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Abstract

Cerebellar symptoms in multiple sclerosis (MS) are well described; however, the exact contribution of cerebellar damage
to MS disability has not been fully explored. Longer-term observational periods are necessary to better understand the
dynamics of pathological changes within the cerebellum and their clinical consequences. Cerebellar lobe and single lobule
volumes were automatically segmented on 664 3D-T1-weighted MPRAGE scans (acquired at a single 1.5 T scanner) of
163 MS patients (111 women; mean age: 47.1 years; 125 relapsing-remitting (RR) and 38 secondary progressive (SP) MS,
median EDSS: 3.0) imaged annually over 4 years. Clinical scores (EDSS, 9HPT, 25FWT, PASAT, SDMT) were determined
per patient per year with a maximum clinical follow-up of 11 years. Linear mixed-effect models were applied to assess the
association between cerebellar volumes and clinical scores and whether cerebellar atrophy measures may predict future
disability progression. SPMS patients exhibited faster posterior superior lobe volume loss over time compared to RRMS,
which was related to increase of EDSS over time. In RRMS, cerebellar volumes were significant predictors of motor scores
(e.g. average EDSS, T25FWT and 9HPT) and SDMT. Atrophy of motor-associated lobules (IV-VI+ VIII) was a significant
predictor of future deterioration of the 9HPT of the non-dominant hand. In SPMS, the atrophy rate of the posterior superior
lobe (VI+ Crus I) was a significant predictor of future PASAT performance deterioration. Regional cerebellar volume reduc-
tion is associated with motor and cognitive disability in MS and may serve as a predictor for future disease progression,
especially of dexterity and impaired processing speed.
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Introduction of cerebellar signs and symptoms in MS has been well-
known [3], the exact contribution of cerebellar damage to
Measures of central nervous system (CNS) atrophy are  disability in MS has still not been fully explored.

increasingly recognized as viable biomarkers of disease bur- The cerebellum is known to play an important role in

den in multiple sclerosis (MS) [1, 2]. While the occurrence motor function, coordination and cognitive-behavioural
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processing [4, 5]. In MS patients, both cerebellar signs and
symptoms are significant contributors to the development of
disability and often progress despite disease-modifying treat-
ment [6, 7]. Neuropathological studies have shown extensive
demyelination in the cerebellar cortex mainly of progressive
MS patients [8]. Further cross-sectional neuroimaging stud-
ies have confirmed cerebellar volume reductions in patients
with MS when compared to healthy controls [9-13]. How-
ever, it is currently not clear to what extent atrophy in the
cerebellum matters clinically. Also, data from previous MRI
studies on cerebellar volume reductions, especially early in
the disease course, provided inconsistent findings [10, 14],
and the clinical correlations of volume abnormalities were
limited. While correlation with the expanded disability sta-
tus scale (EDSS) was at best modest [10] or non-existing
[11, 15, 16], more convincing correlations were observed
between cerebellar volumes and clinical measures, which
directly reflect fine-motor skills, locomotion or cognition
[9, 12—14, 17]. The high variability between studies may be
explained by the application of different techniques (semi-
automated versus automated segmentation, voxel based mor-
phometry, whole versus lobule-wise analyses etc.), hetero-
geneity in patient cohorts (disease duration, disease types,
number of patients) and the fact that mainly cross-sectional
study designs were used.

Longer-term observational periods are necessary to bet-
ter understand the dynamics of pathological changes within
the cerebellum and their clinical consequences in MS
patients. We therefore analysed clinical and MRI data of
a large cohort of patients with relapse-onset MS with up to
11 years of follow-up in order to examine the relationship of
cerebellar volume loss and disease progression, and deter-
mine whether cerebellar atrophy may serve as a potential
biomarker for future disease progression. We applied our
in-house developed ‘Rapid Automatic Segmentation of the
human Cerebellum And its Lobules’ (RASCAL) [18], show-
ing high accuracy in a previous segmentation challenge
(Carass et al. 2018).

Methods

Participants and Study Design

Clinical and MRI data of 163 MS patients, 125 with relaps-
ing-remitting (pwRRMS) and 38 with secondary progres-
sive disease courses (pwSPMS), of an ongoing large-scale
cohort study from a single centre (tertiary MS Centre, Uni-
versity Hospital, Basel) were analysed retrospectively (for
details see Tables 1 and 2). Patients were followed annually
including a clinical visit and MRI over a median of 4 years
(here referred to as: period I) plus a clinical long-term fol-
low-up of a median of 6 years (here referred to as: period II).

The diagnosis of MS was made in accordance with interna-
tional panel established criteria [19].

Procedures

All patients received comprehensive assessment annually.
This included a standardized neurological examination
with Expanded Disability Status Scale (EDSS) by certified
neurologists, timed 25-foot walk test (T25FWT), nine-hole
peg test (O9HPT) with the dominant and non-dominant hand,
Paced Auditory Serial Addition Test (PASAT) and Symbol
Digit Modality Test (SDMT).

All MRI scans were acquired on the same 1.5 T MR
scanner (Magnetom Avanto, Siemens Healthineers, Erlan-
gen, Germany). Morphological analyses were performed on
3D T1-weighted (T1w) magnetization-prepared rapid gra-
dient-echo (MPRAGE) brain MRI scans acquired in sag-
ittal orientation (TR/TI/TE =2080/1100/3.0 ms; a=15°,
160 slices, resolution: 0.98 x0.98 x 1 mm?). Addition-
ally, a double spin echo proton density (PD)/T2-weighted
sequence was applied (TR/TE1/TE2 =3980/14/108 ms; 40
slices 3 mm thick without gap with an in-plane resolution
of 1 mmz). Each 3D T1w data set underwent automatic cer-
ebellar and whole-brain segmentation. Total and regional
cerebellar volumes were computed using the automated
pipeline RASCAL!®, The original pipeline was modified
using an updated version of the MNI152 reference tem-
plate with 30 mm larger coverage inferiorly and addition-
ally a study-specific registration template created from 37
scans of the RASCAL library to improve non-linear reg-
istration around the cerebellum and brain stem [20]. For
each data set, all individual cerebellar lobules, cerebellar
peduncles and white matter core of both hemispheres were
assessed. Based on the latter, the following volumes were
generated: total cerebellar volume (TCV) as the sum of
all lobules plus white matter core incl. peduncles; total
cerebellar grey matter (CGV) as the sum of anterior lobes
(I-V), posterior superior lobes (VI+ Crus I) and posterior
inferior lobes (Crus II-lobule X) of both hemispheres; and
total cerebellar white matter (CWYV) as the sum of cerebel-
lar peduncles and white matter core of both hemispheres,
including the deep cerebellar nuclei. Cerebellar volumes
were normalized for head size and reported in the MNI152
stereotaxic space. Segmentations were visually inspected
for quality and excluded from further statistical analysis
in case of segmentation errors. White matter lesions were
segmented on the PD/T2w images by trained expert MRI
readers according to standard operating procedures used at
the local institution for the analysis of clinical period II and
period III trial as described before [21]. Lesion volumes
(LV) were calculated according to their anatomical loca-
tion with respect to the tentorium (so-called supratentorial
and infratentorial LV). A second processing pipeline was
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Table 1 Baseline demographics

Total RRMS SPMS p-level
n=163 n=125 n=38

Age years (mean + SD) 471+11.3 44.7+10.9 55.1+8.8 <0.001
sex (fim) 111: 52 90:35 21:17 0.08
Disease duration years (mean+SD)  16.1+9.4 14.5+10.9 21.5+9.7 <0.001
Phase I follow-ups (median (range)) 4 (1-6) 5(1-6) 4 (1-6) 0.76
Phase II follow-ups (median (range)) 6 (2-8) 6 (2-8) 52-7) 0.05
EDSS (median (range)) 3.0 (0-7.5) 2.5 (0-6.5) 5.25 (3-7.5) <0.001
Pyramidal FSS (median (range)) 2.0 (0-4) 1.0 (04) 3.0(14) <0.001
Sensory FSS (median (range) 2.0 (0-4) 1.0 (04) 2.0 (04) <0.001
Cerebellar FSS (median (range)) 1.0 (04) 1.0 (04) 3.0 (14) <0.001
T25FWT sec (median (range)) 4.95(2.25-82.2) 4.6(2.25-30.2) 8.95(2.25-82.2) <0.001
9HPT DH sec (median (range)) 19.7 (13.8-94) 18.9 (13.8-74.7) 24.5(16.5-939) <0.001
9PHT NDH sec (median (range)) 20.8 (13.6-167.5) 20 (13.6-114) 26.8 (19.9-167.5) <0.001
SDMT median score (range) 47 (24-94) 47 (24-94) 38 (27-69) 0.004
PASAT median score (range) 51 (11-60) 52 (12-60) 49 (11-59) 0.09
Disease-modifying treatment (7)

No therapy 51 38 13 0.40

Azathioprin 5 4 1

Interferon 87 67 20

Copaxone 19 16 3

Mitoxantron 1 0

Abbreviations: DH dominant hand, EDSS expanded disability status scale, 9 HPT nine-hole peg test, NDH
non-dominant hand, PASAT Paced Auditory Serial Addition Test, RRMS relapsing remitting MS, SDMT
symbol digit modalities test, SPMS secondary progressive MS, T25FWT timed 25-foot walk test

set up to compute whole-brain parenchymal volume using
the 3D T1w datasets (for details [22]). The cerebral volume
contains the remaining tissue after subtracting the brain-
stem volume and TCV from the whole-brain parenchymal
volume (extracted using BEaST [23]).

Statistical Analyses

All statistical analyses were performed using R Version 3.2.3
(https://www.r-project.org/).

The mean annual volume loss rate of each structure was
calculated for every patient as the average of the annual-
ized changes between all available time points'. In order to
approximate a normal distribution, a logarithmic transforma-
tion for the EDSS and 9HPT, an inverse transformation for
the T25SFWT and cubic transformation for the PASAT were
conducted. Further statistical analyses were performed using
the transformed clinical scores.

Between-group comparisons of baseline demographic
factors, clinical measurements and number of follow-ups
were performed using the following tests (where appropri-
ate): Welch’s t-test, Pearson’s chi-squared test with Yate’s
continuity correction and Mann—Whitney U tests. Between-
group differences for baseline MRI measures and annual
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rates of change were performed using analyses of covariance
(ANCOVA), corrected for age, sex and disease duration.

Linear mixed-effects regression (LMER) analyses were
deployed to explore the longitudinal evolution of cerebellar
and cerebral volumes as well as the associations between
MRI changes and clinical measures (period I data). Analy-
ses were conducted in the whole cohort and for subgroups
separately. For simplification, we report only the subgroup
analyses within the “Results” section. Results for the whole
cohort are reported within the supplementary material only.
LMER models were performed in a forward stepwise fash-
ion, using a “random intercept” and a “random slope” to
allow for within-subject and between-subject variance. Each
factor was tested both for its contribution to the fit’s intercept
as well as to the fit’s slope. The fit’s intercept corresponds
to the average of the dependent variable, whereas the fit’s
slope to the change of the dependent variable over time.
Independent variables were entered blockwise keeping the
following sequence: first demographics and clinical factors,
then cerebellar volumes and finally cerebral volume. All
independent variables without statistical significance were
excluded from the final model.

In a second step, the predictive capabilities of the cross-
sectional cerebellar volumes of the last available MRI
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Table 2 Ba.seline MRI volumes Total RRMS SPMS p-level
and annualized volume loss
rates n=163 n=125 n=38
Total cerebral volume [cm3]
Mean +SD 1312+ 94 1329+90 1259 +90 <0.001
Range 1055-1499 1058-1499 1055-1437
Annual cerebral volume rate (%/y)
Mean +SD -05+1.1 —0.46+1.05 -0.62+1.18 n.s
Range -6.2-1.6 —6.24-1.59 —4.96-1.48
Supratentorial LV [mm3] range
Median 3363 3290 3563 n.s
Range 0-30581 0-27136 14.3-30581
Infratentorial LV [mm3] range
Median 28.6 17.1 58.7 n.s
Range 0-2037 0-2037 0-826
TCV [cm3]
Mean+SD 177+19 180+19 168+ 19 <0.001
Range 124-227 130+227 124-209
Annual TCV rate (%/y)
Mean +SD -0.43+0.7 —-0.40+0.70 -0.53+0.71 n.s
Range -29-1.6 —2.87-1.63 —2.36-1.58
Cerebellar WM volume [cm3]
Mean+SD 26+3.9 27+4 25+4 0.005
Range 15-36 17-36 15-31
Annual cerebellar WM volume rate (%/y)
Mean +SD -0.22+1.92 —-043+1.43 0.39+2.88 0.028
Range —4.46-12.56 —4.46-2.96 —3.52-12.56
Cerebellar GM volume [cm3]
Mean +SD 151+16 153+16 143+16 <0.001
Range 108-191 113-191 108-179
Annual cerebellar GM volume rate (%/y)
Mean +SD —0.46+0.69 —0.39+0.69 —0.67+0.64 0.027
Range -3.1-14 —3.07-1.43 —2.69-0.25
Ant. lobe volume [cm3]
Mean +SD 19+2.5 19+24 18+2.7 0.007
Range 13-25 13-25 13-23
Annual ant. lobe volume rate (%/y)
Mean +SD —0.62+1.00 -0.46+0.69 -0.78+1.15 n.s
Range —5.49-1.60 4.61-1.60 —5.49-0.68
Post. sup. lobe volume [cm3]
Mean +SD 59+7.6 60+7.2 55+7.7 <0.001
Range 36-76 43-74 36-75
Annual post. sup. lobe volume rate (%/y)
Mean +SD —-0.43+0.78 -0.29+0.72 —0.82+0.83 <0.001
Range —3.96-2.68 —3.96-2.68 —3.34-0.82
Post. inf. lobe volume [cm3]
Mean+SD 73+8.2 74+8.3 70+7.2 0.008
Range 54-95 54-95 58-84
Annual post. inf. lobe volume rate (%/y)
Mean +SD -0.45+0.78 -0.43+0.79 -0.53+0.74 n.s
Range -3.61-1.59 -3.61-1.59 -2.72—0.73

Abbreviations: Ant. anterior, GM grey matter, inf. inferior, LV lesion volume, post. posterior, RRMS relaps-
ing remitting MS, SD standard deviation, SPMS secondary progressive MS, sup. superior, TCV total cer-
ebellar volume, WM white matter
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(baseline of period II) and the annualized cerebellar volume
changes (MRI data from period I) regarding clinical disease
progression in the future (clinical data from period II) were
analysed with LMER models as described above with base-
line volumes added before annualized changes in the model.

All results were corrected for multiple comparisons using
the false discovery rate approach set at ¢ <0.05.

Cerebellar volumes included in the analyses were as fol-
lows: TCV, CGV, CWYV, anterior lobes, posterior superior
and inferior lobes in case of all clinical parameters tested.
Further, selected individual lobes depending on the prob-
ability to be involved in the processing of the included clini-
cal test (hypothesis driven) were included in the analyses
mentioned above, namely lobules I-IV in case of analyses
of the T25FWT [24, 25]; sum of lobules IV-VI+ VIII in
case of analyses of the 9HPT of the dominant (DH9HPT)
and non-dominant hand (NDH9HPT) [24, 25] and peduncle
volumes in case of analyses of the PASAT and SDMT [12,
26, 27]. In the analyses including the 9HPT as the dependent
variable, only the ipsilateral volumes were considered. For
simplification we still refer to the volumes as named above.

Results

Data of 125 pwRRMS and 38 pwSPMS were included in
the analyses. All patients had a median follow-up of 4 years
in period I (clinical visit and MRI) with a subgroup (n=77)
having a median clinical long-term follow-up of 6 additional
years (period II). All cerebellar lobes showed volume reduc-
tion over time in both groups, with the highest atrophy rate
in the anterior lobes. Detailed baseline data are reported in
Tables 1 and 2.

Cerebellar Volume Changes — Period | Analyses

Cerebellar volumes (TCV, CGV, CWYV, anterior lobe, pos-
terior superior lobe, posterior inferior lobe — see Fig. 1)
and their change over time were evaluated with respect to
demographic and clinical metrics using LMER (Table 3).
Analyses revealed that men, in general, had lower cerebellar
volumes compared to women. In addition, in men, volume
loss progressed faster compared to women in TCV, CGV,
posterior superior lobe and posterior inferior lobe volume.
Older age was associated with reduced cerebellar volumes
on average and with faster volume loss over time for all
cerebellar structures except for the anterior lobe. Disease
duration was not associated with average cerebellar volumes
or its loss over time. Further, disease subtype was not asso-
ciated with cerebellar volumes on average, but pwSPMS
exhibited faster posterior superior lobe volume loss over
time compared to pwRRMS.

CS:—R:(D @ Springer

Correcting for significant demographic factors, disease
subtype and disease duration, we examined the association
between cerebellar volumes, and infra- and supratento-
rial LV. Infratentorial LV were not associated with aver-
age cerebellar volumes or with cerebellar volume loss
over time. Supratentorial LV was associated with all cer-
ebellar volumes on average but the anterior lobe and the
posterior superior lobe (TCV: B= —0.44 +0.14, p<0.01;
CGV:B=-0.28+0.12, p<0.05; CWV: B= -0.17+0.03,
p <0.001; posterior inferior lobe: B= —0.17+0.07,
p <0.05). Changes of supratentorial LV over time were also
associated with changes of all cerebellar volumes over time
but the anterior lobe (TCV: B= —-0.04+0.01, p<0.01;
CGV:B=-0.28+0.12, p<0.05; CWV: B= -0.17+0.03,
p <0.001, posterior superior lobe: B= —0.01 +0.004,
p <0.01, posterior inferior lobe: B= —0.17+0.07, p <0.05).

We further examined the association between cerebellar
volume and supratentorial cerebral volume, correcting for
significant demographic factors, disease subtype and disease
duration. Supratentorial cerebral volume was correlated with
all cerebellar volumes on average (TCV: B=0.007 +0.004,
p<0.01; CGV: B=0.007+0.003, p<0.01; CWV:
B=0.003+0.001, p<0.01; anterior lobe: B=0.002+0.001,
p <0.001; posterior superior lobe: B=0.001+0.001,
p <0.05; posterior inferior lobe: B=0.004 +0.002, p <0.01).
Changes of supratentorial cerebral volume were corre-
lated with changes of all cerebellar volumes over time but
CWYV and anterior lobe (TCV: B=0.002+0.001, p <0.05;
CGV: B=0.002+0.001, p <0.05; posterior superior lobe:
B =0.001+0.0002, p<0.001; posterior inferior lobe:
B=0.001+0.0004, p <0.05).

Cerebellar Volume Changes and Disability — Period
| Analyses

LMER in the pwRRMS subgroup (Table 4) showed that all
cerebellar volumes were inversely correlated with the aver-
age EDSS, T25FWT and directly with the average SDMT.
Average DOHPT and ND9HPT were inversely associated
with the total volume of the cerebellar hemisphere and the
sum of lobules IV, VI and VIII on the respective ipsilateral
side. Peduncle and anterior lobe volumes were by trend cor-
related with the average PASAT. No correlation was found
between changes of any clinical score over time and cerebel-
lar volumes.

LMER in the pwSPMS subgroup showed a trend to an
inverse correlation between posterior superior lobe volume
changes and EDSS changes over time (B= —10~°+4x 1077,
¢ =0.085; final model: R,m=67%, R,c=92%). Cerebral
volume did not contribute further in this model. No other
associations between cerebellar volumes and clinical scores
were found.
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Anterior lobe Posterior superior lobe Posterior inferior lobe
AS S RRMS SPMS RRMS SPMS

Total grey matter

RRMS SPMS RRMS

Volume (mm3)

Year of Follow-up

Year of Follow-up

Total white matter

Year of Follow-up

1 2 3 4 5 0
Year of Follow-up

Cerebral volume

SPMS RRMS SPMS

3 4 5 0
Year of Follow-up

Follow-up (years)

Fig. 1 Upper row: individual volume trajectories over the follow-up
years of RRMS (red) and SPMS (blue) of anterior lobes, posterior
superior lobes and posterior inferior lobes. Lower row: individual
volume trajectories over the follow-up years of RRMS (red) and

Cerebellar Volume Changes and Prediction of Future
Disability — Period Il Analyses

LMER in the pwRRMS subgroup (Table 5) showed that
all baseline cerebellar volumes were inversely correlated
with the future average T25SFWT and all baseline cerebel-
lar volumes but the posterior inferior lobe were inversely
correlated with the future average EDSS and SDMT.
Baseline cerebral volume also contributed in these mod-
els. However, no cerebellar metrics were associated with
future EDSS, T25FWT and SDMT changes over time.
Baseline TCV, baseline CGV, baseline posterior superior
lobe volume (by trend) as well as the sum of cerebel-
lar lobules IV, VI and VIII (baseline and by trend with
annual changes) and annual CWV changes were associ-
ated with the average future DOHPT, whereas no cerebel-
lar metrics were correlated with faster DOHPT worsening
over time. Further, all baseline cerebellar volumes (but

SPMS (blue) of total grey matter and white matter as well as the
cerebral volume for comparison. The thick blue lines represent the
volume trajectories over the observation period for each group; confi-
dence intervals are shown in grey

baseline CGV) as well as the annual volume changes of
CGYV, CWYV, posterior inferior lobe and the summed cer-
ebellar lobules IV, VI and VIII were associated with the
average future NDOHPT, whereas higher annual atrophy
of the summed volumes of cerebellar lobules IV, VI and
VIII and by trend of the TCV were correlated to faster
NDOHPT worsening over time. Cerebral volume also con-
tributed in the 9HPT analyses. No cerebellar metrics were
correlated with PASAT.

LMER in the pwSPMS subgroup (Table 6) showed that
the annual volume change rate of the anterior lobe was posi-
tively associated with changes of future NDOHPT over time.
Average future PASAT was correlated with annual change
rates of CGV, anterior lobe and posterior superior lobe vol-
ume, whereas annual volume change rates in the posterior
superior lobe were correlated with future PASAT changes
over time. No other associations between cerebellar volumes
and clinical scores were found.
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Change over time

Post. inf. lobe volume (mm?)

Average

Change over time

Post. sup. lobe volume (mm?)
Change  Average

over
time

Ant. lobe volume (mm?)

Average

Change over

CWV (mm?)
time

Average

Change over time

CGV (mm?)
Average

Change over time

TCV (mm?)
Average

Table 3 Cerebellar volumes and their change over time with respect to demographic factors

GRO @ Springer

—201.1+79.91,*
—9.64 +3.36,**

—4420+1261,**

—111.2+49.83,*
—2724222.%

—4987 +£1097,#+*
—277244543 %%

— 1228 +376.0,**
—75.56+15.58,**

—79.51 +£24.33,%*

—408.7+174.0,%  —10639+2334 %  —37024+139.2,%*% —2781+586.5,%**

—21.49+7.34**

—13418£2.774 %
—654.0+114.9,%%*

Sex (males)

—220.74£52.22, %%

+ —6.27+2.54,%

—15.36+5.87**

—574.5+96.68,%**

Age (years)

DD (years)

MS

—126.4+58.85,*

subtype

(SPMS)

=99%

=99%

2
C

27%, R

Final model: R*m

16%,

Final model: R’m

Final model: R’m

=99%

2

=99% Final model: R*“m

Final model: R”m

Final model: R2Zm=17%, R2¢c

17%, R%c=98%

26%, R%

26%, R%

R%=99%

Abbreviations: Anz. anterior, CGV cerebellar grey matter volume, CWV cerebellar white matter volume, inf. inferior, post. posterior, R?,, marginal R-squared, R?, conditional R-squared, SPMS

secondary progressive MS, sup. superior, TCV total cerebellar volume

Significance level: p<0.05="*; p<0.01 =*%; p<0.001 = ***

Analysis was performed with linear mixed-effect models with a random intercept and slope. Boxes display regression coefficients and respective levels of significance

Discussion

Previous studies have shown a relation between reduced
cerebellar volumes in pwMS and sensory-motor dysfunc-
tion as well as cognitive-behavioural tasks [13, 17, 22, 28];
however, little is known on the temporal evolution of cer-
ebellar volume loss and the corresponding deterioration of
function. In this work, we analysed a large cohort over a
long clinical observation period of up to 11 years. We could
show significant volume reduction in the cerebellum and its
substructures in relapse-onset MS patients and their relation-
ship between regional cerebellar volume loss and motor and
cognitive function over time.

In our cohort, pwSPMS exhibited faster posterior supe-
rior lobe volume loss over time compared to pwRRMS, a
region known to be activated during various language, work-
ing memory and executive function tasks [29]. This is in line
with earlier cross-sectional studies describing predominant
cerebellar volume reduction in progressive patients over
relapsing and benign MS forms [9, 15]. Average infratento-
rial LV or its change over time was neither associated with
average cerebellar volume nor its changes over time, indicat-
ing at least partial independence between the formation of
regional lesional burden (primarily inflammatory processes)
and neurodegenerative processes leading to atrophy. The
lack of association may on the other hand be explained by
technical challenges in infratentorial space leading to limited
lesion detection especially cortical lesions. In contrast, cer-
ebral and cerebellar volumes correlated significantly. There
is no preferential volume loss of cerebral over cerebellar
tissue, as described before [30].

As to the clinical consequences of cerebellar volume
reduction, we could confirm previous data in finding sig-
nificant relations between average cerebellar volumes on a
global as well as on a defined regional level and clinical
test performance [10, 13, 17, 22]. However, for pwRRMS
no associations were found when analysing the relation
between regional volume loss over time and changes in
the corresponding task performance over time. In contrast,
for pwSPMS volume reduction in the posterior superior
lobe (which was discriminative between both groups) over
the study period was at least by trend related to increase
of EDSS over time. While EDSS represents a measure for
predominantly motor disability, the posterior superior lobe
(including lobule VI and Crus I) — as mentioned before
— has been predominantly related with higher order cogni-
tive tasks (e.g. language, spatial tasks, executive function
and affective processing). However, some studies have also
shown involvement of this region with motor tasks and
suggest relations of the posterior cerebellar regions with
higher order motor planning [24, 26, 29, 31-33]. These and
our findings suggest that not only direct damage of motor
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pathways may influence EDSS changes, and that neurode-
generation within associative centres affects motor perfor-
mance in an indirect fashion. In addition, pwSPMS with
longer disease duration and older age in general may have
reduced adaptive and repair mechanisms to make up for loss
of neuronal tissue, which again may translate more directly
into dysfunction than in pwRRMS [34, 35].

Additionally, we were interested in determining whether
cerebellar structural changes may predict future clinical dis-
ease progression. In pwRRMS, atrophy rates of cerebellar
lobes and total volumes together with supratentorial cerebral
volume were significant predictors of disease severity in
terms of motor scores (e.g. average EDSS, T25FWT, OHPT
of both hands) and the SDMT, confirming previous results
of cross-sectional analyses [13, 17, 22]. No relation was
found between atrophy rates and future cognitive decline
in this patient group, which may be partially explained by
a more prominent learning effect for both tests (SDMT:
0.459 +0.667/year; PASAT?: 14.35 + 18.65/year) as seen in
other studies before [36, 37]. Another explanation may be
the concept of “brain and cognitive reserve”, where cogni-
tive performance may not correlate with brain atrophy due
to “protective effects” of maximal life time brain volume
(genetics) and premorbid intelligence and educational levels
(environmental factors) [38].

Interestingly, we showed that lower baseline volumes
and higher atrophy rates of ipsilateral hemispherical struc-
tures and in particular motor-associated lobules were sig-
nificant predictors of faster future performance worsening
on the 9HPT of the non-dominant hand in all pwMS. The
cerebellum, in particular its anterior and superior posterior
lobe, is activated as part of a large visuo-motor network
including also fronto-parieto-occipital regions when dex-
terity tasks are performed by healthy controls. It shows
even stronger activations when using the non-dominant
over the dominant hand [32]. The 9HPT of the non-dom-
inant hand further seems to better reflect real life upper
limb disability [39] and may therefore be a more sensitive
measure (than e.g. the EDSS) to volume changes even in
less affected patients like RRMS. In pwSPMS, we showed
that atrophy rates of the posterior superior lobe were a
significant predictor of future PASAT performance dete-
rioration. PASAT performance is known as a measure of
processing speed, working memory and attention, activat-
ing a broad bilateral mainly fronto-parietal network but
also including subcortical structures and the anterior and
posterior superior cerebellum [40, 41]. Our results under-
line the importance of the cerebellar structures within this
network, where neurodegeneration leads to faster deteriora-
tion of processing speed and attention.

General findings in this study were lower head-sized
normalized cerebellar volumes in men than women, as pre-
viously described [18]. Further, men showed higher rates

CS:—R:CD @ Springer

of volume loss over time especially within the posterior
lobe grey matter, an area (amongst other functions) well-
known to be part of cognitive-behavioural processing®. This
might support the view of male sex being a risk factor for
faster disability accumulation in relapse-onset patients [42].
Further, older age was associated with lower volumes and
faster volume loss, but disease duration did not seem to be
a relevant factor. Unfortunately, for this study no healthy
matched control group was available, which could help in
estimating the present cerebellar volume reduction in rela-
tion to healthy ageing. However, in general, the association
between cerebellar volume loss and disability is not affected
by this limitation.

The retrospective, longitudinal design is prone to poten-
tial bias due to dropout of patients. PwWSPMS were smaller
in number; however, they showed similar follow-up time
than pwRRMS and therefor dropout is probably not due to
disease progression. About 69% of patients were treated
with disease-modifying therapy with dominance of first-
line injectables, which potentially may bias volume analy-
ses. This effect should, however, be negligible for the latter
therapeutics [43]. Another limitation is the lack of data on
atrophy of the deep cerebellar nuclei, which are an important
relay station for motor and cognitive pathways from and to
the cerebellum and might better reflect disability progres-
sion. Unfortunately, the quality of the T1w MRI data did
not allow a reliable segmentation of the latter. High-field
MRI data would be of advantage to look into the possible
specific predictive value of the cerebellar nuclei for future
disease progression.

Conclusion

Overall, we conclude that the cerebellum not only plays an
important role for motor and cognitive function in MS, but
also reflects decline in clinical motor and cognitive perfor-
mance and may even serve as a predictor for future disabil-
ity, especially when dexterity and processing speed perfor-
mance is in focus.
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