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Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn’s disease, is a chronic and relapsing inflammatory 
disorder of the intestine. Although its incidence is increasing globally, the precise etiology remains unclear and a cure for IBD 
has yet to be discovered. The most accepted hypothesis of IBD pathogenesis is that complex interactions between genetics, 
environmental factors, and the host immune system lead to aberrant immune responses and chronic intestinal inflammation. 
The human gut harbors a complex and abundant aggregation of microbes, collectively referred to as the gut microbiota. The 
gut microbiota has physiological functions associated with nutrition, the immune system, and defense of the host. Recent 
advances in next-generation sequencing technology have identified alteration of the composition and function of the gut 
microbiota, which is referred to as dysbiosis, in IBD. Clinical and experimental data suggest dysbiosis may play a pivotal 
role in the pathogenesis of IBD. This review is focused on the physiological function of the gut microbiota and the associa-
tion between the gut microbiota and pathogenesis in IBD. In addition, we review the therapeutic options for manipulating 
the altered gut microbiota, such as probiotics and fecal microbiota transplantation.
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Introduction

Crohn’s disease (CD) and ulcerative colitis (UC), which are 
known as inflammatory bowel diseases (IBD), are chronic 
and relapsing inflammatory disorders of the gastrointestinal 
tract [1, 2]. Over 1 million residents in the USA and 2.5 mil-
lion in Europe are estimated to be suffering from IBD [3]. 
Although IBD is a global disease with the highest prevalence 
in Western countries, newly industrialized countries in Asia, 
the Middle East, Africa, and South America have witnessed 
a rapid increase in its incidence [4]. The precise etiology and 
pathogenesis remain to be elucidated. Genome-wide associa-
tion studies have identified >200 IBD associated-susceptible 

genes, some of which are known to be involved or implicated 
in mediating host responses to gut microbiota [5]. This has 
evoked the possibility that gut microbiota is implicated in 
the pathogenesis of IBD [6, 7].

The human gut harbors 100 trillion different microbial 
organisms, including bacteria, viruses, fungi, and proto-
zoa, which constitute the microbiota (also referred to as the 
microbial flora) [8]. Based on culture-independent molecular 
methods, >1000 species of bacteria reside in the gastrointes-
tinal tract and the collective genome of intestinal microbes 
is estimated to contain approximately 100 times more genes 
than the human genome [9]. More than 99% of intestinal 
bacteria belong to four phyla—Firmicutes, Bacteroidetes, 
Proteobacteria and Actinobacteria [10, 11]. Two phyla, Bac-
teroidetes and Firmicutes, dominate the intestinal microbiota 
in healthy adults [7, 12]. The number and composition of 
bacteria have been reported to vary in different parts of the 
gastrointestinal tract. A low number and few species inhabit 
the stomach and the upper part of the small intestine, and 
the number of bacteria gradually increases from the jejunum 
to the colon [13].

The gut microbiota in healthy individuals is known to 
provide a number of health benefits to the host, relating to 
pathogen protection, nutrition, metabolism, and the immune 
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system. The gut microbiota coevolves with humans, and a 
variety of symbiotic interactions between the human host 
and the microbiota is necessary to maintain human health. 
An unfavorable alteration of the composition and function 
of the gut microbiota is known as dysbiosis, which alters 
host−microbiota interaction and the host immune system. 
There is growing evidence that dysbiosis of the gut micro-
biota is associated with human diseases, such as IBD, irrita-
ble bowel syndrome, allergy, asthma, metabolic syndrome, 
and cardiovascular disease. As for IBD, many studies have 
reported that the composition of microbiota in IBD is altered 
compared with that in healthy subjects [14–18]. However, a 
direct causal relationship between dysbiosis and IBD has not 
been established in humans. As mentioned above, genetic 
predisposition is involved in the onset of IBD. However, the 
sharp increase in the affected population suggests that diet, 
which is an environmental factor, and the intestinal microbi-
ota influenced by it are involved in the pathogenesis of IBD.

In this review, we summarize the current literature regard-
ing the role of the gut microbiota, the association between 
the gut microbiota and the pathogenesis of IBD, and the 
potential therapeutic options for targeting the gut microbiota.

Physiological role of the gut microbiota

The benefits of the gut microbiota to the host’s physiology 
can be grouped into three categories—nutrition, immune 
development, and host defense (Fig. 1) [19]. We review 
these three major functions of the gut microbiota.

Nutrition

The gut microbiota supplies energy and nutrients to the host 
[19]. Human commensal bacteria, such as Bifidobacterium, 

can synthesize and supply vitamins such as vitamin K and 
the water-soluble B vitamins [20]. Intestinal bacteria also 
provide short-chain fatty acids (SCFAs; C2–C6) by ferment-
ing resistant starch or indigestible carbohydrates (dietary 
fiber). The phyla Firmicutes and Bacteroidetes produce 
SCFAs from indigestible carbohydrates through collabora-
tion with species specialized in oligosaccharide fermenta-
tion (e.g., Bifidobacteria) [21]. SCFAs are major anions in 
the colon, mainly as acetate, propionate, and butyrate [22]. 
Butyrate is a primary energy source for colonic epithelial 
cells. Butyrate is consumed mainly by the colonic epithe-
lium, and acetate and propionate become available systemi-
cally [23]. The levels of SCFAs are significantly decreased 
in IBD which may be a key factor that compromises intesti-
nal and immune homeostasis [24].

Development of the immune system

The gut microbiota plays a fundamental role in the devel-
opment of the host’s immune system [25, 26]. The host 
immune system, in turn, shapes the structure and function of 
the gut microbiota [27]. Germ-free mice (deficient in the gut 
microbiota) exhibit impaired immune development, which is 
characterized by immature lymphoid tissues [28], decreased 
numbers of intestinal lymphocytes, and diminished levels 
of antimicrobial peptides [29–32] and immunoglobulin 
(Ig) A [33, 34]. However, reconstitution of germ-free mice 
with intestinal microbiota is sufficient to restore these defi-
cits and abnormalities of the immune system [35]. One of 
these specific bacteria is Candidatus Arthromitis, known as 
segmented filamentous bacteria (SFB). The colonization of 
SFB alone promotes the maturation of the mucosal immune 
system [36–38]. The maturation of the host immune system 
is dependent on host-specific microbiota, as the immune 

Fig. 1   Physiological functions 
of gut microbiota. The gut 
microbiota contributes to host 
defense, nutrition and the devel-
opment of the immune system
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system becomes underdeveloped in germ-free mice colo-
nized with human microbiota [39].

The gut microbiota also modulates T-cell repertoires and 
regulates the T helper (Th) cell profile [40, 41]. Regulatory 
T cells (also called Tregs) are CD4+ T cells which have a 
role in regulating or suppressing other cells in the immune 
system [42, 43]. It has been previously demonstrated that 
SCFA-producing bacteria strains in Clostridium clusters 
IV, XIVa, and XVIII from a healthy human fecal sample 
induced the differentiation and expansion of colonic Tregs 
via butyrate production [44]. This result supports some of 
the clinical data. The proportion of Clostridium clusters 
XIVa and IV in the fecal samples is lower in IBD patients 
than in healthy individuals [45]. The decreased number of 
Faecalibacterium (F.) prausnitzii, which belong to Clostrid-
ium cluster IV, is associated with a high risk of the recur-
rence of CD after surgery [46].

The development of Th17 cells, which are a subpopula-
tion of effector T cells characterized by their production of 
interleukin (IL)-17A, IL-17F, IL-21, and IL-22 [42], is also 
modulated by the gut microbiota. In germ-free or antibiotic-
treated mice, the abundance of Th17 cells in the intestinal 
mucosa is significantly reduced. This result suggests that the 
gut microbiota plays a role in the development of Th17 cells. 
A previous report demonstrated that microbes with adhesive 
properties to intestinal epithelial cells, such as Citrobacter 
(C.) rodentium and Escherichia (E.) coli (EHEC) O157, pro-
mote the induction of Th17 cells [47].

Host defense

The gut microbiota contributes to host defense against 
pathogens. Animals in germ-free conditions are susceptible 
to infection by intestinal pathogens. An abnormality in the 
mucosal immune system may contribute to this suscepti-
bility. Another mechanism against pathogens is the defect 
of physical and nutritional niches of the gastrointestinal 
tract by competitively colonizing commensal microbiota, 
which prevents the colonization of pathogens [19, 48]. 

This mechanism that competitively prevents the invasion 
of pathogens by commensal bacteria is called ‘colonization 
resistance’ [49]. The gut microbiota enhances colonization 
resistance to intestinal pathogens by both direct and indirect 
mechanisms of action. Some commensal bacteria directly 
inhibit intestinal pathogens by competing for nutrients or 
by inducing the production of inhibitory substances. Bacte-
roides (B.) thetaiotaomicron, which is an abundant colonic 
anaerobe, consumes carbohydrates used by C. rodentium, 
which contributes to the competitive exclusion of the patho-
gens from the intestinal lumen [50]. B. thuringiensis secretes 
a bacteriocin that directly targets spore-forming Bacilli and 
Clostridia, such as Clostridium difficile [51]. Commensal 
microbiota and microbial products protect against pathogens 
indirectly by activating immune responses. For instance, 
lipopolysaccharides and flagellin derived from the gut 
microbiota enhance the expression of antimicrobial peptide 
and RegIIIγ, from epithelial cells by stimulating Toll-like 
receptor 4+ stromal cells and TLR5+ CD103+ dendritic cells 
[52, 53]. SFB promote the secretion of IgA from B cells, the 
production of antimicrobial peptides and the development of 
Th17 cells in the intestinal mucosa [37, 54].

The gut microbiota in IBD

The decrease of bacteria with anti-inflammatory capacities 
and the increase of bacteria with inflammatory capacities are 
observed in patients with IBD when compared to healthy indi-
viduals [45, 55]. The most consistent changes are a reduction 
in the diversity of gut microbiota and the lower abundance 
of Firmicutes (Fig. 2) [7, 45, 46, 56]. Increases in abundance 
of Proteobacteria and Bacteroidetes have been reported, but 
reductions have also been reported [45, 56]. F. prausnitzii, 
which belongs to Clostridium cluster IV, has been reported to 
have an anti-inflammatory effect by producing butyrate. It has 
been demonstrated that F. prausnitzii, Blautia faecis, Rose-
buria inulinivorans, Ruminococcus torques, and Clostridium 
lavalense are decreased in patients with CD when compared 

Fig. 2   Dysbiosis in IBD and 
pathological outcomes of dys-
biosis. An unfavorable alteration 
of the composition and variety 
of the gut microbiota is termed 
dysbiosis. Dysbiosis is observed 
in IBD patients. Dysbiosis 
affects the host immune system 
and barrier integrity, resulting 
in chronic inflammation and 
aberrant immune responses
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to healthy subjects [15, 18] and that the number of F. praus-
nitzii is correlated with the risk of relapse of ileal CD after 
surgery. The defect of colonization of F. prausnitzii was 
observed in UC patients during remission and the recovery of 
the F. prausnitzii population after relapse is associated with 
the maintenance of clinical remission [57]. In addition, Sokol 
et al. showed that human peripheral blood mononuclear cells 
stimulated with F. prausnitzii induce the production of IL-10 
and inhibit the production of inflammatory cytokines, such as 
IL-12 and IFN-γ [58]. Furthermore, a significant decrease of 
Roseburia spp. was shown in the gut microbiota of healthy 
individuals with a high genetic risk for IBD.

In contrast, a relative increase in Proteobacteria, mainly E. 
coli, was observed in CD patients, in particular, on mucosa-
associated microbiota compared to fecal samples [16, 59–65]. 
CD-associated E. coli with pro-inflammatory properties is 
adhesion-invasive E. coli (AIEC), which was originally iso-
lated from adult CD patients [55]. It has been reported that 
the number of AIEC increased in about 38% of patients with 
active CD compared to 6% in healthy subjects [66]. The 
increase of pathogenic bacteria with the ability to adhere to the 
intestinal epithelium affects the permeability of the intestine, 
alters the diversity and composition of gut microbiota, and 
induces inflammatory responses by regulating the expression 
of inflammatory genes, consequently leading to the induc-
tion of intestinal inflammation [67]. In addition, fluorescence 
in situ hybridization analyses have shown an increased abun-
dance of mucosa-associated bacteria in IBD [68–70]. This may 
be caused by the increased number of mucolytic bacteria, such 
as Runinococcus gnavas and Ruminococcus torques in IBD 
patients [70].

The production of metabolites affected by the disruption 
of gut microbiota is associated with the pathogenesis of IBD. 
For instance, the concentration of SCFAs has been reported 
to decrease in IBD patients, as a result of butyrate-produc-
ing bacteria, such as F. prausnizzi and Clostridium clusters 
IV, XIVa, XVIII [18]. The decreased production of SCFAs 
affects the differentiation and expansion of Treg cells and the 
growth of epithelial cells [44], which play an important role 
in maintaining intestinal homeostasis. On the other hand, the 
number of sulfate-reducing bacteria, such as Desulfovibrio, is 
higher in IBD patients [71, 72], resulting in the production of 
hydrogen-sulfate that damages intestinal epithelial cells and 
induces mucosal inflammation [71, 73]. Collectively, these 
data strongly indicate that the alteration of gut microbiota is 
associated with the pathogenesis of IBD.

The effects of medication for IBD on gut 
microbiota

Medication for IBD also affects the composition of gut 
microbiota. Mesalazine reduces fecal bacteria and the con-
centration of mucosal adherent bacteria when compared to 
untreated patients [74, 75]. Mesalazine inhibits the growth 
of Mycobacterium avium subspecies paratuberculosis, 
which has been reported to be intimately linked to the 
etiology of CD [76], in a dose-dependent manner in vitro 
[77]. Another study has reported that mesalazine down-
regulates the gene expression that is associated with bac-
terial invasiveness and antibiotic resistance in Salmonella 
enterica serovar Typhimurium [78], which could promote 
the onset of IBD after its infection [79, 80]. Furthermore, 
mesalazine inhibits the growth of sulfate-reducing bacte-
ria and suppresses sulfide production in IBD patients [81, 
82]. Indeed, IBD patients who do not use mesalazine have 
higher fecal sulfide levels [81].

Anti-tumor necrosis factor (TNF)-α antibody therapy has 
been reported to affect the gut microbiota. For instance, the 
abundance of F. prausnitzii, which can exert anti-inflam-
matory effects via metabolites [12], increased in responders 
during the induction of anti-TNF-α antibody therapy [83]. 
Another study reported that the relative number of E. coli 
in CD had significantly decreased and that of F. prausnitzii 
had increased when they were measured 3 months after the 
start of anti-TNF-α antibody therapy [84].

There is little information available about the effects of 
thiopurine and glucocorticoids on the gut microbiota. The 
treatment of thiopurine increases the concentration and 
adherence of mucosal bacteria [85]. It has been found that 
thiopurine inhibits the growth of Mycobacterium avium 
subspecies paratuberculosis in vitro [86, 87]. Another 
study has reported that thiopurine use significantly reduced 
the bacterial diversity and richness in fecal samples in IBD 
when compared to other drugs, including anti-TNF-α anti-
bodies, mesalazine, and corticosteroids [88].

The effect of glucocorticoids on the gut microbiota has 
been investigated in animal models but not in humans. 
In mouse models, glucocorticoids increase the abundance 
of Bifidobacterium and Lactobacillus, while eliminating 
the presence of Mucispirillum, known as mucin degrader, 
under normal and inflammatory conditions [89]. Another 
study using healthy dogs has reported that no significant 
change was observed in the gut microbiota due to the 
administration of glucocorticoids [90].

Collectively, medication for IBD could change or modu-
late the gut microbiota. However, reliable evidence is poor. 
Furthermore, it remains unknown whether the change in 
gut microbiota is the result of medication or the conse-
quence of the improvement of intestinal inflammation.
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Therapeutic strategy for targeting dysbiosis

Probiotics

Probiotics are living microorganisms that exert beneficial 
effects on the host by modulating the intestinal microbiota 
[91]. Many probiotics have been examined for their effi-
cacy in IBD with the aim of modulating the microbiota 
and relieving intestinal dysbiosis. It has been demonstrated 
that some bacteria, such as Lactobacillus, Bifidobacterium 
and Streptococcus, have a clinical effect on gastrointes-
tinal inflammation. A large clinical trial was conducted 
to investigate the efficacy of E. coli Nissle 1917, a non-
pathogenic strain, on maintaining remission of UC. E. 
coli Nissle 1917 achieved comparable efficacy and safety 
outcomes to salicylate in the maintenance of remission 
in UC patients [92]. Studies using VSL#3, a probiotic 
mixed with 4 Lactobacilli (L.) (L. casei, L. acidophi-
lus, L. delbrueckii subsp., Bulgaricus), 3 Bifidobacteria 
(B.) (B. longum, B. breve, B. infantis) and a Streptococ-
cus (Streptococcussalivarius subsp. thermophilus), have 
yielded the most available evidence in IBD patients. A 
clinical study found that VSL#3 was effective in inducing 
remission in patients with mild-to-moderately active UC 
[93, 94]. In addition, in a small cohort study, VSL#3 was 
found to be effective in maintenance of remission [93]. A 
meta-analysis has recently shown that VSL#3 with stand-
ard treatment achieved better outcomes when compared 
to standard treatment alone in the induction of remission 
and response [95]. A randomized study to investigate the 
efficacy of Lactobacillus GG was conducted in quiescent 
UC. Lactobacillus GG was safe and more effective than 
standard treatment with mesalazine for maintaining remis-
sion in UC patients [96]. Several systematic reviews and 
meta-analyses have addressed the role of probiotics in 
UC without conclusive outcomes, and a Cochrane review 
showed that probiotics were no more effective than pla-
cebo or standard treatment in inducing the remission of 
UC [97].

In contrast, there is limited evidence available for the 
efficacy of probiotics in CD patients. A randomized, 
double-blind, placebo-controlled study investigated the 
efficacy of L. johnsonii in CD patients who underwent 
surgical resection of the intestine; however, L. johnsonii 
did not have a sufficient effect on the suppression of recur-
rence rate [98]. Other probiotics, such as E. coli Nissle 
1917 [99] and Saccharomyces boulardi [100], did not have 
a significant effect on remission rate in CD patients. A 
Cochrane review reported that probiotics have no advan-
tage over placebo in the maintenance and induction of 
CD, and suggested that well-designed randomized clinical 

trials (RCTs) should be conducted to address the efficacy 
of probiotics in the treatment of CD [101].

Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) aims to restore the 
intestinal microbiota in diseased individuals by transfer-
ring intestinal microbiota of healthy donors. FMT has been 
clinically adapted to recurrent Clostridium difficile infection 
(CDI), and the efficacy of FMT for CDI has been established 
with a high cure rate of >90% in clinical trials [102, 103]. 
The success of FMT in treating CDI has raised the possibil-
ity that FMT may be beneficial in other diseases associated 
with dysbiosis. Therefore, FMT has recently attracted atten-
tion as a new therapeutic strategy in IBD.

The number of clinical studies on the efficacy and safety 
of FMT for IBD has increased, and the evidence for the 
effect of FMT on IBD has accumulated accordingly. Ini-
tial data to support the role of FMT in treating IBD came 
from case reports. Recent reports of the use of FMT in adult 
patients with UC yielded mostly no or limited effects. Sub-
sequently, two randomized placebo-controlled clinical trials 
in patients with active UC were recently published in 2015 
(Table 1) [104, 105]. Moayyedi et al. [104] reported that 
75 subjects received FMT or placebo (water) by retention 
enema for 6 weeks and that the remission rate (Mayo Score 
of <3 with an endoscopic subscore of 0 at week 7) of the 
FMT group was significantly higher than the placebo group 
(9/38 [24%] vs 2/37 [5%]; P = 0.03). On the other hand, in 
the clinical trial reported by Rossen et al., 50 patients with 
mild-to-moderately active UC were treated with either donor 
stool (FMT group) or autologous FMT (placebo group) 
delivered via nasoduodenal tube at day 0 and 3 weeks later, 
and there was no significant difference in the remission rate 
(clinical remission combined with a ≥1-point decrease in the 
Mayo endoscopic score at week 12) between the two groups 
[105]. Notably, the two above-mentioned clinical trials were 
stopped early for futility by the Data Monitoring and Safety 
Committee. More recently, another two RCTs in patients 
with mild-to-moderately active UC were reported in 2017 
(Table 1). Paramsothy et al. [106] reported that 85 patients 
were randomly assigned FMT or placebo, and that the pri-
mary outcome was defined as steroid-free clinical remission 
with endoscopic remission or response (Mayo score of ≤2, 
all subscores ≤1, and ≥1-point reduction in endoscopy sub-
score) at week 8. The rate of the primary outcome of the 
FMT group was significantly higher than the placebo group 
(11/41 [27%] vs 3/40 [8%], P = 0.02). Costello et al. [107] 
reported that 73 patients with active UC were enrolled and 
randomly allocated to FMT or autologous FMT (placebo). 
Prepared donor stool was administered via colonoscopy 
on day 0 followed by two enemas by day 7. The remission 
rate (steroid-free remission, Mayo score ≤2 and endoscopic 
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subscore ≤1) of FMT was significantly higher than that of 
the placebo group (12/38 [32%] vs 3/35 [9%]; P = 0.02). 
Paramsothy et al. [108] recently published a systematic 
review and meta-analysis of 53 studies that included 661 
IBD patients who were treated by FMT. They found that 
the clinical remission rate of UC patients was 36%. They 
also found a significant benefit in clinical remission in UC 
for four above-mentioned RCTs (pooled odds ratios = 2.89, 
95% CI = 1.36–6.13, P = 0.006). 

FMT has also been applied to CD patients. All reports of 
FMT for CD patients published to date are case reports or 
cohort studies. A recent systematic review and meta-analysis 
of 11 studies (four case reports and seven prospective uncon-
trolled cohort studies) on FMT for CD that included 83 CD 
patients demonstrated an overall clinical remission rate of 
50.5% (42/83) [108]. The authors indicated that publication 
bias was observed in this meta-analysis. In the future, RCTs 
should be conducted to evaluate the efficacy of FMT on CD 
patients.

It is obvious that FMT is not as effective in IBD as it 
is in CDI. CDI develops because of the disruption of gut 
microbiota using antibiotics followed by an overgrowth of 
Clostridium difficile. Therefore, the treatment with FMT 
shows high cure rates for recurrent CDI, regardless of donor, 
recipient, and delivery method [102]. On the other hand, 
various factors such as microbial, genetic, immunologic, and 

environmental factors are involved in the pathogenesis of 
IBD. The interplay between the host and gut microbiota in 
IBD is more complicated than that in CDI. In addition, the 
protocol of FMT, including the criteria of donor selection, 
patient pretreatment and administration route, is different in 
each clinical trial, which results in different effects. Finally, 
the most important issue is that dysbiosis is associated with 
the pathogenesis of IBD, but it is not clear whether this is a 
cause or a result of the inflammatory process. It is possible 
that all of these factors might contribute to the low clinical 
efficacy of FMT for IBD compared to that of FMT for CDI.

The factors involved in the response to FMT in UC 
patients remain unclear. An RCT conducted by Moayyedi 
et al. [104] found that early diagnosis of UC in patients 
might result in better outcomes with FMT. This suggests 
the possibility that there is a window of opportunity for FMT 
after diagnosis of UC. Paramsothy et al. [106] suggested 
that less severe endoscopic inflammation may be a poten-
tial predictor of FMT response. Moreover, the increase of 
Clostridium clusters IV and XVIII and the high microbial 
diversity in patients were identified as predictors of FMT 
response [106]. Conversely, the presence of Fusobacterium 
spp. and Sutterella spp. in patients were associated with non-
response to FMT [106].

Based on the clinical data, FMT may remain in clini-
cal trials but not in clinical practice. More high-quality 

Table 1   Randomized controlled trials of FMT in ulcerative colitis

SCCAI Simple Clinical Colitis Activity Index

Authors Moayeddi et al. [104] Rossen et al. [105] Paramsothy et al. [106] Costello et al. [107]
Date of publication 2015 2015 2017 2017
No. of patients 38 23 41 38
No. of control 37 25 40 35
Severity of UC Mayo 4–12 (mild to 

severe)
SCCAI 4–11 (mild to 

moderate)
Mayo 4–10 (mild to mod-

erate)
Mayo 3–10 (mild to moder-

ate)
Donor stool 6 volunteers, fresh or 

frozen
15 donors, fresh Multi-donors (3–7 donors), 

frozen
Multi-donors (3–4 donors, 

frozen
Route of FMT Retention enema Nasoduodenal tube Colonoscopy and enema Colonoscopy and enema
No. of transfers 6 (weekly for 6 weeks) 2 (0 and 3 weeks) 41 (first infusion by colo-

noscopy + 5/week for 
8 weeks by enema)

3 (3/week)

Follow-up 6 weeks 12 weeks 8 weeks 8 weeks
Pretreatment with antibiot-

ics
No No No No

Primary endpoint Remission (Mayo ≤2 with 
an endoscopic score of 0)

Remission (SCCAI ≤2) 
combined with ≥1-point 
decrease in Mayo endo-
scopic score

Steroid-free clinical remis-
sion with endoscopic 
remission or response 
(Mayo ≤2, all sub-
scores ≤1, and ≥1-point 
reduction in endoscopy 
subscore)

Steroid-free remission with 
endoscopic remission 
(Mayo ≤2 with endo-
scopic subscore ≤1)

Subjects who achieved the 
primary endpoint

9/38 (24%) treated with 
FMT vs 2/37 (5%) con-
trol (P = 0.03)

7/23 (30.4%) treated with 
FMT vs 5/25 (20%) 
control (P = 0.51)

11/41 (27%) treated with 
FMT vs 3/40 (8%) con-
trol (P = 0.021)

12/38 (32%) treated with 
FMT vs 3/35 (9%) control 
(P = 0.02)
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clinical studies are necessary to optimize the protocol for 
FMT and determine the efficacy of FMT in IBD and long-
term safety in the future.

Future directions

The recent application of DNA sequencing technology and 
the availability of genetically engineered animal models 
and gnotobiotic animals have resulted in great advances in 
understanding the interaction between the gut microbiota 
and the host. The gut microbiota plays an important role in 
the maintenance of intestinal homeostasis and the devel-
opment and activation of the host immune system. The 
microbiota shapes the development of the immune system, 
and the immune system, in turn, shapes the gut microbiota. 
Moreover, the gut microbiota influences the susceptibility 
to disease, and even the metabolic function of the host. 
These recent advances in our understanding of the gut 
microbiota have revealed that the unfavorable alteration 
of the gut microbiota, i.e., dysbiosis, is strongly associated 
with the pathogenesis of IBD. They have also contrib-
uted to the development of novel therapeutic options that 
selectively target dysbiosis in IBD. For instance, FMT has 
attracted attention as a new therapeutic strategy for IBD. 
However, although it has significant effects in the treat-
ment of CDI, its efficacy in IBD remains controversial. 
There are many factors that should be taken into consid-
eration in order to increase the success rate of FMT in 
IBD, such as disease state, donor selection, and the stand-
ardizing of the fecal microbiota processing protocol. In 
addition, a recent study has raised a question about the 
role of the enteric virome in FMT for IBD. Zou et al. [109] 
reported that the role of Caudovirales bacteriophages was 
potentially associated with the efficacy of FMT for CDI. 
Therefore, the gut virome, as well as the gut microbiota, 
should be taken into consideration when evaluating the 
efficacy of FMT for IBD. In the future, discoveries in the 
field of the gut microbiota will surely contribute to the 
development of novel therapeutic strategies in IBD.
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