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Abstract This survey paper is devoted to introducing some basic concepts and
methods about the application of Abelian integral to study the number of limit cycles,
especially to the weak Hilbert’s 16th problem. We will introduce some recent results
in this field.
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Consider the planar differential systems

ẋ = Pn(x, y), ẏ = Qn(x, y), (1)

where Pn and Qn are real polynomials of degree at most n. The second half of the
famous Hilbert’s 16th problem is asking for the maximum number of limit cycles
of system (1), denoted by H(n), for all Pn and Qn , and asking for possible relative
positions of the limit cycles.

A limit cycle of system (1) is an isolated closed orbit. In many applications the num-
ber and positions of limit cycles are important to understand the dynamical behavior
of the system. Note that a linear system may have periodic orbits but have no limit
cycles, so we assume n ≥ 2. For a given system (1) the number of limit cycles is
finite [14,21,41], but the original Hilbert’s 16th problem is still open even for the case
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Fig. 1 Construction of
displacement function

n = 2, and there is no answer if H(2) is finite or not. About the relative positions of
limit cycles, Llibre and Rodríguez proved in [61] that any configuration of limit cycles
is realizable by a polynomial system of certain degree.

Now we consider a Hamiltonian system X H :

dx

dt
= −∂ H(x, y)

∂y
,

dy

dt
= ∂ H(x, y)

∂x
, (2)

where H is a polynomial of degree m, and also consider a related perturbed system

dx

dt
= −∂ H(x, y)

∂y
+ ε f (x, y),

dy

dt
= ∂ H(x, y)

∂x
+ εg(x, y), (3)

where f and g are polynomials of degrees at most n, and ε is a small parameter.
Suppose that there is a family of ovals, γh ⊂ H−1(h), continuously depending on

a parameter h ∈ (a, b). Then we may define the Abelian integral

I (h) =
∮

γh

f (x, y)dy − g(x, y)dx . (4)

It is clear that all γh , filling up an annulus for h ∈ (a, b), are periodic orbits of the
Hamiltonian system (2).

A natural question is: How many periodic orbits of X H keep being unbroken and
become the periodic orbits of the perturbed system (3) for small ε? Note that if the
number of such orbits is finite, then the orbits are limit cycles of (3).

This question can be proposed in the converse way: Is it possible to find a value
h ∈ (a, b), and some periodic orbits �ε of the perturbed systems (3), such that �ε

tends to γh (in the sense of Hausdorff distance) as ε → 0? And how many such �ε

for a same h?
To answer this question, we take a segment σ , transversal to each oval γh . We

choose the values of the function H itself to parameterize σ , and denote by γ (h, ε) a
piece of the orbit of the perturbed system (3) between the starting point h on σ and
the next intersection point P(h, ε) with σ , see Fig. 1.

The “next intersection” is possible for sufficiently small ε, since γ (h, ε) is close to
γh . As usual, the difference d(h, ε) = P(h, ε)−h is called the displacement function.
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Theorem 1 (Poincaré–Pontryagin [72])

d(h, ε) = ε (I (h) + εφ(h, ε)), as ε → 0,

where I (h) is given in (4), and φ(h, ε) is analytic and uniformly bounded for (h, ε)

in a compact region near (h, 0), h ∈ (a, b).

Note that the number of zeros of the displacement function is independent of the choice
of the transversal segment σ .

From Theorem 1 by using Implicit Function Theorem and Rolle Theorem it is not
hard to prove the following result giving an answer to the above question. We use X H

and X H,ε to denote the Hamiltonian system (2) and its perturbation (3) respectively,
and first give a definition for convenience.

If there exist an h∗ ∈ (a, b) and an ε∗ > 0 such that X H,ε has a limit cycle �ε for
0 < |ε| < ε∗, and �ε tends to γh∗ as ε → 0, then we will say that �ε bifurcates from
γh∗ . We say that a limit cycle � of X H,ε bifurcates from the annulus ∪h∈(a,b)γh of
X H , if there is a h ∈ (a, b) such that � bifurcates from γh .

Theorem 2 (see, for example, Theorem 2.4 of part II in [12]) We suppose that I (h)

is not identically zero for h ∈ (a, b), then the following statements hold.

(i) If X H,ε has a limit cycle bifurcating from γh∗ , then I(h∗) = 0.
(ii) If there exists an h∗ ∈ (a, b) such that I(h∗) = 0 and I ′(h∗) 	= 0, then X H,ε has a

unique limit cycle bifurcating from γh∗ , moreover, this limit cycle is hyperbolic.
(iii) If there exists an h∗ ∈ (a, b) such that I(h∗) = I ′(h∗) = · · · = I (k−1)(h∗) = 0,

and I (k)(h∗) 	= 0, then X H,ε has at most k limit cycles bifurcating from the
same γh∗ , taking into account the multiplicities of the limit cycles.

(iv) The total number (counting the multiplicities) of the limit cycles of X H,ε, bifur-
cating from the annulus ∪h∈(a,b)γh of X H , is bounded by the maximum number
of isolated zeros (taking into account their multiplicities) of the Abelian integral
I(h) for h ∈ (a, b).

From this theorem we see clearly that the number of limit cycles for a perturbation
of a Hamiltonian system is closely related to the number of isolated zeros of the
corresponding Abelian integral.

We remark here that since the zeros of I(h) also depend on the parameters, appear-
ing in perturbations, they may tend to the endpoints of (a, b), corresponding to critical
values of H . At these special values the Implicit Function Theorem can not, in general,
be applied to the displacement function, so it is difficulty to give a uniform estimate of
the number of zeros for h ∈ [a, b]. It is well know that if one of the endpoints, say a,
corresponds to a non-degenerate center of X H , then I(h) can be extended to the value a
analytically (see Theorem 3.9 in Chapter 4 of [56], or Lemma 20 of [4]), and nontrivial
I(h) has at most finite number of zeros near a uniformly with respect to parameters,
hence the statement (iv) of Theorem 2 can be extended to [a, b). On the other hand,
if an endpoint, say b, corresponds to a polycycle (homoclinic or heteroclinic orbit)
of X H , the conclusions are the following. Statement (iv) can be extended to [a, b]
if b corresponds to a homoclinic loop, see Roussarie [73] and Mardesic [62]; and in
general it surely can not be extended to [a, b] if b corresponds to a heteroclinic loop,
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as it has been shown by a counter-example with two-saddles loop in [5,20]. At last,
if the annulus tends to infinity (globally or partially), then we could make conclusion
about the number of limit cycles only in a compact region of the annulus, closer to the
boundary if ε is smaller. On the other hand, the system X H,ε might have limit cycles
escaping to infinity as ε → 0, see the example given by Iliev in Remark 1 of [38].

In general, Arnold [1,2] repeatedly proposed the following problem:
For fixed integers m and n find the maximum Z(m, n) of the numbers of isolated

zeros of the Abelian integrals (4).
If we take m = n + 1, then system (3) is a special form of system (1), close to the

Hamiltonian system (2). In this sense the above problem usually is called the weak (or
tangential, infinitesimal) Hilbert’s 16th problem, and the number Z̃(n) = Z(n + 1, n)

can be chosen as a lower bound of the Hilbert number H(n).
Recall that an Abelian integral is the integral of a rational 1-form along an algebraic

oval. If the unperturbed system is integrable but non-Hamiltonian, one has to use a
integrating factor, say μ(x, y) = 1/R(x, y), and the perturbed system can be written
in the form

ẋ = −∂ F(x, y)

∂y
R(x, y) + ε f (x, y), ẏ = ∂ F(x, y)

∂x
R(x, y) + εg(x, y), (5)

and associated to it we define the (generalized, or pseudo) Abelian integral

I(h) =
∮

γh

f (x, y)dy − g(x, y)dx

R(x, y)
, (6)

where {γh} are the family of ovals contained in the level curves {F(x, y) = h}. By the
same mechanisms the integral I(h) gives the first approximation of the displacement
function. Since R(x, y) and/or F(x, y), in general, are not polynomials, the study of
the number of zeros of (6) is more difficult than the study for (4), and most traditional
methods fail for this generalized form.

As we discussed above that the Abelian integral I(h), shown in (4), gives the first
order approximation of the displacement function of the perturbed system X H,ε , hence,
if I(h) is not identically zero then the number of isolated zeros of I(h) gives an upper
bound of the number of limit cycles of X H,ε. However, if I(h) ≡ 0 for h ∈ (a, b),
then it is natural to express the displacement function in the form

d(h, ε) = ε I1(h) + ε2 I2(h) + · · · + ε j I j (h) + O(ε j+1), (7)

where I1(h) ≡ I(h), ε small. The question is that if I1(h) ≡ 0, then how to compute
the second order approximation I2(h) and so on ?

The following algorithm to compute Ik+1(h), if I j (h) ≡ 0 for j = 1, 2, . . . k, was
given by Françoise in [22], see also [81].

Denote dH = Hx dx + Hydy, ω = fdy − gdx , where H , f and g are polynomials
in x and y, deg(H ) = n + 1, max(deg( f ),deg(g)) = n. Then Eqs. (2) and (3) can be
written as the Pfaffian forms dH = 0 and dH − εω = 0 respectively. As before,
we use γh to denote the family of ovals contained in the level curves H−1(h), σ a
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segment transversal to γh and parameterized by H , and γ (h, ε) a piece of the orbit
of dH − εω = 0 between the starting point h on σ and the next intersection point
P(h, ε) with σ . By using these notations Theorem 1 (Poincaré–Pontryagin) can be
shown shortly as follows.

The integration of dH − εω = 0 over γ (h, ε) gives

d(h, ε) =
∫

γ (h,ε)

dH = ε

∫

γ (h,ε)

ω = ε

∫

γh

ω + O(ε2).

Following [22], we say that the polynomial H satisfies the condition (∗ ) if and only
if for all polynomial 1-forms ω:∫

γh
ω = 0 ⇔ there are polynomials g and R such that ω = gdH + d R. (∗)

Theorem 3 [22] Assume that H satisfies the condition (∗ ) and I j (h) ≡ 0 in (7) for
j = 1, 2, . . . , k. Then there are g1, . . . , gk; R1, . . . , Rk such that

ω = g1 dH + d R1, g1ω = g2 dH + d R2, . . . , gk−1ω = gk dH + d Rk

and

Ik+1(h) =
∫

γh

gk ω.

Note that Gavrilov [26] shows that for “generic” polynomial Hamiltonian H , the con-
dition (∗ ) holds. Some further discussions concerning Theorem 3 can be found in
[30].

Varchenko [78] and Khovanskii [43] proved in 1984 that for given m and n the
number Z(m, n) is uniformly bounded, i. e. Z(m, n) < ∞. This result certainly is
important. However, it is a purely existential statement, giving no information on the
number Z(m, n). We will introduce a recent result in [3] which gives an explicit bound
to Z(m, n). There are many works dealing with restricted versions of the problem
(restriction on H or on the class of f and g). We list some of them below.

• It is natural to think about a possibility to find Z̃(n) = Z(n + 1, n) exactly for
smaller n, and this succeed by several authors only for n = 2 (1993 to 2002). For
generic cases Z̃(2) = 2, see Gavrilov [27], Horozov and Iliev [33], Li and Zhang
[86] or Markov [63] and Li and Zhang [52]. A unified proof appears in [6]. For
degenerate cases I(h) has at most one zero, but this gives no information about the
cyclicity of the period annulus, higher order approximations must be considered.
Iliev in [37] gives formulas (called second- or third-order Melnikov function) to
determine the cyclicity for all degenerate cases. The cyclicity of the period annulus
(or annuli) is 3 for the Hamiltonian triangle case [35], and is 2 for all other seven
cases (see [11,28,34,88,90], and a unified proof in [48]).

• For elliptic Hamiltonian H = y2 + Pk(x), where Pk is a polynomial of degree
k, there is a series works to study the number of zeros of Abelian integrals for
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different classes of perturbations, see for example [71] and [15–18,38,44,65,79].
More citations can be found in the second part of [12].

• Takens [77] and Arnold [1] proposed the 1 : q resonance problem. Except for the
case q = 4, the codimension two cases have been completed solved, and codi-
mension ≥3 cases are partially solved. The study is related to Abelian integrals. A
systematic introduction about this problem can be found in [10].

• The study of quadratic perturbations of quadratic integrable and non-Hamiltonian
systems was done for some special classes, we will introduce it for reversible case
in more details later on.

• Many authors studied this problem for certain H under perturbations f and g,
belonging to some function classes. Here H , f and g are not necessarily polyno-
mials.

There are several methods to study the number of zeros of Abelian integrals: the
method based on Picard–Fuchs equation and related Riccati equation; the method
based on the Argument Principle (see [71]), the averaging method (see [60]), the
method by using Chebyshev property (see [24,31]), and the method based on com-
plexification of the Abelian integrals (see [41]).

For more details about the results and methods listed above, see the second part of
[12,46], sections 6–8 of [53,82], and references therein.

In the second part of this survey paper we briefly introduce some recent results
about (or using) Abelian integrals.

1. In 2010 G. Binyamini, D. Novikov and S. Yakovenko obtain an uniform upper
bound for Z̃(n) = Z(n + 1, n).

Theorem 4 [3]

Z̃(n) ≤ 22Poly(n)

,

where Poly(n) = O(n p) stands for an explicit polynomially growing term with
the exponent p not exceeding 61.

This is the first explicit uniform bound for the number of isolated zeros of Abe-
lian integrals I(h) in (4) for m = n + 1. To prove this result, the authors of [3]
make complexification of the Abelian integrals and reduce the weak Hilbert 16th
problem to a question about zeros of solutions to an integrable Pfaffian system
subject to a condition on its monodromy. They use the fact that Abelian integrals
of a given degree are horizontal sections of a regular flat meromorphic connection
defined over Q (the Gauss–Manin connection) with a quasiunipotent monodromy
group.
Based on above result, the authors also made the following conjecture in [3]:

Z(m, n) ≤ 22Poly(n) + O(m), as n, m → +∞.

2. By improving the method and results of [13] and Propositions 8.5–8.6 and Theo-
rem 8.7 of [53], recently Han and Li give a lower bound for Z̃(n) = Z(n + 1, n),
hence give lower bound for the Hilbert number H(n).
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Theorem 5 [32] For any integer k ≥ 1, there exists a constant Bk satisfying

lim
k→∞

Bk

ln(k + 1)
= 1

2 ln 2
,

such that for n = 2i (k + 1) − 1, i ≥ 1

Z̃(n) ≥ 1

2 ln 2
(n + 1)2 ln(n + 1) − Bk(n + 1)2 + 3n + 4

3
.

Moreover, one can take B1 = 5
6 , B2 = 19

108 + ln 3
2 ln 2 .

Theorem 6 [32]

(i) Z̃(n) ≥ n2, for n ≥ 23.

(ii) For k ≥ 1, Z̃(2k + 1) ≥ (2k + 1)2 for k 	= 4 and Z̃(9) ≥ 80.

Theorem 7 [32] For any sufficiently small ε > 0 there exists a positive number
n∗, depending on ε, such that

Z̃(n) >

(
1

2 ln 2
− ε

)
(n + 2)2 ln(n + 2), for n > n∗

Hence,

lim
n→∞ inf

Z̃(n)

(n + 2)2 ln(n + 2)
≥ 1

2 ln 2
.

That is to say, Z̃(n) grows at least as rapidly as 1
2 ln 2 (n + 2)2 ln(n + 2).

3. In 2011 Grau et al. [31] gave a Chebyshev criterion for Abelian integrals, as a gen-
eralization of [51] from two-dimension to higher dimension. The advantage of this
method is that to study the number of zeros of an Abelian integral one only needs
to make some purely algebraic computations, unlike the usual way to make com-
plicated differential and integral computations. But this method can be used, up to
now, only for restricted forms of the first integrals, like H(x, y) = 	(x)+
(y) or
H(x, y) = A(x) + B(x)ya , where H is an analytic function in some open subset
of the plane that has a local minimum at the origin. Then there exists a punctured
neighborhood of the origin foliated by ovals γh ⊂ {H(x, y) = h}. If the Abelian
integral (4) or (6) can be expressed as

I(h) = α0 I0(h) + α1 I1(h) + · · · + αn−1 In−1(h),

where α0, α1, . . . , αn−1 are arbitrary constants, then the number of zeros of I(h)

is related to the Chebyshev property of the functions I0, I1, . . . , In−1.
Let f0, f1, . . . , fn−1 be analytic functions on an open interval L of R.
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(a) { f0, f1, . . . , fn−1} is a Chebyshev system (in short, T-system) on L if any
nontrivial linear combination

α0 f0(x) + α1 f1(x) + · · · + αn−1 fn−1(x)

has at most n − 1 isolated zeros on L .
(b) An ordered set of n functions ( f0, f1, . . . , fn−1) is a complete Chebyshev

system (in short, CT-system) on L if { f0, f1, . . . , fk−1} is a T-system for all
k = 1, 2, . . . , n.

(c) An ordered set of n functions ( f0, f1, . . . , fn−1) is an extended complete
system (in short, ECT-system) on L if, for all k = 1, 2, · · · , n, any nontrivial
linear combination

α0 f0(x) + α1 f1(x) + · · · + αk−1 fk−1(x)

has at most k − 1 isolated zeros on L counted with multiplicities.
We assume that 	 and 
 are analytic and x	′(x) > 0 for any x ∈ (x�, xr )\{0} and
y
 ′(y) > 0 for any y ∈ (y�, yr ) \ {0}. Then 	 and 
 must have even multiplicity
at 0. Thus, there exist two analytic involutions σ1 and σ2 such that

	(x) = 	(σ1(x)) for all x ∈ (x�, xr )

and


(y) = 
(σ2(y)) for all y ∈ (y�, yr ).

Note that σi (0) = 0. For a given function κ , we define its balance with respect to
σ as

Bσ (κ)(x) = κ(x) − κ(σ (x)).

Theorem 8 [31] Consider the Abelian integrals

Ii (h) =
∫

γh

fi (x)g(y)dx, i = 0, 1, . . . , n − 1,

where { fi } are analytic in x ∈ (x�, xr ) and g is analytic in y ∈ (y�, yr ), for
each h ∈ (0, h0), γh is the oval surrounding the origin inside the level curve
{	(x) + 
(y) = h}. Let σ1 and σ2 be the involutions associated to 	 and 
,

respectively. Setting g0 = g, define gi+1 = g′
i


 ′ . Then (I0, I1, . . . , In−1) is an ECT-
system on (0, h0) if the following hypotheses are satisfied:

(a)
(
Bσ1

(
f0
	′

)
,Bσ1

(
f1
	′

)
, . . . ,Bσ1

(
fn−1
	′

))
is a CT-system on (0, xr ), and

(b) (Bσ2(g0), . . . ,Bσ2(gn−1)) is a CT-system on (0, yr ) and Bσ2(g0)(y) =
o(y2m(n−2)).
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If the Hamiltonian function H and the function g(y) have the following forms

H(x, y) = A(x) + B(x)y2m, g(y) = y2s−1,

where s ∈ N, H has a local minimum at the origin by assumption, B(0) > 0, and
A has a local minimum at x = 0. Thus, as before, there exists an involution σ

satisfying A(x) = A(σ (x)) for all x ∈ (x�, xr ).

Theorem 9 [31] Consider the Abelian integrals

Ii (h) =
∫

γh

fi (x)y2s−1dx, i = 0, 1, . . . , n − 1,

where, for each h ∈ (0, h0), γh is the oval surrounding the origin inside the level
curve {A(x) + B(x)y2m = h}. Let σ be the involution associated to A and define

�i = Bσ

(
fi

A′ B 2s−1
2m

)
.

Then (I0, I1, . . . , In−1) is an ECT-system on (0, h0) if s > m(n − 2) and (�0, �1,

. . . , �n−1) is a CT-system on (0, xr ).

In application problems, if the condition s > m(n − 2) is not satisfied, then the
following Lemma is useful.

Lemma ([31]) Let γh be an oval inside the level curve {A(x) + B(x)y2 = h}
and we consider a function F such that F/A′ is analytic at x = 0. Then, for any
k ∈ N,

∫

γh

F(x)yk−2dx =
∫

γh

G(x)ykdx,

where G(x) = 2
k

( B F
A′

)′
(x) −

(
B′ F
A′

)
(x).

By using Theorem 9 the authors of [31] also gave simpler proofs for some know
results, including the results in [66,88], as well as some new results about cyclic-
ity problem of quadratic integrable systems, which we will introduce later on.
Besides, by using Theorem 8 [79] studied perturbations of a class of hyperelliptic
Hamiltonian systems with one nilpotent saddle.
Recently Mañosas and Villadelprat [64] generalized the result of Theorem 9 to
the case that for any nontrivial linear combination of n − 1 Abelian integrals to
have at most n − 1 + k zeros counted with multiplicities, i.e. (I0, I1, . . . , In−1) is
a Chebyshev system with accuracy k.
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Theorem 10 [64] Consider the Abelian integrals

Ii (h) =
∫

γh

fi (x)y2s−1dx, i = 0, 1, . . . , n − 1,

where, for each h ∈ (0, h0), γh is the oval inside the level curve {A(x)+B(x)y2m =
h}. Let σ be the involution associated to A and define

�i = Bσ

(
fi

A′ B 2s−1
2m

)
.

If the following conditions are verified (where W [�0, · · · , �i ] stands for the Wrons-
kian determinant of the functions �0, . . . , �i ):

(a) W [�0, . . . , �i ] is non-vanishing on (0, xr ) for i = 0, 1, . . . , n − 2,
(b) W [�0, . . . , �n−1] has k zeros on (0, xr ) counted with multiplicities, and
(c) s > m(n + k − 2), then any nontrivial linear combination of I0, I1, . . . , In−1

has at most n − 1 + k zeros on (0, h0) counted with multiplicities.

As an application of Theorem 10, the authors of [64] gave a simple proof about
the number of zeros of Abelian integral corresponding to one period annulus in
[19].

4. In a recent paper Gasull et al. [23] use Chebyshev property to study some perturbed
Abel equations. Consider the family of analytic functions

Ik,α(y) :=
b∫

a

gk(t)

(1 − yg(t))α
dt, k = 0, 1, . . . , n,

where α, a, b ∈ R and g(t) is a continuous non identically vanishing function on
[a, b]. Ik,α(y) is defined on the open interval J given by the connected component
of the set {y ∈ R : 1 − yg(t) > 0 for all t ∈ [a, b]} which contains the origin.

Theorem 11 [23] For any n ∈ N and any α ∈ R\Z−, the ordered set of functions
(I0,α, I1,α, . . . , In,α) is an ECT-system on J . When α ∈ Z− it is an ECT-system
on J if and only if n ≤ −α. In particular, the case where the set of functions is an
ECT-system, any non-trivial function of the form

	α(y) :=
n∑

k=0

ak Ik,α(y),

with ak ∈ R, has at most n zeros in J counting multiplicities.

As an application of this result it is possible to determine upper bounds for the
number of isolated 2π -periodic solutions which appear when one performs a first
order analysis in ε of generalized Abel equations
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dx

dt
= cos(t)

q − 1
xq + εPn(cos(t), sin(t)) x p, (AE)

where q, p ∈ N\{0, 1}, q 	= p, and Pn being a polynomial of degree n. If x =
ϕ(t, ρ, ε) is the solution of equation (AE) starting at x = ρ, then:

ϕ(2π, ρ, ε) = ρ + ερ p	α(ρq−1) + O(ε2),

where 	α is the function introduced in Theorem 11 for g(t) = sin(t), α = (p−q)/

(q−1) and suitable real constants a0, a1, . . . , an . It is well-known that simple zeros
in (−1, 1)\{0} of 	α(ρq−1), give rise to initial conditions for isolated 2π -periodic
solutions which tend to these zeros as ε goes to 0. We call these 2π -periodic solu-
tions, periodic solutions obtained by a first order analysis. Thus, from Theorem 11
we have:

Theorem 12 [23] The maximum number of 2π -periodic solutions of the gener-
alized Abel equation (AE), obtained by a first order analysis, is n when q is even
and 2n when q is odd. Moreover in both cases these upper bounds are sharp.

This Theorem improves several known results, without heavy computations. This
method can be used for a wide class of functions g(t).

5. By studying the corresponding Abelian integrals, Li et al. [47] constructed a cubic
system with at least 13 limit cycles in 2009. The system has form (3), where H ,
f and g are given by

H(x, y) =
x∫

0

x(x + 1)(x − λ)dx + y4

4
− k2 y2

2
= F(x) + (

y2 − k2

2
)2 − k4

4
,

f (x, y) = 0, g(x, y) = y(α1 + α2x + α3x2 + α4 y2),

where λ, k, α1, α2, α3 and α4 are real numbers, and

F(x) = x4

4
+ 1 − λ

3
x3 − λ

2
x2.

The phase portrait of the unperturbed system X H is shown in Fig. 2.
Using the result in IV of [15] by a suitable perturbation, related to α1, α2, α3 and
some value of λ ∈ (0, 1), the system (3), i. e. X H,ε for small ε, has at least 5 limit
cycles in the half plane y > 0, 1 of them bifurcated from the region {γ2} and 4
from the region {γ3} in Fig. 2. It is proved in [47] that by the perturbation, related
to a suitable α4 and big k > 0, one more limit cycle appears from the region {γ3}.
By symmetry, system X H,ε has at least 12 limit cycles, with one more big limit
cycle, for big k > 0 appearing from the region {γ7}. So the total number of limit
cycles is at least 13.
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Fig. 2 The phase portrait of the
unperturbed system X H .

We remark that another example of cubic system with at least 13 limit cycles was
constructed by Li and Liu [54]. The system has at least 12 limit cycles, surrounding
two foci respectively in (6,6)-distribution, appearing by the Hopf bifurcation of
order 6 and by symmetry. Moreover, the system has at least one more big limit
cycle surrounding the 12 limit cycles. The (6,6)-distribution of limit cycles for
cubic system, constructed by Hopf bifurcation of order 6, was found earlier by Yu
and Han in [84].

6. The cyclicity problem of quadratic reversible systems under quadratic perturba-
tions is a interesting and difficult problem. It is well known, see [74] or [91] for
example, that any quadratic reversible system with a center at the origin can be
written in the form

ẋ = −y + αx2 + βy2, ẏ = x(1 + γ y). (8)

If γ = 0, then the first integral contains an exponential function, the study of its
cyclicity problem under quadratic perturbations, in general, is difficult, Li [55]
proved that the cyclicity is two if α = β 	= 0, and there is a simpler proof recently
in [58].
If γ 	= 0, then by scaling we can change to γ = −2, and system (8) takes the form

ẋ = −y + αx2 + βy2, ẏ = x(1 − 2y). (9)

By the changes

x = 1

2
x̄, y = −1

2
(ȳ − 1), t = 2 t̄,
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and writing (x, y, t) instead of (x̄, ȳ, t̄), we obtain

ẋ = αx2 + βy2 − 2(β − 1)y + (β − 2), ẏ = −2xy. (10)

System (10) has an invariant straight line {y = 0}, and has a center at (0, 1). The

singularity
(

0,− 2−β
β

)
is also a center if 0 < β < 2, and is a saddle if β < 0 or

β > 2. If α(2 − β) > 0, then the system has two saddles at

(
±

√
2−β
α

, 0

)
. There

is a nilpotent singularity at (0, 0) if β = 2, and one singularity goes to infinity as
β → 0.
If α(α + 1)(α + 2) 	= 0, then the first integral of (10) is given by

H = |y|α
(

x2 + β y2

α + 2
+ 2(1 − β) y

α + 1
+ β − 2

α

)
= h, (11)

with integrating factor μ = |y|α−1.
We denote the vector field (9) or (10) by Xα,β . As in [91], we use Q H

3 , Q R
3 , QLV

3
and Q4 for quadratic integrable classes of Hamiltonian, reversible, Lotka–Volterra
and codimension 4, respectively. Then all degenerate reversible cases are:

• Xα,β ∈ Q R
3 ∩ Q H

3 \ {QLV
3 ∪ Q4} if α = 1 and β 	= −1;

• Xα,β ∈ Q R
3 ∩ Q H

3 ∩ QLV
3 \ {Q4} (Hamiltonian triangle) if (α, β) = (1,−1).

• Xα,β ∈ Q R
3 ∩ QLV

3 \ {Q H
3 ∪ Q4} if α + β = 0 and α 	= 1; and

• Xα,β ∈ Q R
3 ∩ Q4 \ {Q H

3 ∪ QLV
3 } if (α, β) = (−4, 2) or (−2/3, 0).

In other cases Xα,β ∈ Q R
3 \{Q H

3 ∪ QLV
3 ∪ Q4}, and it is called a generic reversible

quadratic system. To study its cyclicity under quadratic perturbations we need to
estimate the number of zeros of the (generalized) Abelian integral

M(h) =
∫

γh

|y|α−2(c1 + c2 y + c3 y2) x dy. (12)

It is proved in [8] that, if α 	= 0,−1,−2 and β 	= 0, 2, the associated Picard-
Fuchs equation has a finite order K if α is rational and K = ∞ if α is irra-
tional. This means that the study of cyclicity problem for quadratic reversible
systems under quadratic perturbations is very difficult, and the problem is open.
It is natural to consider the cases that K is smaller, and try to study the cyclicity
more precisely in these cases. From the proof of Lemma 3.1 in [8] we know that
Kα,β = K−(α+2),2−β , hence it is enough to study K for α > −1. We have that
for α 	= 0,−1,−2 and β 	= 0, 2

• If |α| < 1, α = ±m
n , 0 < m < n, (m, n) = 1, then K = 2n;

• If α ≥ 1 is an integer, then K = α + 2;
• If α > 1, α ∈ Q is not an integer, α = [α] + m

n , then K = ([α] + 2)n.
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In particular (also use the property Kα,β = K−(α+2),2−β ),

• K = 3 if α = 1 or α = −3;
• K = 4 if α = 2,−4,− 1

2 ,− 3
2 , 1

2 ,− 5
2 ;

• K ≥ 5, otherwise.
We remark that in Theorem 1 of [25] Gautier et al. classify all quadratic revers-
ible systems, whose phase curves are algebraic curves of genus one, into 18 cases
(r1)–(r18). They use the complex form of the integrable quadratic system with a
center at origin as follows

ż = −i z + az2 + 2|z|2 + bz̄2, a, b ∈ R, z = x + iy.

Note that γ 	= 0 in (8) is equivalent to a 	= b here. Under this condition it is not
hard to translate above equation to form (9) or (10) with relations

α = −a + b + 2

a − b
, β = a + b − 2

a − b
,

and their conditions (r1)–(r18) will be changed to following simpler forms:

• (r1)–(r6) correspond to α = −3, 1,− 3
2 (β 	= 2),− 1

2 (β 	= 0),−4 and 2,
respectively;

• (r7), (r10), (r12), (14), (r16) and (r18) correspond to β = 0 and α = − 4
3 ,− 2

3 ,

− 1
3 ,− 3

4 ,− 1
4 and 1

2 respectively;
• (r8), (r9), (r11), (r13), (r15) and (r17) correspond to β = 2 and α = − 2

3 ,− 4
3 ,

− 5
3 ,− 5

4 ,− 7
4 and − 5

2 respectively.

It is clear that each of cases (r1)–(r6) corresponds to a one-parameter family of
systems, and each of other cases corresponds to a single system with a critical
value β = 0 or β = 2 and some special value of α. We list the results about
cyclicity problem of families (r1)–(r6), including many recent works.

• Family (r2) (α = 1) is the intersection of reversible and Hamiltonian classes,
the cyclicity problem of the period annulus or annuli was completely solved,
see the introduction above [11,28,34,35,88,90,48].

• Family (r1) (α = −3) was completely studied, see [19] for β = 1 (also see [64]
for a simple proof about the number of zeros in one annulus by using Chebysev
property); [66] for β = −1; [83] for β ∈ (−∞, 0) \ {−1}; [39] for β ∈ (0, 2);
[40] for β ∈ [2,+∞) \ {3}; [49] for β = 3 (a reversible and Lotka-Volterra
case) and [76] for β = 0.

• Family (r3) (α = − 3
2 ) was also completely studied, see [57] for β ∈ (0, 2);

[89] for β ∈ (2,+∞) and [59] for β ∈ (−∞, 0] ∪ {2}.
• Family (r4) (α = − 1

2 ) was studied in [9] for β ∈ (0, 2).
• Family (r5) (α = −4) was studied in Theorem 2.1 of [8] for β 	= 0, 2, 4.
• Family (r6) (α = 2) was studied in Theorem 1.1 of [8] for β ∈ (0, 2).

Note that if β ∈ (0, 2), then system Xα,β has two centers and two period annuli.
The papers listed above studied the maximal number of zeros of Abelian integral
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for each annulus and also for two annuli in the same time. In fact, the bifurcation
diagrams in parameter space were obtained. Besides, [58] proved that the cyclic-
ity under quadratic perturbations is two in case β = α+2, α(α+2) > 0 and α 	= 1.

A quadratic system possessing at least 4 limit cycles (in (3,1)-distribution), con-
structed from a quadratic reversible system by quadratic perturbations, was found
in 1982 in [45]. If a = 0 then system (30) of this paper is reversible, see the first
footnote on page 1093 of [45]. Recently, [57] studies this problem in family (r3)
(β ∈ (0, 2)) and [85] studies this problem by using different normal forms.
We also list the results about the cyclicity problem of cases (r7)–(r18), which are
solved completely. Note that in each case the unperturbed system has no parame-
ters.

• (r7) in [31,68];
• (r8), (r13) and (r16) in [7];
• (r9) in [69];
• (r10) in [36];
• (r11) in [25,31];
• (r12) in [70];
• (r14) in [31,80];
• (r15) in [31,67];
• (r17) in [31];
• (r18) in [25].

7. Concerning the quadratic perturbations of period annulus of quadratic reversible
and Lotka-Volterra systems (Q R

3 ∩ QLV
3 , i.e. α + β = 0 in (9) or (10)), several

results give cyclicity 3 or 2. If the phase curves are algebraic curves of genus one,
then [25] classifies them into 6 cases (rlv1)-(rlv6). Above mentioned [35,49] stud-
ied the cases (rlv1) and (rlv2) respectively, and [31,75] studied the cases (rlv3)
and (rlv4) respectively. Besides, [50] studied the case (α, β) = (−1, 1) by using
second order averaging.

8. Concerning the quadratic perturbations of period annulus of quadratic codimen-
sion four center (Q4), using Abelian integral, based on Picard-Fuchs equations
and argument principle, Gavrilov and Iliev [29] proved that the cyclicity is less or
equal to eight. Recently Zhao improved this number from eight to five, see [87].

We make a final remark that similar to the Hilbert’s 16th problem, its weak form
(about the number of zeros of Abelian integrals) is still far from completely solved.
Some new methods, new approaches, and new techniques need to be developed.

Acknowledgements The author wants to thank to the referee for the valuable comments, which improved
the presentation of this paper.
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