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ABSTRACT

Introduction: Sodium glucose co-transporter 2

(SGLT2) inhibitors exhibit diuretic activity,

which is a possible mechanism underlying the

cardiovascular benefit of these inhibitors.

However, the osmotic diuresis-induced

increase in urine volume, and the risk of

dehydration have been of concern with SGLT2

inhibitor treatment. This study aimed to

investigate the mechanism underlying SGLT2

inhibitor canagliflozin-induced diuresis in

Japanese type 2 diabetes mellitus (T2DM)

patients.

Methods: Thirteen T2DM patients received a

daily oral dose of 100 mg canagliflozin before

breakfast for 6 days. Blood and urine samples

were collected at predetermined time points.

The primary endpoint was evaluation of

correlations between changes from baseline in
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urine volume and factors that are known to

affect urine volume and between actual urine

volume and these factors.

Results: Canagliflozin transiently increased

urine volume and urinary sodium excretion on

Day 1 with a return to baseline levels thereafter.

Canagliflozin administration increased urinary

glucose excretion, which was sustained during

repeated-dose administration. Plasma atrial

natriuretic peptide (ANP) and N-terminal

pro-b-type natriuretic peptide (NT-proBNP)

levels decreased, while plasma renin activity

increased. On Day 1 of treatment, changes in

sodium and potassium excretion were closely

correlated with changes in urine output. A post

hoc multiple regression analysis showed

changes in sodium excretion and water intake

as factors that affected urine volume change at

Day 1. Furthermore, relative to that at baseline,

canagliflozin decreased blood glucose

throughout the day and increased plasma total

GLP-1 after breakfast.

Conclusion: Canagliflozin induced transient

sodium excretion and did not induce water

intake at Day 1; hence, natriuresis rather than

glucose-induced osmotic diuresis may be a

major factor involved in the

canagliflozin-induced transient increase in

urine output. In addition, canagliflozin

decreased plasma ANP and NT-proBNP levels

and increased plasma renin activity, which may

be a compensatory mechanism for sodium

retention, leading to subsequent urine output

recovery.

Clinical trial registration: UMIN000019462.

Funding: Mitsubishi Tanabe Pharma

Corporation.

Keywords: Canagliflozin; Diuresis; Natriuresis;

Sodium glucose co-transporter 2; Type 2

diabetes mellitus

INTRODUCTION

Typical features of type 2 diabetes mellitus

(T2DM) are insulin resistance of various organs

and reduced glucose-stimulated insulin

secretion [1]. In addition, the kidney plays a

crucial role in regulating glucose levels by

mediating the reabsorption of glucose filtered

through glomeruli. Renal glucose reabsorption

is mediated by sodium glucose co-transporter 2

(SGLT2) and SGLT1, with SGLT2 playing the

major role because of its specific localization in

the kidney and higher capacity than SGLT1.

SGLT2 expression is increased in T2DM; hence,

higher amounts of glucose are reabsorbed by

the kidney, thereby contributing to the

sustained elevation of serum glucose levels in

patients with diabetes [2, 3]. SGLT2 inhibitors

reduce blood glucose levels by suppressing this

glucose reabsorption in an insulin-independent

manner. Furthermore, SGLT2 inhibitors have

demonstrated not only a hypoglycemic effect

but also a body weight-reducing effect through

calorie loss associated with glycosuria and a

hypotensive effect [3–5]. In addition to control

of blood glucose, control of body weight and

blood pressure play important roles in

preventing complications associated with

T2DM [6]. Thus, a series of SGLT2 inhibitors

have become new therapeutic options for

T2DM [3–5, 7–9]. Several studies of SGLT2

inhibitors have been conducted to assess the

cardiovascular outcomes [10], and it was

reported that the SGLT2 inhibitor

empagliflozin reduced heart failure

hospitalization as well as cardiovascular and

all-cause deaths in T2DM patients with high

CVD risk (EMPA-REG OUTCOME trial) [11].

One possible mechanism underlying the

cardiovascular benefit of empagliflozin is

related to its osmotic diuretic effect by
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glycosuria [12, 13]. However, osmotic

diuresis-induced increase in urine volume, loss

of body fluid, and risk of dehydration have been

of concern with SGLT2 inhibitor treatment

[14, 15].

Canagliflozin is an SGLT2 inhibitor approved

in North America, Europe, Latin America, and

Asia–Pacific regions for treatment of T2DM

[16–18]. We previously conducted a

pharmacokinetic and pharmacodynamic study

of canagliflozin in Japanese patients with

T2DM, in which administration of

canagliflozin at 25, 100, 200, or 400 mg

once-daily increased 24-h urine volume by

400–700 mL on Day 1, with a return to

baseline from Day 2 onward. There was also

an increase in urinary sodium (Na) excretion on

Day 1 with a return to baseline thereafter, while

water intake increased in the 400-mg group on

Day 1, but did not change in the other dosage

groups [19] (ESM Table 1). Although some

previous studies reported that SGLT2

inhibitor-induced increases in urine volume

were short-lived [20–22], the detailed nature of

the transient effect remains unknown. For the

proper clinical use of the SGLT2 inhibitor

canagliflozin, it is important to confirm this

transient increase in urine volume and elucidate

the underlying mechanism. Therefore, the

purpose of this study was to investigate the

mechanism underlying canagliflozin-induced

diuresis in Japanese T2DM patients by

measuring factors that affect homeostasis of

body fluid and mineral balance.

METHODS

Subjects and Study Design

This single-arm, exploratory study was carried

out to investigate the factors involved in the

canagliflozin-induced transient change in

urine volume in Japanese T2DM patients by

examining major endogenous factors that

affect urine volume. Eligible subjects were

men and women with stable T2DM with the

following characteristics: age of C25 and

\75 years at the time of providing written

consent; inadequate glycemic control,

comprising HbA1c C7% (53.01 mmol/mol)

and B10% (85.8 mmol/mol); BMI C20 and

B35 kg/m2; on unchanged single or dual oral

antidiabetic drug therapy for C3 months;

systolic blood pressure of C95 and

B160 mmHg and diastolic blood pressure of

C50 and B100 mmHg; and an estimated GFR

(eGFR) of C60 mL/min/1.73 m2. The major

exclusion criteria were as follows: no

treatment for T2DM; history of type 1

diabetes mellitus or secondary diabetes;

history of repeated severe hypoglycemia, or

on therapy with insulin, glucagon-like peptide

1 (GLP-1) receptor agonist, SGLT2 inhibitor,

or diuretic; history of serious diabetic

complications requiring treatment; history or

complication of kidney disease,

nephrolithiasis, prostatitis, or complication

of urinary tract infection; history of drug or

food allergy; myocardial infarction, congestive

heart failure, unstable angina pectoris, or

cerebrovascular disorder (except for lacuna

infarction) within 6 months prior to

screening; history of transient ischemic

attack or brain infarction with apparent

neurological symptoms; complication of

arteriosclerosis obliterans (stage III or IV of

Fontaine classification); history of atrial

fibrillation; or patients whom the

investigator judged to be inappropriate for

this study.

Eligible patients were hospitalized for 8 days

for the study. From the third day (Day 1) to the

eighth day (Day 6), each patient received an oral

daily dose of canagliflozin 100 mg at 8:00 am
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before breakfast and was asked to finish their

breakfast within 20 min. Blood and urine

samples were collected at predetermined time

points for laboratory tests and analyses of

factors affecting urine volume. Efficacy was

evaluated using data from Day 0 to Day 5, and

safety was evaluated using data from day of

admission to Day 6.

Endpoints and Assessments

The primary endpoints were correlations

between changes from baseline in urine

volume and factors known to affect urine

volume, and between actual urine volume

and these factors. The factors examined

included water intake, urinary glucose

excretion, urinary electrolyte excretion (Na

and K), urine osmolality, and plasma

concentrations of atrial natriuretic peptide

(ANP), N-terminal pro-b-type natriuretic

peptide (NT-proBNP), vasopressin,

aldosterone, and renin activity. The blood

samples for measuring these plasma

hormones and enzyme (ANP, NT-proBNP,

vasopressin, aldosterone, and renin) were

obtained from the recumbent position. The

secondary endpoints were blood glucose over

time, changes in total GLP-1 concentration

after breakfast, and safety such as adverse

events (AEs), laboratory tests, and 12-lead

ECGs. The daily urine osmolality, AUCs of

blood glucose, and AUCs of total GLP-1 were

determined by post hoc analysis. Laboratory

tests including biochemical and hematological

examinations, measurements of hormone

levels, immunological tests, and urinalysis

were performed by the Sapporo Clinical

Laboratory Inc. (Sapporo, Japan). The 12-lead

ECGs were monitored at the Clinical

Pharmacology Center, Medical Corporation

Hokubukai Utsukushigaoka Hospital

(Sapporo, Japan).

Ethics Approval and Consent

to Participate

The study was conducted in accordance with

ethical principles that complied with the

Declaration of Helsinki (revised October 2013),

ethical guidelines for medical and health

research involving human subjects, and

conflict of interest management rules for

clinical studies at the Medical Corporation

Hokubukai Utsukushigaoka Hospital (Sapporo,

Japan). The study protocol was approved by the

Institutional Review Board at the

Utsukushigaoka Hospital. All participants

provided written informed consent before

taking part in the study. Clinical trial

registration: UMIN000019462.

Statistical Analysis

To analyze the primary endpoint, Spearman’s

correlation coefficients between changes from

baseline in urine volume and factors known to

affect urine volume, as well as between actual

urine volume and each factor, were calculated,

and a statistical test for absence of correlation

was performed. Regarding continuous variables

including urine volume, summary statistics

(mean, SD, median, minimum, and

maximum) for actual values and changes from

baseline at each time point were calculated. For

changes from baseline, 95% confidence

intervals (CIs) were also calculated. For each of

the secondary endpoints, actual values and

changes from baseline were obtained at each

time point and the data were analyzed in the

same manner. To identify factors affecting a

transient increase in urine volume, a post hoc

multiple regression analysis (stepwise variable
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selection method; both entry and retention

criteria were set at p = 0.05.) was performed

with change in urine volume as the dependent

variable and related factors as independent

variables.

Statistical analyses of the present study were

performed with SAS 9.3 (SAS Institute Inc., Cary,

NC, USA) and Microsoft Excel 2010 (Microsoft

Corporation, Redmond, WA, USA). Values of

p\0.05 were considered statistically significant.

Data management and statistical analyses were

carried out by IBEC Co. Ltd. (Osaka, Japan).

To evaluate the reproducibility of the present

study, correlation and multiple regression

analyses of a previous study [19] were

performed by Takumi Information Technology

(Tokyo, Japan) using SAS 9.4 (SAS Institute Inc.).

RESULTS

Patient Disposition and Baseline

Characteristics

The baseline demographic and disease

characteristics of the patients are summarized

in Table 1. A total of 14 patients were enrolled,

of whom 13 received the treatment and 12 (10

males and 2 females) completed the study. One

female patient withdrew from the study because

of AEs including anorexia, malaise, nausea, and

vomiting.

Effect on Urine Volume and Changes

from Baseline

Canagliflozin treatment showed a trend towards

increased urine volume by 267.1 mL (95% CI:

-70.5–604.7 mL) on Day 1. Subsequently, the

urine volume returned to baseline from Day 2 to

Day 4, and showed another increase trend on

Day 5. As the dropout patient had abnormal

water intake and urine volume after

hospitalization, we also performed the analysis

without this patient as a reference, and found

that canagliflozin treatment increased urine

volume by 362.9 mL (95% CI: 71.6–654.2 mL)

on Day 1 (Table 2).

Effect on Parameters that Reflect Urine

Volume

Canagliflozin administration increased urinary

glucose excretion on Day 1, and this level was

maintained thereafter (Fig. 1a). Water intake

did not change appreciably until Day 4, and

showed a trend towards an increase on Day 5

(Fig. 1b). Urinary Na excretion tended to

Table 1 Demographic and clinical characteristics of the
patients

Total n 13

Sex

Male n 10

Female n 3

Age (years) Mean (SD) 51.2 (9.4)

Body weight (kg) Mean (SD) 73.72 (13.8)

BMI (kg/m2) Mean (SD) 26.70 (4.26)

Duration of T2DM

(years)

Mean (SD) 6.33 (4.08)

HbA1c (%) Mean (SD) 8.06 (0.73)

Blood glucose (mg/dL) Mean (SD) 157.6 (29.4)

24-h urine volume (mL) Mean (SD) 2835.5 (1356.6)

eGFRa (mL/min/

1.73 m2)

Mean (SD) 81.79 (20.57)

Oral antidiabetics

No n 4

Yes n 9

eGFR estimated GFR, T2DM type 2 diabetes mellitus
a At screening visit
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increase on Day 1, but returned to baseline

thereafter (Fig. 1c). Urinary K excretion tended

to decrease on Day 2 and thereafter (Fig. 1d).

Urine osmolality showed an increase

immediately after canagliflozin administration

(Fig. 1e). Serum osmolality, blood urea

nitrogen-to-serum creatinine ratio (BUN/CRE),

and hematocrit (Ht) did not change during

treatment (Fig. 1f–h).

Effect on Plasma Hormone Levels/Enzyme

Activity

The plasma concentrations of hormones and

enzyme activity related to body fluid control

were measured at predetermined time points,

and their AUCs over 24 h were calculated.

Canagliflozin caused a reduction in

NT-proBNP at 24 h after administration, a

decrease in ANP from 4 h, and an increase in

renin activity at Day 5. Reduced AUCs of

NT-proBNP and ANP were observed on Day 5

and Days 1 and 5, respectively, and that of renin

activity increased on Day 5 (Fig. 2a–c; Table 3).

The plasma concentrations of aldosterone and

vasopressin were not appreciably affected by the

treatment (Fig. 2d, e; Table 3).

Correlation and Multiple Regression

Analyses

Spearman’s correlation coefficients were

calculated between changes from baseline in

urine volume and each factor, and also between

urine volume and each factor (Table 4). Change

frombaseline inurine volumewas correlatedwith

changes from baseline in urinary glucose

excretion, urinary Na excretion, and urinary K

excretion on Day 1, and negatively correlated

with change from baseline in aldosterone

AUC0–24h on Day 5. Actual value of urine

volume was correlated with water intake (Days

0, 1, and 5) and urine glucose excretion (Days 0

and 1), and negatively correlated with urine

osmolality (Days 0, 1, and 5; Table 4). A similar

analysiswasperformedusingdata fromaprevious

study [19], which found that change from

baseline in urine volume was correlated with

changes from baseline in urinary Na and K

excretions on Day 1 and was not correlated with

Table 2 Effect of canagliflozin on urine volumea

Time
point

n Urine volume (mL)

Actual values Changes from day 0 95% CI

Mean SD Mean SD

Day 0 13 (12) 2835.5 (2667.7) 1356.6 (1268.3)

Day 1 13 (12) 3102.5 (3030.6) 1281.0 (1310.2) 267.1 (362.9) 558.6 (458.5) -70.5 to 604.7

(71.6 to 654.2)

Day 2 13 (12) 2623.2 (2617.8) 888.4 (927.6) -212.3 (-49.8) 994.2 (839.0) -813.1 to 388.5

(-582.9 to 483.2)

Day 3 13 (12) 2340.8 (2397.8) 1168.6 (1201.6) -494.7 (-269.9) 1032.7 (668.4) -1118.7 to 129.3

(-694.6 to 154.8)

Day 4 12 2708.4 1051.8 40.8 521.8 -290.8 to 372.3

Day 5 12 2920.9 979.2 253.3 529.0 -82.8 to 589.3

a Data in parentheses are from patients who completed the study
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Fig. 1 Canagliflozin-induced changes in parameters that
reflect urine volume. Changes in a 24-h urinary glucose
excretion, b water intake, c 24-h urinary Na excretion,
d 24-h urinary K excretion, e urine osmolality, f serum

osmolality, g BUN/CRE, and h Ht. Numbers of patients:
days 0, 1, 2, and 3, n = 13; days 4 and 5, n = 12. Data are
expressed as mean ± SD
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urinary glucose excretion. Actual value of urine

volume was correlated with water intake (Days 0,

1, and 6), weakly correlated with urinary Na and

urinary K excretions (Days 0, 1, and 6, and Days 1

and 2, respectively), negatively correlated with

urine osmolality (Days 0, 1, and 6), and was not

correlated with urine glucose excretion (ESM

Table 2). The scatter plot of change in urine

volume vs change in each factors, or actual urine

volume vs these factors in both studies are shown

in ESM Fig. 1.

To identify the factors that are most likely to

affect theurinevolumechangeonDay1,multiple

regression analysis (stepwise variable selection

method) was performed with change in urine

volume as the dependent variable and changes in

related factors (water intake, urinary excretion of

glucose, Na, K, plasma NT-proBNP, ANP, renin

activity, aldosterone and vasopressin) as

independent variables. The change in urinary Na

excretion (p = 0.0006) and water intake

(p = 0.0239) were selected as determinants of

urine volume increase (R2 = 0.7630) on Day 1

(Table 5). Similar analyses were performed using

previous study data [19], and the changes in

urinary Na excretion (p = 0.0031) and water

consumption (p\0.0001) were selected as

determinants of urine volume increase

(R2 = 0.4153; Table 5). The regression

coefficients of the variables were similar in this

and the previous studies: 8.837 and 7.496 for

urinary Na excretion and 0.420 and 0.361 for

water intake, respectively.

Effect on Blood Glucose and Total GLP-1

Figure 3 shows the 24-h blood glucose profile,

AUC over 2 h for postprandial glucose after each

Fig. 2 Canagliflozin-induced changes in hormones levels
and enzyme activity involved in homeostasis of body fluid
and mineral balance. Changes in a NT-proBNP, b ANP,

c renin activity, d aldosterone, and e vasopressin. Numbers
of patients: day 0 and 1, n = 13; day 5, n = 12. Data are
expressed as mean ± SD
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meal, total GLP-1 concentration, and total

GLP-1 AUC over 2 h after breakfast.

Canagliflozin reduced the mean 24-h blood

glucose and AUC for postprandial glucose after

each meal on Day 1, and the reductions were

further enhanced as drug administration

continued (Fig. 3a, b). The increases in total

blood GLP-1 after breakfast on Days 1 and 5

were higher than those before treatment (Day 0;

Fig. 3c, d; ESM Table 3).

Effect on Laboratory Tests

Plasma insulin was reduced by canagliflozin

treatment. Plasma ketone bodies increased on

Day 1 and remained elevated. Body weight and

blood pressure were not appreciably changed by

the treatment (ESM Table 4).

AEs

One female patient withdrew from the study

because of anorexia, malaise, nausea, and

vomiting. The investigator concluded that the

possibility that these AEs were causally related

to the study drug could not be excluded, but

circumstantial effects and stress such as

hospitalization and changes in food may have

contributed to their occurrence. The patient

quickly recovered from the AEs after

discontinuation. No other AEs were reported.

DISCUSSION

The present study demonstrated that

canagliflozin produced a mild increase in urine

Table 3 Effect of canagliflozin on AUC0–24h of plasma NT-proBNP, ANP, renin activity, aldosterone, and vasopressin

Time point n Actual value Changes from Day 0

Mean SD Mean SD 95% CI

NT-proBNP (pg mL-1 h) Day 0 13 844.9 726.9

Day 1 13 716.4 841.3 -128.5 451.0 -401.1 to 144

Day 5 12 322.4 279.9 -491.1 609.2 -878.2 to -104

ANP (pg mL-1 h) Day 0 13 365.94 144.50

Day 1 13 300.13 106.71 -65.81 81.49 -115.1 to -16.6

Day 5 12 215.74 94.70 -129.31 113.88 -201.7 to -57

Renin activity (ng/mL) Day 0 13 36.91 26.87

Day 1 13 45.18 33.66 8.27 16.93 -1.96 to 18.50

Day 5 12 71.80 51.52 32.47 28.36 14.45 to 50.49

Aldosterone (pg mL-1 h) Day 0 13 1955.9 442.4

Day 1 13 1877.7 498.9 -78.2 329.8 -277.5 to 121.1

Day 5 12 1971.5 468.9 37.5 350.9 -185.5 to 260.5

Vasopressin (pg mL-1 h) Day 0 13 94.08 44.46

Day 1 13 97.12 37.02 3.03 15.64 -6.41 to 12.48

Day 5 12 81.13 43.71 -12.44 36.49 -35.62 to 10.74

ANP atrial natriuretic peptide, NT-proBNP N-terminal pro-b-type natriuretic peptide
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volume in patients with T2DM on Day 1. Other

changes included increased urinary glucose

excretion and urine osmolality on Day 1,

which were sustained during the study. A

transient increase in urinary Na excretion on

Day 1, decrease in NT-proBNP AUC0–24h from

Day 1 onward, decrease in ANP AUC0–24h, and

increase in renin activity AUC0–24h on Day 5,

Table 4 Spearman’s correlations between urine volume and factors known to affect urine volume in the present study

Factors Urine volume

Changes from Day 0 Actual values

Day 1
n5 13

Day 5
n5 12

Day 0
n5 13

Day 1
n5 13

Day 5
n5 12

r r r r r

Urinary glucose excretiona 0.764* -0.287 0.555* 0.819* 0.287

Water intakea 0.456 0.322 0.879* 0.813* 0.827*

Urinary Na excretiona 0.769* 0.280 0.192 0.159 0.238

Urinary K excretiona 0.725* -0.168 -0.033 0.280 0.497

Urine osmolalitya -0.132 -0.552 -0.890* -0.736* -0.909*

Plasma NT-proBNPb 0.126 0.154 0.478 0.448 0.538

Plasma ANPb 0.374 0.385 0.346 0.104 0.559

Plasma renin activityb 0.137 -0.308 -0.412 0.060 -0.063

Plasma aldosteroneb -0.319 -0.706* 0.214 0.088 -0.119

Plasma vasopressinb -0.176 0.287 -0.291 -0.291 -0.084

ANP atrial natriuretic peptide, NT-proBNP N-terminal pro-b-type natriuretic peptide
* p\0.05
a 24 h
b AUC0–24h

Table 5 Multiple regression analysis of changes in urine volume and factors that affect urine volume on Day 1

Present study
n 5 13

Previous studya

n5 39

Variable Regression coefficient p Regression coefficient p

Intercept -52.707 0.6132 92.566 0.4009

Change in urinary Na excretion 8.837 0.0006 7.496 \0.0001

Change in water intake 0.420 0.0239 0.361 0.0031

R2 0.7630 0.4153

R2 coefficient of determination
a The pharmacological effect of canagliflozin on urinary glucose excretion or renal threshold for glucose excretion is nearly
saturated at doses above 100 mg [19]. Therefore, we performed a similar analysis using all data with different doses over
100 mg combined in that study to confirm the reproducibility of the present study
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but no appreciable changes in plasma

vasopressin and aldosterone, were observed.

We performed correlation and multiple

regression analyses using the data of present

and previous studies [19]. Regarding changes

from baseline, Na, and K were correlated with

urine volume. Meanwhile, the actual value of

urine volume was correlated with water intake

on Days 0, 1, and 5. Multiple regression analysis

showed changes in Na excretion and water

intake as factors that affected urine volume

change on Day 1. Interestingly, two same

factors were selected and the regression

coefficients were closed in both studies, which

suggested the reproducibility of the present

study. Water intake was highly correlated with

actual urine volume before and during

treatment, and was not affected by the

treatment; the correlation is thought to reflect

the general body response. Meanwhile,

canagliflozin induced transient Na excretion

on Day 1, and the change in Na excretion was

closely correlated with change in urine volume.

Thus, the transient increase in Na excretion is

thought to have played a major role in the

canagliflozin-induced increase in urine volume.

In the present study, change in urinary

glucose excretion was correlated with change

in urine volume on Day 1. It should be noted

that urinary glucose excretion was fairly

constant from Day 1 to Day 5, despite urine

volume, as well as urinary Na excretion,

Fig. 3 Canagliflozin-induced changes in blood glucose and
total GLP-1 after meals. Changes in a plasma glucose
concentration over time, b postprandial blood glucose
AUC after each meal, c plasma total GLP-1 after breakfast,

and d total GLP-1 AUC0–2h after breakfast. Numbers of
patients: day 0 and 1, n = 13; day 5, n = 12. Data are
expressed as mean ± SD
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returning to baseline from Day 2 to Day 5. In

addition, there is no correlation between urine

volume and urinary glucose excretion in the

previous study. Furthermore, urinary glucose

excretion was not selected by multiple

regression analysis. Collectively,

canagliflozin-induced diuresis is likely to

reflect natriuresis, not glucose-driven osmotic

diuresis. This is consistent with the results of a

recent simulation study using a mathematical

model of the rat nephron, which demonstrated

that SGLT2 inhibition-induced increase in urine

volume is expected to reflect natriuresis rather

than osmotic diuresis [23]. Increases in urine

output and urinary Na excretion were also

reported in Japanese patients with T2DM and

heart failure after treatment with ipragliflozin

for 4 days [24], although the patient profile was

different from that in the present study.

In the present and previous studies, the

actual value of urine osmolality was negatively

correlated with the actual value of urine volume

before and during treatment. In general,

increasing urine volume dilutes the solutes,

resulting in decreased urine osmolality. The

negative correlation between increased urine

volume and urine osmolality is also likely to be

attributed to the physiological response.

The present study also demonstrated that

canagliflozin decreased plasma ANP and

NT-proBNP levels and increased plasma renin

activity. Change in plasma aldosterone was

negatively correlated with change in urine

volume on Day 5. As these factors are involved

in regulating Na excretion, working in concert

or counteracting each other in the distal

portion of the nephron, these changes may

contribute to increased renal tubular

reabsorption of Na in a compensatory manner.

A similar compensatory mechanism was

reported for the action of diuretics such as

furosemide and hydrochlorothiazide, with the

natriuretic action abolished by continued

treatment [25], which is considered to be

mediated through a decrease in plasma ANP

and activation of the renin-angiotensin system.

The 4-day ipragliflozin treatment

significantly decreased plasma ANP and BNP

and increased plasma renin activity, while

plasma aldosterone tended to increase, but

without statistical significance [24]. A 12-week

treatment with dapagliflozin was reported to be

associated with increases in plasma renin

activity and aldosterone [26]. The study also

demonstrated a slight increase in NT-proBNP by

dapagliflozin. The authors offered a possible

explanation for these discordant results through

a transient rise in erythropoietin, which is

known to enhance BNP secretion [27].

Interestingly, in the present study, NT-proBNP

was decreased, which generally indicates

decreased body fluids, and Ht, BUN/CRE,

serum osmolality, or vasopressin did not

change appreciably during the study.

Furthermore, plasma aldosterone did not

increase. Accordingly, the effects of SGLT2

inhibitors on plasma aldosterone have been

inconsistent. Furthermore, change in plasma

aldosterone was negatively correlated with

change in urine output on Day 5, and thus the

physiological role of this relationship remains

unclear.

Treatment with canagliflozin induced

glycosuria, decreased blood glucose

throughout the day, and suppressed

postprandial hyperglycemia, with the largest

effect after breakfast. In addition, oral

administration of 100 mg of canagliflozin

enhanced the increase in plasma total GLP-1

after breakfast. Although similar results with

higher doses were reported in previous studies

on non-Japanese healthy subjects (300 mg) and

Japanese healthy subjects (200 mg) [28, 29], this

is the first report to show that a lower dose of
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canagliflozin(100 mg) increased the total GLP-1

in T2DM patients. As canagliflozin has modest

potency for SGLT1 inhibition relative to that of

other highly-selective SGLT2 inhibitors [30],

and intestinal SGLT1 inhibition enhanced

GLP-1 secretion in a rodent model [31], the

increase in total GLP-1 may have arisen through

inhibition of SGLT1 in the intestine.

The magnitude of the increase in serum

ketone bodies in the present study was larger

than that in a previous study [32]. This may be

attributed to the fact that ketone body levels

were elevated immediately after hospitalization

(the average of ketone body levels increased

from 123.37 lmol/L at screening to

222.29 lmol/L before dosing), possibly

through the dietary restriction.

The limitations of the study were the small

sample size, short-term nature, and lack of

control group. Urine volume is variable among

patients, days, and ambient conditions.

However, the samples in the present study

were obtained from hospitalized patients to

ensure the controlled and reliable baseline

data (before administration). In addition, we

performed similar analyses using our previous

study data to evaluate the reproducibility of the

present study. Therefore, we think this paper

has clinical value. The long-term effect and

mechanism of canagliflozin for urine volume

remains to be addressed.

CONCLUSIONS

Natriuresis is suggested to be the primary factor

involved in the canagliflozin-induced transient

increase in urine output on Day 1. Decreased

plasma ANP and NT-proBNP and increased

plasma renin activity may be a compensatory

mechanism for subsequent urine output

recovery.
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