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ABSTRACT

Introduction: Triple-negative breast cancer
(TNBC) is a highly heterogeneous disease.
Mining differentially expressed genes of TNBC
is helpful to explore new therapeutic targets.
This study aimed to investigate diagnostic bio-
marker genes in TNBC compared to normal
tissue. Additionally, we explored the functions
and prognostic value of these key genes as well
as potential targeted drugs that could affect
these genes.
Methods: Differential gene expression analysis
was conducted using the R software with data
from the Gene Expression Omnibus (GEO)
database. Then, the identified differentially
expressed genes (DEGs) were used to construct a
protein-protein interaction (PPI) network using
the Search Tool for the Retrieval of Interacting
Genes (STRING) database and Cytoscape soft-
ware. The mRNA expression levels of key genes

were analyzed using the UALCAN database with
data from The Cancer Genome Atlas (TCGA).
Enrichment and survival analyses were per-
formed using R software. In addition, potential
compounds showing sensitivity to key genes
were identified by gene set cancer analysis
(GSCA).
Results: Compared with normal tissues, a total
of 203 DEGs were upregulated in TNBC. These
DEGs participated in various biological pro-
cesses including nuclear division, microtubule
binding, cell cycle, and the p53 signaling
pathway. Through the PPI network analysis, ten
key genes were identified, among which four
genes showed significant correlation with poor
progression-free interval (PFI) in patients with
TNBC. Moreover, the four survival-related genes
were found to act as sensitive therapeutic
targets.
Conclusion: The identified four key genes were
considered new biomarkers for diagnosis and
prognosis and also potential therapeutic targets
for TNBC.
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target
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Key Summary Points

Triple-negative breast cancer (TNBC) is a
highly heterogeneous disease, and often
some specific genes are highly expressed
in TNBC, which can be regarded as
biomarkers for TNBC.

This study established a group of
diagnostic and prognostic genes for TNBC
based on breast invasive carcinoma
(BRCA) samples of The Cancer Genome
Atlas (TCGA) and the Gene Expression
Omnibus (GEO) database. The four
identified key genes (CCNB2, DLGAP5,
HJURP, and TTK) were highly expressed in
TNBC and correlated with poor
progression-free interval (PFI).

The four identified key genes could be
developed as potential therapeutic targets
for TNBC. Nutlin-3a(-) was a potential
compound targeting DLGAP5 and TTK,
and the molecular docking showed
positive results.

INTRODUCTION

According to the Global Cancer Statistics 2020,
breast cancer has now surpassed lung cancer as
the most frequently diagnosed cancer, ranking
first in terms of incidence in the majority of
countries [1]. Among the various types of breast
cancer, breast invasive carcinoma (BRCA) is the
most common and is typically categorized into
four groups: luminal A, luminal B, human epi-
dermal growth factor receptor 2 (HER2) posi-
tive, and triple-negative breast cancer (TNBC)
[2]. It is crucial to note that patients with dif-
ferent molecular subtypes of breast cancer
exhibit varying clinical responses and survival
times [3, 4]. In addition to chemotherapy, the
systemic treatment of triple-negative breast
cancer encompasses targeted therapy and
immunotherapy [5, 6]. Targeted therapy
options currently available include poly ADP-

ribose polymerase (PARP) inhibitors, epidermal
growth factor receptor(EGFR) inhibitors, and
phosphoinositide 3-kinase (PI3K)/serine/thre-
onine kinase (AKT) /mammalian target of
rapamycin (mTOR) signaling pathway inhibi-
tors, among others [7–9]. Immunotherapy
options involve the use of programmed death-
1(PD-1) antibody and programmed cell death-
ligand 1 (PD-L1) antibody [10–12]. Nonetheless,
it remains crucial to continually develop novel
therapeutic targets and explore new drugs to
enhance the efficacy and prognosis of
treatment.

In this study, we aimed to investigate novel
key genes in TNBC by utilizing multiple data-
bases. By evaluating gene expression and its
correlations with cancer-related pathways, sur-
vival rates, tumor cell immune infiltration, and
sensitive drugs, we sought to identify potential
targets for TNBC treatment.

METHODS

Ethics and Data Acquisition

This study was based on publicly available data,
and patients were not directly involved in the
entire research process. Therefore, no Indepen-
dent Review Board approval was needed. This
study involved the use of several public data-
bases, including: Search Tool for the Retrieval of
Interacting Genes (STRING, http://string-db.
org) [13], UALCAN (https://ualcan.path.uab.
edu/index.html) [14], Gene Set Cancer Analy-
sis (GSCA, http://bioinfo.life.hust.edu.cn/
GSCA/#/) [15], Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/)
[16], and The Cancer Genome Atlas (TCGA,
https://www.cancer.gov/about-NCI/
organization/ccg/research/structural-genomics/
TCGA) [17].

The GEO database, hosted by the National
Biotechnology Information Center, is recog-
nized as the most comprehensive and exten-
sively used public data resource platform
globally. For this study, we employed ‘‘TNBC’’
and ‘‘Homo sapiens’’ as the screening condi-
tions. From the available microarray datasets,
we selected GSE185645, GSE38959, and
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GSE167152, which included clinical or molec-
ular typing information. Among these datasets,
GSE38959 consisted of 30 cases of TNBC and 13
cases of normal tissue. GSE185645 comprised 15
cases of TNBC and 1 case of normal tissue, while
GSE167152 had 14 cases of TNBC and 5 cases of
normal tissue. The TCGA database is the largest
existing database of cancer gene information.
To assess the prognostic value and diagnostic
sensitivity of the identified key genes, we uti-
lized the TCGA database.

Identification of DEGs

Differential gene expression analysis between
TNBC samples and normal samples was per-
formed using GEO2R for each dataset. A
screening threshold of |log2FC|[1 and P\0.05
was set to identify differentially expressed genes
(DEGs). The DEGs were further filtered by
obtaining the intersection of highly expressed
genes from GSE185645, GSE38959, and
GSE167152. These overlapping genes were
defined as the final set of DEGs. To validate the
expression of the identified key genes in TNBC,
we utilized the UALCAN online database to
analyze the data from TCGA.

PPI Network Analysis and Identification
of Hub Genes

The protein-protein interaction (PPI) network
was generated using the STRING database with
an interaction score threshold set at[0.4. The
resulting interaction data were downloaded and
visualized using the Cytoscape software (version
3.9.0). To identify key genes with high topo-
logical importance, Cytohubba, a plugin in
Cytoscape, was employed. In this study, the
Maximal Clique Centrality (MCC) algorithm
was used to screen the top ten hub genes within
the PPI network.

Gene Function Enrichment Analysis
and Gene Set Enrichment Analysis (GSEA)

The R software (version 4.2.1) [18] was utilized
to conduct gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses on all the genes
present in the interaction network. The GO
enrichment analysis provided predictions of
gene function across three aspects: biological
process (BP), cellular component (CC), and
molecular function (MF).

For GSEA, the GSE38959 dataset was ana-
lyzed using the cluster Profiler package (version
4.4.4) of R software. The threshold for signifi-
cance was set at |NES|[ 2, FDR (q value)\ 0.25,
and p.adjust\0.05. Additionally, an enrich-
ment plot was generated to visualize the results.
To validate the findings obtained from GSEA,
the association between the set of hub genes
and pathways was further examined using the
GSCA tool. This online tool facilitates the
exploration of correlations between gene sets
and tumor-related pathways.

Immune Infiltration Analyses

The DEGs were imported into the GSCA data-
base to calculate the gene set variation analysis
(GSVA) score. We then analyzed the correlation
between the GSVA score and the presence of
immune cells in breast cancer. Subsequently, we
performed an analysis to investigate the corre-
lation between the expression levels of the key
genes and immune cell infiltration using the
BRCA data sourced from the TCGA database. To
conduct this analysis, we utilized R software.

Diagnostic Value and Survival Analysis

The RNAseq data of STAR process of TCGA-
BRCA project from TCGA database were down-
loaded, and the data in FPKM format and clin-
ical data were extracted. The pROC package
(version 1.18.0) of R software was utilized to
assess the diagnostic value of the key genes. The
area under the curve (AUC) values were calcu-
lated for each gene. A higher AUC value indi-
cates that the gene has greater sensitivity and
specificity in differentiating basal type from
other types of breast cancer. AUC values rang-
ing from 0.7 to 0.9 suggest moderate diagnostic
efficiency, while AUC values[0.9 indicate good
diagnostic efficiency.
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To investigate the relationship between key
gene expression and progression-free interval
(PFI), the survival package (version 3.3.1) of R
software was employed. The survminer package
and ggplot2 package were used to visually pre-
sent the survival curves. All the BRCA data
source was from the TCGA database. Prognostic
data were from Liu’s research [19]. A signifi-
cance level of P\0.05 was considered statisti-
cally significant. Genes with prognostic value
were defined as key genes.

In addition, further analysis was conducted
using the GSEA datasets to investigate the
association between the expression levels of the
ten hub genes and important clinical outcomes
in BRCA, including disease-free interval (DFI),
disease-specific survival (DSS), overall survival
(OS), and progression-free survival (PFS).

Sensitive Drug Mining and Molecular
Docking with the Key Genes

GSCA is a platform that integrates genomic,
pharmacogenomic, and immunogenomic gene

set cancer analysis. In GSEA, users can combine
clinical information and small molecular drugs
to identify biomarkers and drugs for experi-
mental design. GSCA integrates 10,000 ? ge-
nomic data across 33 cancer types from TCGA
and [ 750 small molecule drugs from the
Genomics of Drug Sensitibity in Cancer (GDSC)
and the Cancer Therapeutics Response Portal
(CTRP). In the ‘‘drug’’ module, the key genes
were inputted to analyze and identify the
specific drugs that target these genes with high
sensitivity.

The crystal structures of the proteins enco-
ded by the four key genes were obtained by PDB
database (http://www.rcsb.org/) or AlphaFold2
[20]. The two-dimensional sdf structure file of
compound Nutlin-3a(-) was processed by Lig-
Prep module in Schrodinger suit software, and
all its three-dimensional chiral conformations
were generated. First, the SiteMap module in
Schrodinger suit software was used to predict
the best binding site, and then the Receptor
Grid Generation module in Schrodinger suit
software was used to set the most

Fig. 1 Flow chart of the study. TNBC triple-negative breast cancer, DEG differentially expressed gene, PPI protein-protein
interaction
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suitable Enclosing box to wrap the predicted
binding site perfectly. On this basis, the active
sites of four proteins were obtained. The treated
ligand compound Nutlin-3a(-) was molecularly
docked with the active sites of four proteins
(using XP docking with the highest accuracy).
The ligand compound Nutlin-3a(-) and the
active sites of four proteins were calculated and
analyzed by MM-GBSA [21].

Statistical Analysis

R software was primarily employed for various
bioinformatics and statistical analyses in this
study. These analyses included normalizing and
transforming RNA-seq data, conducting survival

analyses, performing receiver-operating charac-
teristic curve (ROC) analysis, and carrying out
enrichment analysis. All statistical p values were
bilateral, and a threshold of\ 0.05 was deemed
statistically significant.

RESULTS

Identification of DEGs and Key Genes
in TNBC

The whole study flow chart is presented in
Fig. 1. Analysis of three GEO datasets
(GSE185645, GSE38959, and GSE167152)
showed that 2904, 372, and 3818 genes were

Fig. 2 Identification of DEGs and hub genes. A DEGs in
the three GSE datasets. B Intersections of the three
datasets. C PPI network of the DEGs. D Hub genes

screened by cytohubba. TNBC triple-negative breast
cancer, DEG differentially expressed gene, PPI protein-
protein interaction
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overexpressed, respectively. A Venn chart was
utilized to illustrate the overlap among the
three datasets, leading to the identification of
203 DEGs (Fig. 2A, B). The 203 DEGs were then
subjected to analysis using the STRING online
database, resulting in the visualization of the
PPI network (Supplementary Material Fig. 1).
Further utilizing the cytohubba tool, ten hub
genes were identified. These key genes include
cyclin B1 (CCNB1), cyclin B2 (CCNB2), DLG-
associated protein 5 (DLGAP5), Holliday junc-
tion recognition protein (HJURP), kinesin fam-
ily member 15 (KIF15), kinesin family member
23 (KIF23), non-SMC condensin I complex

subunit G (NCAPG), nucleolar and spindle-as-
sociated protein 1 (NUSAP1), sperm-associated
antigen 5 (SPAG5), and threonine and tyrosine
kinase (TTK) (Fig. 2C). These ten key genes were
subsequently subjected to additional
investigation.

Enrichment Analyses

GO and KEGG enrichment analyses were per-
formed on all 203 genes within the interaction
network. The results revealed a total of 320
biological process (BP) terms, 50 cellular com-
ponent (CC) terms, 44 molecular function (MF)

Table 1 GO and KEGG analyses of the DEGs

Ontology ID Description P value

BP GO:0000280 Nuclear division 3.01e-40

BP GO:0007059 Chromosome segregation 1.76e-38

BP GO:0048285 Organelle fission 2.46e-38

BP GO:0140014 Mitotic nuclear division 2.2e-34

BP GO:0098813 Nuclear chromosome segregation 1.49e-33

CC GO:0000775 Chromosome, centromeric region 2.28e-27

CC GO:0098687 Chromosomal region 2.28e-27

CC GO:0005819 Spindle 4.43e-27

CC GO:0000793 Condensed chromosome 1.57e-22

CC GO:0000779 Condensed chromosome, centromeric region 1.94e-22

MF GO:0008017 Microtubule binding 4.36e-16

MF GO:0015631 Tubulin binding 7.85e-13

MF GO:0003777 Microtubule motor activity 2.79e-07

MF GO:0000217 DNA secondary structure binding 8.73e-06

MF GO:0003774 Cytoskeletal motor activity 2.32e-05

KEGG hsa04110 Cell cycle 1.08e-11

KEGG hsa04114 Oocyte meiosis 0.0002

KEGG hsa04115 p53 signaling pathway 0.0010

KEGG hsa04914 Progesterone-mediated oocyte maturation 0.0010

KEGG hsa03460 Fanconi anemia pathway 0.0012

GO gene ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, DEG differentially expressed gene, BP biological
process, CC cellular component, MF molecular function
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terms, and 11 KEGG pathways. Notable terms
included nuclear division, microtubule binding,
cell cycle, and the p53 signaling pathway,
among others. The top five terms from each GO
subtype and KEGG are presented in Table 1 and
Fig. 3A. The GSEA results analyzed by R software
are shown in Fig. 3B. The hub genes were most
related to cell cycle and mitotic cell cycle. The
pathway correlation analyzed by GSCA tool
showed strong positive correlation with cell
cycle, apoptosis, and DNA damage and negative
correlation with hormone ER, RASMAPK path-
ways, etc. (Fig. 3C).

Survival Analyses

A single-factor Cox regression analysis was
conducted on the ten hub genes. The results of
the univariate Cox regression analysis are pre-
sented in Table 2. The findings indicated that

the differential expression of CCNB2, DLGAP5,
HJURP, and TTK had a significant impact on the
prognosis. Kaplan-Meier survival analysis was
performed to assess the expression of these key
genes in TNBC and its association with patient
outcomes. The results demonstrated that high
expression levels of CCNB2, DLGAP5, HJURP,
and TTK in TNBC were indicative of poor PFI
(Fig. 4A) while the other hub genes did not
show a significant difference on PFI. Addition-
ally, the GSEA database was utilized to further
analyze the prognostic capabilities of these ten
key genes. The results obtained through this
analysis were consistent with the previous
findings (Fig. 4B). These findings collectively
suggest that the group of four genes, which
includes CCNB2, DLGAP5, HJURP, and TTK,
could serve as a prognostic biomarker group for
TNBC. These four genes were identified as key
genes.

Fig. 3 Function enrichment analyses of DEGs. A GO and
KEGG analyses of DEGs. B Gene set enrichment analysis.
C Relationship of the key genes and tumor related
pathways. DEG differentially expressed gene, GO gene

ontology, KEGG Kyoto Encyclopedia of Genes and
Genomes, BP biological process, CC cellular component,
MF molecular function
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Diagnostic Value and Expression
of the Four Key Genes

The pROC package in R software was utilized to
analyze the diagnostic value of different PAM50
subtypes of breast cancer using the BRCA data
from the TCGA database. Classification data of
PAM50 were from Berger’s study [22]. The
findings demonstrated that CCNB2, DLGAP5,
HJURP, and TTK exhibited good discriminative
capabilities in distinguishing the basal-like
subtype from the normal-like and luminal A
subtypes, with area under the curve (AUC) val-
ues[0.9 (Fig. 5A). These genes were also able to
differentiate the basal-like subtype from the
Her2 ? and luminal B subtypes, with AUC val-
ues ranging from 0.6 to 0.8.

The expression levels of these four key genes
were further investigated using the GEPIA2
database. The results consistently showed that
these genes were highly expressed in TNBC
compared to other subtypes of breast cancer as
well as normal tissues. These differences in
expression levels were found to be statistically
significant (Fig. 5B). These four key genes

Table 2 Single-factor Cox regression analysis on the ten
hub genes

Characteristics Total
(N)

Univariate analysis

Hazard ratio (95%
CI)

P value

CCNB1 1086

Low 542 Reference

High 544 1.202

(0.869–1.661)

0.266

CCNB2 1086

Low 543 Reference

High 543 1.441

(1.039–1.998)

0.029

DLGAP5 1086

Low 542 Reference

High 544 1.402

(1.010–1.945)

0.043

HJURP 1086

Low 542 Reference

High 544 1.592

(1.143–2.216)

0.006

KIF15 1086

Low 542 Reference

High 544 1.092

(0.789–1.511)

0.594

KIF23 1086

Low 542 Reference

High 544 1.115

(0.806–1.541)

0.512

NCAPG 1086

Low 542 Reference

High 544 1.215

(0.878–1.680)

0.240

NUSAP1 1086

Low 543 Reference

High 543 1.316

(0.951–1.820)

0.097

Table 2 continued

Characteristics Total
(N)

Univariate analysis

Hazard ratio (95%
CI)

P value

SPAG5 1086

Low 542 Reference

High 544 1.243

(0.899–1.719)

0.188

TTK 1086

Low 542 Reference

High 544 1.535

(1.102–2.139)

0.011

CCNB1 cyclin B1, CCNB2 cyclin B2, DLGAP5 DLG-
associated protein 5, HJURP Holliday junction recogni-
tion protein, KIF15 kinesin family member 15, KIF23
kinesin family member 23, NCAPG non-SMC condensin
I complex subunit G, NUSAP1 nucleolar and spindle-as-
sociated protein 1, SPAG5 sperm-associated antigen 5,
TTK threonine and tyrosine kinase, CI confidence interval
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exhibited differential expression not only
between TNBC and normal tissues but also
between TNBC and other clinical subtypes, with
the highest expression observed in TNBC.
Consequently, utilizing this set of four genes as
a collective diagnostic marker possesses con-
siderable specificity, potentially enhancing the
accuracy of identifying TNBC and distinguish-
ing it from other breast cancer subtypes.

Immune Infiltration Analyses

The GSCA online tool was utilized to calculate
the GSVA score of the hub genes in BRCA. The
results indicated that the GSVA score in BRCA
samples was significantly higher compared to
normal tissues. Based on this GSVA score, an

analysis of immune cell infiltration in BRCA
was conducted. The findings demonstrated that
the GSVA score exhibited positive correlations
with dendritic cells (DC) and B cells while
showing negative correlations with helper T
cells 17 (Th17) and CD4 T cells, among others
(Fig. 6). These results suggest that targeting
these immune cells through appropriate
immunotherapy strategies may be beneficial.

Furthermore, using the ssGSEA algorithm
from the R package GSVA (version 1.46.0) [23],
the correlation between the infiltration of 24
immune cell types in breast cancer and the key
genes was analyzed based on data from the
TCGA database (specifically for BRCA). The
results were visualized using the ggplot2 pack-
age (version 3.3.6). The findings revealed that

Fig. 4 Survival analyses of the hub genes. A–D PFI
difference between high expression group and low expres-
sion group of CCNB2, DLGAP5, HJURP, and TTK.
E Survival analyses conducted by GSCA tool. PFI
progression-free interval, CCNB2 cyclin B2, DLGAP5

DLG-associated protein 5, HJURP Holliday junction
recognition protein, TTK threonine and tyrosine kinase,
GSCA gene set cancer analysis, DFI disease-free interval,
DSS disease-specific survival, OS overall survival, PFS
progression-free survival
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the four key genes exhibited positive correla-
tions with immune cells such as Th2 cells,
activated DC, Th1 cells, and Treg, while
exhibiting negative correlations with immune
cells such as NK cells, mast cells, eosinophils,
and others (Fig. 7).

Therapeutic Targets and Sensitive Drug
Mining

The ten hub genes were analyzed using the
GSCA database to identify drugs that exhibit the
strongest correlation with these targets. From

this analysis, it was found that RDEA119,
selumetinib, and Nutlin-3a(-) displayed strong
positive correlations with CCNB2, DLGAP5,
HJURP, and TTK (Fig. 8A, B). As a result, it is
speculated that these three compounds could
serve as effective drugs for treating TNBC. Tar-
geting these four genes may potentially
improve the prognosis for patients with TNBC.

Next, the compound Nutlin-3a(-) was
molecularly docked with these proteins enco-
ded by the four key genes. XP score and MM-
GBSA dG Bind methods were used to evaluate
the binding free energy and the binding

Fig. 5 Diagnostic value and expression of the key genes.
A ROC curve of the four key genes. B Expression of each
key genes in different BRCA subtypes in UALCAN
database. ROC receiver-operating characteristic curve,

BRCA breast invasive carcinoma, CCNB2 cyclin B2,
DLGAP5 DLG-associated protein 5, HJURP Holliday
junction recognition protein, TTK threonine and tyrosine
kinase
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stability. The lower the XP docking score and
MM-GBSA score were, the lower the binding
free energy and the higher the binding stability
of the compound with protein. The results show
that Nutlin-3a(-) did not bind with HJURP and
CCNB2. However, the binding force between
Nutlin-3a(-) and DLGAP5 and TTK was quite
low, suggesting that Nutlin-3a(-) can target
these two targets (Table 3; Fig. 9) with high
stability.

DISCUSSION

TNBC, an aggressive subtype of breast cancer,
differs from luminal and Her2 ? types because
of its strong heterogeneity. Currently, to guide
prognosis, TNM staging and clinical

pathological indicators are commonly
employed. In recent years, with the develop-
ment of high-throughput sequencing tech-
nologies, multi-gene prediction has emerged as
a new approach in this regard. Several polygenic
tests have been suggested for use, including the
21-gene OncotypeDx assay [24], 70-gene Mam-
maPrint [25], and PAM50 assay, among others.
However, in view of the limitations of these
methods, such as insufficient discrimination for
TNBC and long detection time, there is still an
urgent need to develop new markers. Therefore,
identifying differentially expressed genes
(DEGs) specific to TNBC is crucial for discover-
ing new diagnostic biomarkers and potential
therapeutic targets. This study aimed to analyze
three GEO datasets to establish a group of DEGs
highly expressed in TNBC. After identifying ten

Fig. 6 GSVA score and immune infiltration of the hub
genes. A GSVA score of the hub genes was higher in
BRCA than in normal tissue. B GSVA score of the hub
genes was correlated with immune cells. C–F Correlation

among GSVA score and B cells, DC cells, Th17 cells, and
CD4 T cells in BRCA. GSVA gene set variation analysis,
BRCA breast invasive carcinoma, DC dendritic cell, Th17
helper T cell 17
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hub genes (CCNB1, CCNB2, DLGAP5, HJURP,
KIF15, KIF23, NCAPG, NUSAP1, SPAG5, and
TTK) from the DEGs, four of the key genes were
identified as diagnostic markers that can dis-
tinguish TNBC from other breast cancer sub-
types. Although this four-gene model has not
been comprehensively compared with the
21-gene model and the 70-gene model in the
real world, this model may have some practical
value because of its simplicity. Alternatively,
the four genes can be added to other models.

Next, the survival analysis showed a significant
difference of PFI between the high- and low-
expression group of the four genes. Thus, these
four genes (CCNB2, DLGAP5, HJURP, and TTK)
were considered to be a group of prognostic
markers. While CCNB2 has been extensively
studied in the past, DLGAP5 and HJURP have
had limited research conducted on them. As the
previous studies reported, downregulation of
DLGAP5 repressed the proliferation of breast
cancer MDA-MB-231 cells and induced cell

Fig. 7 Immune infiltration analyses of the key genes (A–D CCNB2, DLGAP5, HJURP, and TTK). CCNB2 cyclin B2,
DLGAP5 DLG-associated protein 5, HJURP: Holliday junction recognition protein, TTK threonine and tyrosine kinase
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cycle arrest [26]. DLGAP5 may prompt HCC
cellular proliferation, invasion and metastasis
[27]. There are also some studies on HJURP.
HJURP is expressed at a higher level in breast
cancer and regulates cell proliferation [28]. Hu’s
study suggests that HJURP mRNA level is a
prognostic factor for disease-free and overall
survival in patients with breast cancer [29].
These studies were conducted in breast cancer,
not specifically for TNBC. To the best of our
knowledge, this study marks the first instance
where these two genes have been identified as
potential prognostic markers for TNBC. Based
on the findings of this study, we propose that
these four genes can serve as a set of diagnostic
and prognostic markers for TNBC.

In addition, this study aimed to identify
potential therapeutic targets and potentially
effective compounds for TNBC. By conducting
GO and KEGG analyses, as well as GSEA

analysis, the main biological enrichments were
found to involve cell cycle and p53 pathways.
This correlation emphasizes the importance of
exploring therapeutic strategies targeting these
pathways in TNBC. In previous studies, the
development of p53-targeted therapies for use
as medicine has encountered challenges. How-
ever, recent advancements in research have
shown promising results with certain com-
pounds demonstrating effectiveness in TNBC
treatment. For instance, the MDM2 inhibitor
idasanutlin has gained approval for treating
acute myeloid leukemia (AML) and is currently
being assessed in clinical trials for other types of
tumors. Nutlin-3a(-), another MDM2 inhibitor
identified in this study, has also been investi-
gated in preclinical studies involving breast
cancer cells [30]. It was also reported that nut-
lin-3a(-) can enhance carboplatin-mediated
DNA damage [31]. In this study, we screened
three compounds that can target the four key
genes based on GSCA database, and nutlin-3a(-)
was one of them. We ran a molecular docking
analysis based on nutlin-3a(-) and the four tar-
gets, and the results showed that nutlin-3a(-)
could be closely connected with TTK and
DLGAP5. Besides Nutlin-3a(-), two other com-
pounds, namely RDEA119 and selumetinib,
have shown potential sensitivity to key genes
implicated in TNBC. RDEA119 is an effective,
non-ATP-competitive, and highly selective

Fig. 8 Small-molecule drugs from the GDSC (A) and CTRP (B) targeting the hub genes. GDSC Genomics of Drug
Sensitibity in Cancer, CTRP Cancer Therapeutics Response Portal

Table 3 Molecular docking results of Nutlin-3a(-)

Target XP
Gscore

MM-GBSA dG Bind
(kcal/mol)

DLGAP5 - 5.214 - 24.88

TTK - 3.235 - 29.18

DLGAP5 DLG-associated protein 5, TTK threonine and
tyrosine kinase
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inhibitor of MEK1 and MEK2, and selumetinib
(AZD 6244, ARRY-142886) is an inhibitor
mainly targeting MEK1. Previous studies
[32–34] have shown that selumetinib can inhi-
bit the proliferation and metastasis of breast
cancer cells and promote apoptosis, but this
study has not yet entered the clinical stage.
Further research is needed to determine its
efficacy specifically in triple-negative breast
cancer, both in vitro and in vivo.

This study has some limitations. First, it is
limited to analyzing data from databases and
does not validate the findings through biologi-
cal experiments. Second, there may be slight
diversity between different GSE data sets, thus
causing slight bias of the results.

CONCLUSION

In this study, the analysis of three TNBC data-
sets led to the identification of ten hub genes.

Subsequent investigations into the diagnostic
and prognostic values of these genes revealed a
group of gene sets (CCNB2, DLGAP5, HJURP,
and TTK) that can serve as diagnostic and
prognostic markers for TNBC. Furthermore, the
enrichment analysis of differentially expressed
genes in TNBC highlighted significant biologi-
cal functions such as the cell cycle and the p53
signaling pathway. Additionally, three com-
pounds that exhibited sensitivity towards these
differentially expressed genes were explored,
suggesting their potential as novel therapeutic
options for TNBC. These findings provide valu-
able insights for further research in the field of
TNBC and hold promise for the development of
effective diagnostic tools and targeted
treatments.

Fig. 9 Molecular docking of Nutlin-3a(-) and the key genes of DLGAP5 (A) and TTK (B). LGAP5 DLG-associated
protein 5, TTK threonine and tyrosine kinase
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