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Abstract This is a survey on recent results on the Darboux integrability of poly-
nomial vector fields in R

n or C
n with n ≥ 2. We also provide an open question and

some applications based on the existence of such first integrals.
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1 Introduction

In many branches of applied mathematics, physics and, in general, in applied sciences
appear nonlinear ordinary differential equations. If a differential equation or vector
field defined on a real or complex manifold has a first integral, then its study can be
reduced by one dimension. Therefore a natural question is: Given a vector field on a
manifold, how to recognize if this vector field has a first integral defined on an open
and dense subset of the manifold? In general this question has no a good answer up to
now.
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In this survey we provide sufficient conditions for the existence of a first integral for
polynomial vector fields in R

n or C
n with n ≥ 2. An open question which essentially

goes back to Poincaré is presented. Finally some applications of the existence of this
kind of first integrals to physical problems, centers, foci, limit cycles and invariant
hyperplanes are mentioned.

2 Darboux Theory of Integrability

Since any polynomial differential system in R
n can be thought as a polynomial dif-

ferential system inside C
n we shall work only in C

n . If our initial differential system
is in R

n, once we get a complex first integral of this system inside C
n the real and

the imaginary parts of it are real first integrals. Moreover if that complex first integral
is rational, the same occur for its real and imaginary parts. In short in the rest of the
paper we shall work in C

n .

In this section we study the existence of first integrals for polynomial vector fields
in C

n through the Darboux theory of integrability. The algebraic theory of integrabil-
ity is a classical one, which is related with the first part of the Hilbert’s 16th problem
[19]. This kind of integrability is usually called Darboux integrability, and it provides
a link between the integrability of polynomial vector fields and the number of invari-
ant algebraic hypersurfaces that they have (see Darboux [13] and Poincaré [36,37]).
This theory shows the fascinating relationships between integrability (a topological
phenomenon) and the existence of exact algebraic invariant hypersurfaces formed by
solutions for the polynomial vector field. This theory is now known as the Darboux
theory of integrability, see for more details the Chapter 8 of [16].

2.1 Polynomial Vector Fields in C
n

As usual C[x] = C[x1, . . . ,xn] denotes the ring of all complex polynomials in the
variables x1, . . . ,xn . We consider the polynomial vector field in C

n

X =
n∑

i=1

Pi (x)
∂

∂xi
, x = (x1, . . . ,xn) ∈ C

n,

where Pi = Pi (x) ∈ C[x] have no common factor for i = 1, . . . , n. The integer
d = max{degP1, . . . , degPn} is the degree of the vector field X . Usually for simplic-
ity the vector field X will be denoted by (P1, . . . , Pn).

2.2 Invariant Algebraic Hypersurfaces and Darboux Polynomials

Let f = f (x) ∈ C[x]. We say that { f = 0} ⊂ C
n is an invariant algebraic hypersur-

face or f is a Darboux polynomial of the vector field X if there exists a polynomial
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K f ∈ C[x] such that

X ( f ) =
n∑

i=1

Pi
∂ f

∂xi
= f K f .

The polynomial K f is called the cofactor of f. Note that from this definition the degree
of K f is at most d−1, and also that if a solution orbit of the vector field X has a point on
f = 0, then the whole orbit is contained in f = 0. This justifies the name of invariant
algebraic hypersurface, because it is invariant by the flow of the vector field X .

Of course if the dimension n is equal to 2, then an invariant algebraic hypersurface
is an invariant algebraic curve.

If the polynomial f is irreducible in C[x], then we say that f = 0 is an irreducible
invariant algebraic hypersurface, or that f is an irreducible Darboux polynomial.

We remark that in the definition of invariant algebraic hypersurface f = 0 we
always allow this curve to be complex; that is f ∈ C[x] even in the case of a real
polynomial vector fields. As we will see this is due to the fact that sometimes for real
polynomial vector fields the existence of a real first integral can be forced by the exis-
tence of complex invariant algebraic hypersurfaces, see for more details the chapter 8
of [16]. Of course when we look for a complex invariant algebraic hypersurface of a
real polynomial system we are thinking of the real polynomial system as a complex
one.

The next result shows that it is sufficient to look for the irreducible invariant alge-
braic hypersurfaces or irreducible Darboux polynomials.

Proposition 1 Suppose f ∈ C[x] and let f = f n1
1 . . . f nr

r be its factorization into
irreducible factors over C[x]. Then for a polynomial vector field X , f = 0 is an
invariant algebraic hypersurface with cofactor K f if and only if fi = 0 is an invari-
ant algebraic hypersurface for each i = 1, . . . , r with cofactor K fi . Moreover K f =
n1 K f1 + · · · + nr K fr .

For a proof of Proposition 1 see for instance [22].

2.3 Exponential Factors

If f, g ∈ C[x] are coprime, we write ( f, g) = 1. Suppose that ( f, g) = 1, we say that
exp(g/ f ) is an exponential factor of the vector field X if there exists a polynomial
Le ∈ C[x] of degree at most d − 1 such that

X (exp(g/ f )) = exp(g/ f )Le.

The polynomial Le is called the cofactor of the exponential factor. It is easy to prove
that if exp(g/ f ) is an exponential factor, then f = 0 is an invariant algebraic hyper-
surface. For a proof see again see [22].
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2.4 Multiplicity of an Invariant Algebraic Hypersurface or of a Darboux Polynomial

Let Cm[x] be the C-vector space of polynomials in C[x] of degree at most m. Then it

has dimension R =
(

n + m
n

)
. Let v1, . . . , vR be a basis of Cm[x]. Denote by MR

the R × R matrix

⎛

⎜⎜⎜⎝

v1 v2 . . . vR

X (v1) X (v2) . . . X (vR)
...

...
. . .

...

X R−1(v1) X R−1(v2) . . . X R−1(vR)

⎞

⎟⎟⎟⎠ , (1)

where X k+1(vi ) = X (X k(vi )). Then det MR is called the m-th extactic polynomial
of X . From the properties of the determinant we note that the extactic polynomial
is independent of the choice of the basis of Cm[x] up to a nonzero constant factor.
Observe that if f = 0 is an invariant algebraic hypersurface of degree m of X , then
f divides the polynomial det MR . This is due to the fact that if f is a member of a
basis of Cm[x], then f divides the whole column in which f is located.

We say that an irreducible invariant algebraic hypersurface f = 0 of degree m has
defined algebraic multiplicity k or simply algebraic multiplicity k if det MR �≡ 0 and
k is the maximum positive integer such that f k divides det MR ; and it has no defined
algebraic multiplicity if det MR ≡ 0.

We remark that the matrix (1) already appears in the work of Lagutinskii (see also
Dobrovol’skii et al. [15]). For a modern definition of the m-th extactic hypersurface
and a clear geometric explanation of its meaning, the readers can consult Pereira [34].
Christopher et al. [11] assuming the irreducibility of the invariant algebraic curves
used the extactic curve to study the algebraic multiplicity of invariant algebraic curves
of planar polynomial vector fields, and prove the equivalence of the algebraic multi-
plicity with other three ones: the infinitesimal multiplicity, the integrable multiplicity
and the geometric multiplicity.

2.5 Multiplicity and Exponential Factors

The next result presents a characterization under suitable assumptions of the algebraic
multiplicity of an invariant algebraic hypersurface using the number of exponential
factors of X associated with the invariant algebraic hypersurface. This characteriza-
tion due to Llibre and Zhang [28] extends the algebraic multiplicity introduced by
Christopher, Llibre and Pereira in [11] for invariant algebraic curves of C

2 to invariant
algebraic hypersurfaces of C

n . This result is a key point in the Darboux theory of
integrability in arbitrary dimension.

Theorem 2 Let X be a polynomial vector field. For a given irreducible invariant
algebraic hypersurface f = 0 of X with f of degree m, assume that X restricted to
f = 0 has no rational first integral. Then f has a defined algebraic multiplicity k if
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and only if the vector field X has k − 1 exponential factors exp(gi/ f i ), where gi is a
polynomial of degree at most i · m and (gi , f ) = 1, for i = 1, . . . , k − 1.

We remark that if X is a planar vector field, then clearly Theorem 2 always holds
without the assumption on the non-existence of rational first integrals on f = 0. For
higher dimensional systems the assumption is necessary as the following example
shows.

The real polynomial differential system

ẋ = 1, ẏ = y(y − 2z), ż = −z(y − z),

has z = 0 as an invariant plane of multiplicity 2 and its restriction to z = 0 has the
rational first integral x + 1/y. But this system has no exponential factor associated
with z = 0 as it is proved in the appendix.

This example shows that the additional assumption on the non-existence of the
rational first integral on the invariant algebraic hypersurface for polynomial vector
fields of dimension larger than 2 is necessary.

2.6 Darboux First Integral

Let M be an open and dense subset of C
n . A non-constant function H : M → C is

a first integral of the polynomial vector field X on M if it is constant on all orbits of
X contained in M ; i.e. H(x(t)) = constant for all values of t for which the solution
x(t) is defined and contained in M. Clearly H is a first integral of X on M if and
only if X (H) = 0 on M. Of course a rational first integral is a first integral given by
a rational function, defined in the open subset of C

n where its denominator does not
vanish. A Darboux first integral is a first integral of the form

(
r∏

i=1

f li
i

)
exp(g/h),

where fi , g and h are polynomials, and the li ’s are complex numbers.

2.7 Classical Darboux Theory of Integrability in C
n

The classical Darboux theory of integrability in C
n with n ≥ 2 is summarized in the

next theorem.

Theorem 3 Assume that the polynomial vector field X in C
n of degree d > 0 has

irreducible invariant algebraic hypersurfaces fi = 0 for i = 1, . . . , p such that fi

are pairwise relatively prime. Then the following statements hold.

(a) If p ≥ N + 1, then the vector field X has a Darboux first integral, where

N =
(

n + d − 1
n

)
.

(b) If p ≥ N + n, then the vector field X has a rational first integral.
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Statement (a) of Theorem 3 is due to Darboux [13,14], and statement (b) of Theo-
rem 3 was proved by Jouanolou [20]. For a short proof of statement (b) see Christopher
and Llibre [8,9] for n = 2 and Llibre and Zhang [30] for n ≥ 2.

2.8 Darboux Theory of Integrability in C
n

The following theorem improves the classical Darboux theory of integrability taking
into account not only the invariant algebraic hypersurfaces but also their algebraic
multiplicities.

Theorem 4 Assume that the polynomial vector field X in C
n of degree d > 0 has

irreducible invariant algebraic hypersurfaces fi = 0 such that the fi are pairwise
relatively prime.

(i) If one of these irreducible invariant algebraic hypersurfaces has no defined
algebraic multiplicity, then the vector field X has a rational first integral.

(ii) Suppose that all the irreducible invariant algebraic hypersurfaces fi = 0 have
defined algebraic multiplicity qi for i = 1, . . . , p. If X restricted to each hyper-
surface fi = 0 with multiplicity larger than 1 has no rational first integral, then
the following statements hold.
(a) If

∑p
i=1 qi ≥ N + 1, then the vector field X has a Darboux first integral,

where N is the number defined in Theorem 3.
(b) If

∑p
i=1 qi ≥ N + n, then the vector field X has a rational first integral.

Statement (i) follows from the second part of Theorem 3 of Pereira [34] (see also
Theorem 5.3 of [11] for dimension 2). Statement (ii) for dimension 2 (i.e. n = 2)
follows from [11] and for n > 2 it is proved in [28].

Under the assumption (b) of Theorem 4 any orbit of the vector field X is con-
tained in an invariant algebraic hypersurface. We remark that if the vector field X is
2-dimensional, then the assumption on the non-existence of rational first integral of
X restricted to the invariant algebraic curves is not necessary.

2.9 Darboux Theory of Integrability in R
n Taking Into Account the Multiplicity

of the Hyperplane at Infinity

In this subsection we show that if the hyperplane at infinity has multiplicity greater
than 1, then we can go further improving the Darboux theory of integrability taking
into account the multiplicity of the hyperplane at infinity.

In order to use the infinity of R
n as an additional invariant hyperplane for studying

the integrability of the vector field X , we need the Poincaré compactification for the
vector field X , see for more details Cima and Llibre [12]. In the chart U1 using the
change of variables

x1 = 1

z
, x2 = y2

z
, . . . , xn = yn

z
. (2)
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the vector field X is transformed to

X = −z P1(y)
∂

∂z
+ (P2(y) − y2 P1(y))

∂

∂y2
+ · · · + (Pn(y) − yn P1(y))

∂

∂yn
,

where Pi = zd Pi (1/z, y2/z, . . . , yn/z) for i = 1, . . . , n and y = (z, y2, . . . , yn). We
note that z = 0 is an invariant hyperplane of the vector field X and that the infinity of
R

n may be identified with z = 0 of the vector field X . So we can define the algebraic
multiplicity of z = 0 for the vector field X .

We say that the infinity of X has defined algebraic multiplicity k or simply alge-
braic multiplicity k if z = 0 has defined algebraic multiplicity k for the vector field
X ; and that it has no defined algebraic multiplicity if z = 0 has no defined algebraic
multiplicity for X .

In [40] Schlomiuk and Vulpe gave a definition for the algebraic multiplicity of the
line at infinity for a planar vector field using a limit inside the definition. In fact the
two definitions are equivalent. But ours is easier to apply for computing the algebraic
multiplicity of the line at infinity for a given planar vector field.

Similar to Theorem 2 we have the following result characterizing the existence of
exponential factors associated with the hyperplane at infinity.

Theorem 5 Assume that X restricted to z = 0 has no rational first integral. Then
z = 0 has algebraic multiplicity k for X if and only if X has k − 1 exponential factors
exp(gi/zi ), i = 1, . . . , k − 1 with gi ∈ Ci [y] having no factor z.

The following result improves the Darboux theory of integrability in R
n taking into

account the algebraic multiplicity of the hyperplane at infinity, for a proof see [29].

Theorem 6 Assume that the polynomial vector field X in R
n of degree d > 0 has

irreducible invariant algebraic hypersurfaces fi = 0 for i = 1, . . . , p such that the
fi are pairwise relatively prime.

(i) If one of these irreducible invariant algebraic hypersurfaces or the invariant
hyperplane at infinity has no defined algebraic multiplicity, then the vector field
X has a rational first integral.

(ii) Suppose that all the irreducible invariant algebraic hypersurfaces fi = 0 have
defined algebraic multiplicity qi for i = 1, . . . , p and that the invariant hyper-
plane at infinity has defined algebraic multiplicity k. If the vector field restricted
to each invariant hypersurface including the hyperplane at infinity having alge-
braic multiplicity larger than 1 has no rational first integral, then the following
hold.
(a) If

∑p
i=1 qi + k ≥ N + 2, then the vector field X has a Darboux first

integral, where N =
(

n + d − 1
n

)
.

(b) If
∑p

i=1 qi + k ≥ N + n + 1, then the vector field X has a rational first
integral.

We note that if the hyperplane at infinity is not taken into account, then Theorem 6
is exactly Theorem 4. Also if the hyperplane at infinity has algebraic multiplicity 1,

then it does not contribute to integrability by comparing Theorem 6 with Theorem 4.
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We remark that for the moment we do not have an analogous to Theorem 6 for
polynomial vector fields in C

n which takes into account the multiplicity of the infin-
ity. In [29] are shown some difficulties for obtaining the extension of Theorem 6 from
polynomial vector fields in R

n to polynomial vector fields in C
n .

In the previous subsection we showed by an example that the assumption on the
non-existence of rational first integral of X restricted to an invariant algebraic hyper-
surface with multiplicity larger than 1 is necessary for the vector field in R

n with
n > 2. There are also examples showing that if n > 2, the additional assumption is
also necessary for the hyperplane at infinity with multiplicity larger than 1, see [29].
If X is a planar vector field, then this additional assumption about the rational first
integral is not necessary, it would imply that such a curve consists of singular points
only. We have the following

Corollary 7 Assume that the polynomial vector field X in R
2 of degree d > 0 has

irreducible invariant algebraic curves fi = 0 with defined algebraic multiplicity qi

for i = 1, . . . , p and that the invariant straight line at infinity has defined algebraic
multiplicity k. Then the following hold.

(a) If
∑p

i=1 qi + k ≥
(

d + 1
2

)
+ 2, then the vector field X has a Darboux first

integral.

(b) If
∑p

i=1 qi + k ≥
(

d + 1
2

)
+ 3, then the vector field X has a rational first

integral.

2.10 Construction of the First Integrals

From the previous main results of this section it follows easily statements (ii) and (iii)
of the next theorem. Statements (i) and (iv) without taking into account the cofactors of
the exponential factors are essentially due to Darboux [13]. The rest of the statements
come from Christopher and Llibre [8,9].

Theorem 8 Suppose that a polynomial vector field X of degree d in C
n admits p irre-

ducible invariant algebraic hypersurfaces fi = 0 such that the fi are pairwise rela-
tively prime with cofactors Ki for i = 1, . . . , p and q exponential factors exp(g j/h j )

with cofactors L j for j = 1, . . . , q.

(i) There exist λi , μ j ∈ C not all zero such that
∑p

i=1 λi Ki + ∑q
j=1 μ j L j = 0, if

and only if the (multi-valued) function

f λ1
1 . . . f

λp
p

(
exp

(
g1

h1

))μ1

· · ·
(

exp

(
gq

hq

))μq

(3)

is a first integral of X .

(ii) If p+q ≥ N +1, then there exist λi , μ j ∈ C not all zero such that
∑p

i=1 λi Ki +∑q
j=1 μ j L j = 0.

(iii) If p + q ≥ N + n, then X has a rational first integral.
In the particular case that n = 2 the following statements also hold.
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(iv) There exist λi , μ j ∈ C not all zero such that
∑p

i=1 λi Ki + ∑q
j=1 μ j L j =

−div(P, Q), if and only if function (3) is an integrating factor of X .

(v) If p+q = N then function (3) is a first integral if
∑p

i=1 λi Ki +∑q
j=1 μ j L j = 0,

or an integrating factor if
∑p

i=1 λi Ki +∑q
j=1 μ j L j = −div(P, Q), under the

condition that not all λi , μ j ∈ C are zero.

3 First Integrals Obtained by the Darboux Theory of Integrability
in Dimension Two

In this section we summarize the effectiveness of the Darboux theory of integrability
in dimension two, i.e. which sort of integrals does it capture. For additional details on
this section see [16], Prelle and Singer [38], and Singer [41].

The idea of determining what type of functions can arise as the result of evaluating
an indefinite integral or solving a differential equation goes back to Liouville. The
modern formulation of these ideas is usually done through differential algebra. Some
of the advantages over an analytic approach are first that the messy details of branch
points etc., are hidden completely, and second the Darboux theory of integrability can
be studied using symbolic computation.

3.1 Elementary and Liouvillian Functions

We assume that the set of functions we are interested in forms a field together with
a number of derivations. We call such an object a differential field. The process of
adjoining more functions to a given set of functions is described by a tower of such
fields:

F0 ⊂ F1 ⊂ · · · ⊂ Fn .

Of course, we must also specify how the derivations of F0 are extended to derivations
on each Fi .

The fields we are interested in arise by adding exponentials, logarithms or the
solutions of algebraic equations based on the previous set of functions. That is we take

Fi = F0(θ1, . . . θi ),

where one of the following holds:

(i) δθi = θiδg, for some g ∈ Fi−1 and for each derivation δ;
(ii) δθi = g−1δg, for some g ∈ Fi−1 and for each derivation δ;

(iii) θi is algebraic over Fi−1.

If we have such a tower of fields, Fn is called an elementary extension of F0.

This is essentially what we mean by a function being expressible in closed form.
We call the set of all elements of a differential field which are annihilated by all the
derivations the field of constants. We shall always assume that the field of constants
is algebraically closed.
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We say that our system has an elementary first integral if there is an element u in
an elementary extension field of the field of rational functions C(x, y) with the same
field of constants such that Du = 0. The derivations on C(x, y) are of course d/dx
and d/dy.

Another class of integrals we are interested in are the Liouvillian ones. Here we say
that an extension Fn is a Liouvillian extension of F0 if there is a tower of differential
fields as above which satisfies conditions (i), (iii) and

(ii)′ δαθi = hα for some elements hα ∈ Fi−1 such that δαhβ = δβhα.

This last condition, mimics the introduction of line integrals into the class of func-
tions. Clearly (ii) is included in (ii)′.

This class of functions represents those functions which are obtainable “by quadr-
atures”. An element u of a Liouvillian extension field of C(x, y) with the same field
of constants is said to be a Liouvillian first integral.

A function of the form ew0+∑
ci ln(wi ), where ci are constants and wi are rational

functions is called Darboux function.
As we shall see the Darboux theory of integrability finds all Liouvillian first inte-

grals of the planar polynomial vector fields.

3.2 The Relation Between a First Integral and Its Associated Integrating Factor

We consider the following classes of functions, polynomial, rational, Darboux, ele-
mentary and Liouvillian. We note that each of these classes of functions is contained
in the following one of the previous list. The simplest functions which can be first
integrals of polynomial differential systems are functions of one of the mentioned
classes. The Darboux theory of integrability allows to compute all the first integrals
belonging to one of these classes, see [16,38,41]. In the next result and for polynomial
differential systems in R

2 or C
2 we summarize the explicit relationships between the

functions defining the first integrals and their integrating factors.

Theorem 9 Let X be a planar polynomial vector field whose components are rela-
tively prime.

(a) If X has a Liouvillian first integral, then it has a Darboux integrating factor.
(b) If X has an elementary first integral, then it has an integrating factor of the form

a rational function to power 1/n for positive integer n.

(c) If X has a Darboux first integral, then it has a rational integrating factor.
(d) If X has a rational first integral, then it has a rational integrating factor.
(e) If X has a polynomial first integral, then it has a polynomial integrating factor.

Statement (a) is due to Singer [41], see also Christopher [7] and Pereira [35]. State-
ment (b) was proved by Prelle and Singer [38]. Statement (c) was shown by Chavarriga,
Giacomini, Giné and Llibre in [4]. The proof of statement (d) follows easily. Finally
the proof of statement (e) follows from [4] and [17], this last paper is due to Ferragut,
Llibre and Mahdi.
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4 An Open Question for Planar Polynomial Vector Fields

In all this section n = 2.

From Jouanolou’s result [see Theorem 4 (ii.b)] it follows that for a given planar poly-
nomial differential system of degree d the maximum degree of its irreducible invariant
algebraic curves is bounded, since either it has a finite number p < [d(d + 1)/2] + 2
of invariant algebraic curves, or all its trajectories are contained in invariant algebraic
curves and the system admits a rational first integral. Thus for each polynomial differ-
ential system there is a natural number N which bounds the degree of all its irreducible
invariant algebraic curves. A natural question which goes back to Poincaré [36,37] is:
to give an effective procedure to find N . Partial answers to this question were given
by Cerveau and Lins Neto [3], Carnicer [2], Campillo and Carnicer [1], and Walcher
[43]. These results depend on either restricting the nature of the polynomial differential
system, or more specifically on the singularities of its invariant algebraic curves.

Of course, given such a bound for N , it is then easy to compute the invariant
algebraic curves of the system and also describe its elementary or Liouvillian first
integrals (modulo any exponential factors) see for instance Man and Maccallum [31],
Christopher [6], and Pearson, Lloyd and Christopher [33].

Unfortunately for the class of polynomial differential systems with fixed degree d,

there does not exist a uniform upper bound N (d) for N as shown by the polynomial
differential system of degree 1:

ẋ = rx, ẏ = sy,

with r and s be positive integers. This system has a rational first integral

H = yr

xs
.

and hence invariant algebraic curves xs − hyr = 0 for all h ∈ C\{0} and r and s
relatively prime.

A conjecture (coming from Poincaré) was that the following question would have
a positive answer:

For a given d ≥ 2 is there a positive integer M(d) such that if a polynomial
vector field of degree d has an irreducible invariant algebraic curve of degree
≥ M(d), then it has a rational first integral.

See for instance the open question 2 of Christopher and Llibre [9], or the question at
the end of the introduction of Lins Neto [21].

The conjecture has a negative answer, two counterexamples appeared at the same
time, one due to Moulin Ollagnier [32], and another due to Christopher and Llibre
[10]. Later on other counterexamples appeared see for instance Chavarriga and Grau
[5]. But all these counterexamples exhibit a Darboux first integral or a Darboux inte-
grating factor. So we conjecture that the following open question would have a positive
answer (see [22]):

There is some number D(d) for which any polynomial differential system of
degree d having some irreducible invariant algebraic curve of degree ≥ D(d)

has a Darboux first integral or Darboux integrating factor.
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5 Some Applications

The Darboux theory of integrability has been successfully applied to the study of
some physical models. Thus, for instance, for the classical Bianchi IX system, and
for the Einstein–Yang-Mills differential equations, Llibre and Valls in [25] and [26]
provided a complete description of its Darboux polynomials, exponential factors,
rational first integrals and Darboux first integrals. Similar studies was done by Valls
[42] for the Rikitake system, and for the Lorenz system by Llibre and Zhang [27] and
Zhang [44].

The proof of the classification of all centers of planar polynomial differential sys-
tems of degree 2 can be strongly simplified using the Darboux first integrals, see
Schlomiuk [39] and the chapter 8 of Dumortier, Llibre and Artés [16].

Darboux first integrals can be used for obtaining new classes of integrable planar
polynomial differential systems having a focus, see Giné and Llibre [18].

Using the Darboux theory of integrability Llibre and Rodríguez in [24] proved that
every finite configuration of disjoint simple closed curves of the plane is topologically
realizable as the set of limit cycles of a polynomial vector field. Moreover the real-
ization can be made by algebraic limit cycles, and explicit polynomial vector fields
exhibiting any given finite configuration of limit cycles are given.

In [23] Llibre and Medrado gave best possible upper bounds of the maximal num-
ber of invariant hyperplanes, of the maximal number of parallel invariant hyperplanes,
and of the maximal number of invariant hyperplanes that pass through a single point
for the polynomial vector fields in C

n with a given degree.
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6 Appendix

Proposition 10 The real polynomial differential system

ẋ = 1, ẏ = y(y − 2z), ż = −z(y − z), (4)

has no exponential factors associated to the invariant plane z = 0 of multiplicity 2.

Proof By contrary we assume that system (4) has an exponential factor associated
with z = 0. Let E = exp(g/zs) be the exponential factor with cofactor L , where g is
a polynomial of degree at most s ≥ 1, and L is a polynomial of degree at most 1.

By the definition of exponential factor we get that g should satisfy the equation

∂g

∂x
+ y(y − 2z)

∂g

∂y
− z(y − z)

∂g

∂z
= −s(y − z)g + Lzs . (5)
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Set L = L0 + L1, where L0 is a constant and L1 is a homogeneous polynomial of
degree 1. In what follows we also denote by gi the homogeneous polynomial of degree
i of g.

If deg g = s, equating the homogeneous part of degree s + 1 of (5) we get

y(y − 2z)
∂gs

∂y
− z(y − z)

∂gs

∂z
= −s(y − z)gs + L1zs .

Using the Euler’s formula for homogeneous functions this last equation is equivalent
to

x(y − z)
∂gs

∂x
+ y(2y − 3z)

∂gs

∂y
= L1zs . (6)

We claim that L1 ≡ 0. For proving it, we set L1 = ax + by + cz and write Eq. (6) in

x(y − z)
∂gs

∂x
= (ax + by + cz)zs − y(2y − 3z)

∂gs

∂y
. (7)

Clearly we must have c = 0. Also we must have b = 0, because x divides by zs −
y(2y − 3z) ∂gs

∂y . Finally we prove a = 0. Since x divides ∂gs/∂x, we set ∂gs/∂x =
xhs−2(x, y, z) with hs−2 a homogeneous polynomial of degree s − 2. It follows from
(7) that

(y − z)
∂gs

∂x
= azs − y(2y − 3z)hs−2(x, y, z). (8)

If a �= 0, we must have ∂gs
∂x = −azs−1. But from (8) we are in contradiction. Hence

we must have a = 0, and consequently L1(x, y, z) ≡ 0. The claim follows.
Now we will prove that gs = r zs . Set

gs(x, y, z) = zgs−1(x, y, z) + qs(x, y),

with gs−1 and qs homogenous polynomials of degrees s − 1 and s, respectively.
Substituting the expression of gs into (6) and set z = 0, we get

x
∂qs

∂x
+ 2y

∂qs

∂y
= 0.

This last equation can be written in

y
∂qs(x, y)

∂y
+ sqs(x, y) = 0.

Its general solution is qs(x, y) = c(x)y−s . So we must have qs(x, y) ≡ 0. Now set

gs−1(x, y, z) = zgs−2(x, y, z) + qs−1(x, y),
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with gs−2 and qs−1 homogenous polynomials of degrees s −2 and s −1, respectively.
Then similarly we can prove from (6) that qs−1(x, y) ≡ 0, and so

gs(x, y, z) = z2gs−2(x, y, z).

By induction we can prove that gs = r zs .

The above proof shows that the exponential factor E = exp(g/zs) (if exists) has
a constant cofactor and g = h(x, y, z) + r zs with h a polynomial of degree at most
s −1. But in this case the exponential factor E is essentially the same with g of degree
less than s.

If deg g = s − 1, equating the homogeneous part of degree s of Eq. (5) we get that
L = L0 and gs−1 satisfies the following equation

y(y − 2z)
∂gs−1

∂y
− z(y − z)

∂gs−1

∂z
= −s(y − z)gs−1 + L0zs . (9)

If s = 1, it is easy to show that gs−1 = 0. So system (4) has no exponential factor. For
s > 1, set gs−1 = zps−2(x, y, z)+qs−1(x, y) with ps−2 and qs−1 homogeneous poly-
nomials of degrees s − 2 and s − 1, respectively. Then we obtain from (9) with z = 0
that y∂qs−1/∂y = −sqs−1. This last equation has only the solution qs−1(x, y) = 0.

So we have gs−1 = zps−2(x, y, z).
From Eq. (9) we get that

y(y − 2z)
∂ps−2

∂y
−(y−z)

(
ps−2 + z

∂ps−2

∂z

)
= −s(y−z)ps−2 + L0zs−1. (10)

If s = 2, we get from (10) that ps−2 = 0, and so system (4) has no exponential
factor. For s > 2, set ps−2 = zps−3(x, y, z) + qs−2(x, y) with ps−3 and qs−2 homo-
geneous polynomials of degrees s − 3 and s − 2, respectively. Then we obtain from
(10) with z = 0 that y∂qs−2/∂y = −(s − 1)qs−2. This equation has only the solu-
tion qs−2(x, y) = 0. So we have ps−2 = zps−3(x, y, z). Moreover ps−3 satisfies the
following equation

y(y − 2z)
∂ps−3

∂y
− (y − z)

(
2ps−3 + z

∂ps−3

∂z

)
= −s(y − z)ps−3 + L0zs−2.

This equation has a similar form than (10).
By induction we can prove that gs−1 = bzs−1 with b a constant. Substituting gs−1

into Eq. (9) yields b = 0. So g has degree at most s − 2.

If deg g = k ≤ s − 2, then Eq. (5) implies that L = 0. Moreover, we have

y(y − 2z)
∂gk

∂y
− z(y − z)

∂gk

∂z
= −s(y − z)gk . (11)

Working in a similar way to the proof of (9) we can prove that (11) has only the
solution gk = 0.



On the Darboux Integrability of Polynomial Differential Systems 143

The above proof shows that system (4) has no exponential factor associated with
the invariant plane z = 0. This completes the proof of the proposition. 
�
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