
2(I1 − I2) sin ϕ

)2

for E1 and

(
ω + l1

2(I1 − I3) sin ϕ

)2

= mgx0
2(I1 − I3) sin ϕ

+
(

l1
2(I1 − I3) sin ϕ

)2

for E2. For E3 and E4, ω ∈ R is a free parameter. The conditions (4) are the same for
E1 and E2.

Proof From the Eq. (3)we obtain in an immediateway that the pointsEi for i = 3, 4, 5
are stationary solutions. The other Staude rotations of (3) are critical points of the
following function

Hλ,μ = 1

2

(
π2
1

I1
+ π2

2

I2
+ π2

3

I3

)
+ mgx0k1 + λ(π + l) · k + μ | k |2

with λ and μ real parameters to determine.
According to the equations of motion, we can deduce that for all Staude rotations

must verify 
 = ωk, being 
 =
(

π1

I1
,
π2

I2
,
π3

I3

)
the angular velocity of S and ω ∈ R.

Moreover, all equilibria are also tied by (π1+ l1)k1+π2k2+π3k3 = pψ with pψ ∈ R

and k21 + k22 + k23 = 1. We can assume that these have the expression

E = (I1ωu, I2ωv, I3ωw, u, v, w)

with u2 + v2 + w2 = 1. Using

{
∂Hλ,μ

∂πi

∣∣∣∣
E

= 0,
∂Hλ,μ

∂ki

∣∣∣∣
E

= 0, i = 1, 2, 3

}
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we obtain v = 0 or w = 0. Considering w = 0 using u2 + v2 = 1 we propose for
possible solution of the previous system

E1 = (π1 = I1ω sin ϕ, π2 = I2ω cosϕ, π3 = 0, k1 = sin ϕ, k2 = cosϕ, k3 = 0)

and if v = 0 using u2 + w2 = 1 the following

E2 = (π1 = I1ω sin ϕ, π2 = 0, π3 = I3ω cosϕ, k1 = sin ϕ, k2 = 0, k3 = cosϕ).

The multipliers are λ = −ω and μ = Bω2/2 for E1 and μ = Cω2/2 for E2. After
some computations, the angular velocity of rotation ω satisfies the following equation

(
ω + l1

2(I1 − I2) sin ϕ

)2

= mgx0
2(I1 − I2) sin ϕ

+
(

l1
2(I1 − I2) sin ϕ

)2

for E1 and

(
ω + l1

2(I1 − I3) sin ϕ

)2

= mgx0
2(I1 − I3) sin ϕ

+
(

l1
2(I1 − I3) sin ϕ

)2

for E2. ��

4 Sufficient Conditions of Stability of the Staude Rotations

We are going to use the Energy–Casimir method, see [13] for details, to obtain the suf-
ficient conditions for the Lyapunov stability of the Staude rotations Ei , i = 1, 2, 3, 4.

Theorem 5 (Energy–Casimir) Be (M,B,H) a Lie–Poisson system. We consider ze a
equilibrium of the equations

dz
dt

= B(z)∇zH(z).

Be C1,C2, . . . ,Cr ∈ F(M) integrals of the system and

Hφ1,φ2,...,φr = H +
r∑

i=1

φi (Ci )

where φi ∈ C∞(R), i = 1, . . . , r takes so that dHφ1,...,φr (ze) = 0. Then, if
d2Hφ1,...,φr (ze) |W ×W being

W = ker dC1(ze) ∩ ker dC2(ze) ∩ . . . ∩ ker dCr (ze)

is defined positive or negative, then ze is stable in the sense of Lyapunov. In particular,
if W = 0, then ze is stable in the sense of Lyapunov.



On Sufficient Conditions of Stability 275

4.1 Sufficient Conditions of Stability of E1 and E2

The main result is the following:

Theorem 6 A sufficient condition for the Lyapunov stability of E1 is

I2 > I1,

I2 > I3. (5)

A sufficient condition for the Lyapunov stability of E2 is

I3 > I1,

I3 > I2. (6)

Proof Similarly, we consider the function

Hφ1,φ2 = 1

2

(
π2
1

I1
+ π2

2

I2
+ π2

3

I3

)
+ mgx0k1 + φ1((π + l) · k)+φ2(| k |2)

with φi smooth real functions with φ′′
1 (Ei ) = 0 and φ′′

2 (Ei ) = 0 for i = 1, 2. The
multipliers are λ = φ′

1(Ei ) = −ω andμ = φ′
1(Ei ) = I2ω2/2 forE1 orμ = φ′

1(Ei ) =
I3ω2/2 for E2 respectively. The Hessian matrix d2Hφ1,φ2(Ei ) for i = 1, 2 are

d2Hφ1,φ2(Ei ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
I1

0 0 λ 0 0
0 1

I2
0 0 λ 0

0 0 1
I3

0 0 λ

λ 0 0 2μ 0 0
0 λ 0 0 2μ 0
0 0 λ 0 0 2μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Computing W = ker dC1(Ei ) ∩ ker dC2(Ei ) with C1 = φ1((π + l) · k)) and C2 =
φ2(| k |2) we obtain

W = span ({cosϕ e1 − sin ϕ e2, e3, cosϕ e4− sin ϕ e5, e6})

for E1 and

W = span ({cosϕ e1 − sin ϕ e3, e2, cosϕ e4− sin ϕ e6, e5})

for E2 with B={ei }i=1..6 the canonical basis of R6. Then d2Hφ1,φ2(Ei )
∣∣
W ×W

are

d2Hφ1,φ2(E1)

∣∣∣
W ×W

=

⎛
⎜⎜⎜⎝

cos2 ϕ(I2−I1)+I1
I2 I1

0 λ 0
0 1

I3
0 0

λ 0 2μ 0
0 0 0 2μ

⎞
⎟⎟⎟⎠



276 M. T. Bustos Muñoz et al.

and

d2Hφ1,φ2(E2)

∣∣∣
W ×W

=

⎛
⎜⎜⎜⎝

cos2 ϕ(I3−I1)+I1
I3 I1

0 λ 0
0 1

I2
0 0

λ 0 2μ 0
0 0 0 2μ

⎞
⎟⎟⎟⎠ .

The Sylvester criterion for positive definiteness of the matrix d2Hφ1,φ2(E1)
∣∣
W ×W are

the following

�1 = cos2 ϕ(I2 − I1) + I1
I2 I1

> 0, �2 = 2μ − λ2 I2
I2 I3

> 0,

�3 =
∣∣∣∣d2Hφ1,φ2(E1)

∣∣∣
W ×W

∣∣∣∣ = 2μ
(
2μ − λ2 I2

)
I2 I3

> 0. (7)

Analogously, the Sylvester criterion for positive definiteness of the matrix d2Hφ1,φ2

(E2)|W ×W
are

�1 = cos2 ϕ(I3 − I1) + I1
I3 I1

> 0, �2 = 2μ − λ2 I1
I1 I3

> 0,

�3 =
∣∣∣∣d2Hφ1,φ2(E2)

∣∣∣
W ×W

∣∣∣∣ = 2μ
(
2μ − λ2 I1

)
I1 I3

> 0. (8)

Using the values of λ = −ω and μ = I2ω2/2 in () we obtain the sufficient conditions

�1 = cos2 ϕ(I2 − I1) + I1
I2 I1

> 0, �2 = ω2 cos2 ϕ(I2 − I1)

I3 I1
> 0,

�3 = ω4 cos2 ϕ(I2 − I1)(I2 − I3)

I3 I1
> 0.

with are equivalent to (5). Using λ = −ω andμ = I3ω2/2 in () we obtain the sufficient
conditions

�1 = cos2 ϕ(I3 − I1) + I1
I2 I1

> 0, �2 = ω2 cos2 ϕ(I3 − I1)

I3 I1
> 0,

�3 = ω4 cos2 ϕ(I3 − I1)(I3 − I2)

I3 I1
> 0.

with are equivalent to (10). ��
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4.2 Sufficient Conditions of Stability of E3 and E4

The Staude rotation E3 and E4 correspond physically to the motion of the gyrostat
around the principal inertia axis Ox1 and Ox2 respectively. The main result is the
following:

Theorem 7 A sufficient condition for the Lyapunov stability of E3 is

(I1 − I2)ω
2 + l1ω > ±mgx0,

(I1 − I3)ω
2 + l1ω > ±mgx0. (9)

A sufficient condition for the Lyapunov stability of E4 is

(I2 − I3)ω
2 + l1ω > ±mgx0,

(I2 − I1)ω
2 + l1ω > ±mgx0. (10)

Proof Now, we consider the function

Hφ1,φ2 = 1

2

(
π2
1

I1
+ π2

2

I2
+ π2

3

I3

)
+ mgx0k1 + φ1((π + l) · k)+φ2(| k |2)

with φi smooth real functions with φ′′
1 (Ei ) = 0 and φ′′

2 (Ei ) = 0. The multipliers are
λ = φ′

1(Ei ) = ∓ω and μ = φ′
1(Ei ) = (I1ω2 + l1ω ∓mgx0)/2 or μ = (I1ω2 + l1ω ∓

mgx0)/2 for E3 and E4, respectively. The Hessian matrix d2Hφ1,φ2(Ei ) for i = 3, 4
are

d2Hφ1,φ2(Ei ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
I1

0 0 λ 0 0
0 1

I2
0 0 λ 0

0 0 1
I3

0 0 λ

λ 0 0 2μ 0 0
0 λ 0 0 2μ 0
0 0 λ 0 0 2μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Computing W = ker dC1(Ei ) ∩ ker dC2(Ei ) with C1 = φ1((π + l) · k) and C2 =
φ2(| k |2) we obtain

W = span ({e2, e3, e5, e6})

for E3 and

W = span ({e1, e3, e4, e6})
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for E4 with B={ei }i=1..6 the canonical basis of R6. Then d2Hφ1,φ2(Ei )
∣∣
W ×W

are

d2Hφ1,φ2(E3)

∣∣∣
W ×W

=

⎛
⎜⎜⎝

1
I2

0 λ 0
0 1

I3
0 0

λ 0 2μ 0
0 0 0 2μ

⎞
⎟⎟⎠ .

and

d2Hφ1,φ2(E4)

∣∣∣
W ×W

=

⎛
⎜⎜⎝

1
I1

0 λ 0
0 1

I3
0 0

λ 0 2μ 0
0 0 0 2μ

⎞
⎟⎟⎠ .

The Sylvester criterion for positive definiteness of the matrix d2Hφ1,φ2(E3)
∣∣
W ×W

are
the following

�1 =
∣∣∣∣∣∣
1
I2

0 λ

0 1
I3

0
λ 0 2μ

∣∣∣∣∣∣ = 2μ − λ2 I2
I2 I3

> 0,

�2 =
∣∣∣∣d2Hλ,μ(E3)

∣∣∣
W ×W

∣∣∣∣ = 2μ
(
2μ − λ2 I2

)
I2 I3

. (11)

Analogously, the Sylvester criterion for positive definiteness of the matrix d2Hλ,μ

(E4)|W ×W
are

�1 =
∣∣∣∣∣∣
1
I1

0 λ

0 1
I3

0
λ 0 2μ

∣∣∣∣∣∣ = 2μ − λ2 I1
I1 I3

> 0,

�2 =
∣∣∣∣d2Hλ,μ(E4)

∣∣∣
W ×W

∣∣∣∣ = 2μ
(
2μ − λ2 I1

)
I1 I3

. (12)

Using λ = ∓ω and μ = (I1ω2 + l1ω ∓ mgx0)/2 in (11) we obtain the sufficient
conditions (9). Using λ = ∓ω and μ = (I2ω2 + l1ω ∓mgx0)/2 in (12) we obtain the
sufficient conditions (10). ��

Remark 8 For the permanent rotation E5, the Energy–Casimir Method don’t give
us information about sufficient conditions of stability because the quadratic form is
semidefinite. Local analysis using canonical variables are needed. This investigation
is a work in progress.
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5 Conclusions

In this paper we consider the non-canonical Hamiltonian dynamics of a heavy gyrostat
with a fixed point with themass center of the gyrostat placed in one of the principal axis
of inertia at the point O , the axis Ox, andwith gyrostatic momentum l = (l1, 0, 0).By
means of geometric–mechanics methods we study the Staude rotations of this system.
Also, we use the Energy–Casimir method to obtain sufficient conditions of the Staude
rotations Ei , i = 1, 2, 3, 4.

Derive this conditions applying the classicalmethod of Lyapunov–Chetaev has very
tedious and less systematic that the method of the Energy–Casimir. The advantages
of the last method in stability problems of gyrostat dynamics is clear.
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