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Abstract
The interaction of the cerebellum with cerebral cortical dynamics is still poorly understood. In this paper, dynamical causal 
modeling is used to examine the interaction between cerebellum and cerebral cortex as indexed by MRI resting-state func-
tional connectivity in three large-scale networks on healthy young adults (N = 200; Human Connectome Project dataset). 
These networks correspond roughly to default mode, task positive, and motor as determined by prior cerebellar functional 
gradient analyses. We find uniform interactions within all considered networks from cerebellum to cerebral cortex, providing 
support for the notion of a universal cerebellar transform. Our results provide a foundation for future analyses to quantify 
and further investigate whether this is a property that is unique to the interactions from cerebellum to cerebral cortex.
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Introduction

The cerebellum has been identified as an important contribu-
tor not only to motor functions but also to non-motor func-
tions including cognition and affect [1]. Anatomical con-
nections link the cerebellum to motor as well as non-motor 
territories of the cerebral hemispheres [2]. Clinical studies 
have shown that isolated cerebellar injury or degeneration is 

sufficient to produce motor, cognitive, and affective deficits 
[3–6], and that cerebellar abnormalities exist in numerous 
neurological and psychiatric disorders that degrade not only 
motor but also cognitive and affective regulation [7–11]. 
Neuroimaging analyses have confirmed that the cerebellum 
contributes to all major large-scale functional networks of 
the brain, including motor networks, attentional (task posi-
tive) networks, and default-mode (task negative) network 
(DMN) [12–16].

Human neuroimaging has provided detailed descrip-
tions of the functional topography of the cerebellar cortex. 
Stoodley and Schmahmann [17] demonstrated that human 
cerebellar areas subserving motor functions are distinct 
from those subserving non-motor and cognitive functions. 
Motor tasks are largely the domain of the anterior cerebel-
lum, whereas cognitive tasks, such as working memory, are 
supported by the posterior cerebellum [18]. Several stud-
ies using functional MRI have investigated the interactions 
between human cerebellum and cereberal cortex [19–21]. 
Task and resting-state fMRI studies have largely supported 
each other in the functional topography of the cerebellar 
lobules [12, 21].

Contrasting with the existing detailed knowledge of cer-
ebellar and cerebello-cerebral functional topography, few 
neuroimaging investigations have focused on characterizing 
the nature of cerebellar interactions with the cerebral hemi-
spheres, including the possibility that there is a contribution 
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of cerebellar modulation of brain circuits that is uniform 
across all domains of behavior (Universal Cerebellar Trans-
form theory, UCT; [22]).

In this work, we estimated effective connectivity using 
dynamic causal modeling (DCM) in the Human Connec-
tome Project (HCP) dataset to investigate the nature of cer-
ebellar interactions with the cerebral cortex as indexed by 
resting-state functional connectivity between the cerebellar 
and cerebral cortex. We evaluated whether within-network 
DCM relationships (DMN cerebellum—DMN cerebral cor-
tex, task-positive cerebellum—task-positive cerebral cortex, 
motor cerebellum—motor cerebral cortex) are the same 
across all networks, as predicted by the Universal Cerebellar 
Transform (UCT) theory. Additional relationships between 
and within networks in the cerebellum and the cerebral cor-
tex were also examined.

Materials and Methods

fMRI Data

Data were provided by the Human Connectome Project 
(HCP), WU-Minn Consortium (Principal Investigators: 
David Van Essen and Kamil Ugurbil; 1U54MH091657) 
funded by the 16 NIH Institutes and Centers that support 
the NIH Blueprint for Neuroscience Research; and by the 
McDonnell Center for Systems Neuroscience at Washington 
University [23]. A total of two hundred patients from the 
HCP were analyzed, with the patients split into two samples 
of one hundred patients for verification purposes. The first 
hundred patients were taken from the “100 Unrelated” pack-
age provided by the HCP and then a second sex/age-matched 
group of patients was selected for verification. The hundred 
unrelated subjects had 54 female and 46 male subjects with 
17 aged 22–25, 40 aged 26–30, 42 aged 31–35, and 1 that 
was 36 + .

The analysis was performed on the first and second 
preprocessed resting-state scan available for each patient. 
WU-Minn EPI data was collected using multi-band pulse 
sequences [24–27]. The default preprocessing pipeline was 
used [28] which is built upon FSL [29] and FreeSurfer [30]. 
The prepossessing includes 2 mm spatial smoothing and 
areal-feature aligned data alignment (“MSMAll”) [31]. No 
additional preprocessing was performed on these data.

ROI Selection

The regions selected for DCM analysis (Fig. 1) were based 
on functional gradients that are calculated based on diffu-
sion map embedding [32]. These functional gradients were 
described initially in the cerebral cortex and examined more 
recently in cerebellar data [13, 14]. Functional gradients 

were obtained from the freely available datafiles published 
by Guell and colleagues (https://​github.​com/​xavie​rgp/​cereb​
ellum_​gradi​ents). A description of the methodology to gen-
erate functional gradients is described in Fig. 2. Top and 
bottom 5% functional gradient values were chosen as an 
arbitrary threshold to isolate maximum and minimum values 
of each functional gradients that isolate specific domains of 
cerebellar function, as described below. An arbitrary thresh-
old of 5% has also been used elsewhere [13, 14].

Fig. 1   Cerebellar cortical masks based on functional gradient values 
calculated from functional connectivity data from cerebellar cortex to 
cerebral cortex [13, 14] (shown in cerebellar flatamps at the center 
of each panel), and cerebral cortical masks based on functional con-
nectivity from cerebellar cortex to cerebral cortex (shown in inflated 
cerebral cortical maps)
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Since here we are interested in evaluating interactions 
between cerebellum and cerebral cortex, masks in the 
cerebellum were generated based on functional gradients 
calculated on functional connectivity data from cerebellar 
cortex to cerebral cortex (as provided by [13, 14],see sec-
ond figure in that publication). Cerebellar cortical masks 
included (i) top 5% values of gradient 1 (which corresponds 
to default-mode processing); (ii) bottom 5% values of gradi-
ent 1 (which corresponds to motor processing); and (iii) top 
5% values of gradient 2 (which corresponds to task-focused, 
attentional/executive processing). These masks are shown 
in Fig. 1.

Masks in cerebral cortex were obtained by restricting 
the top 5% values of functional connectivity from the peak 
voxel of each of the masks in the cerebellar cortex—i.e., 
voxel with maximum gradient 1 value, voxel with minimum 
gradient 1 value, and voxel with maximum gradient 2 value. 
These masks represented areas in cerebral cortex with func-
tional connectivity to cerebellar default-mode, motor, and 
attentional/executive regions, respectively.

The code used to generate these masks is freely available 
at http://​www.​github.​com/​sfruf/​DCM_​Cereb​ellum.

Data Extraction from ROIs

The mean time course of these masks was extracted using 
HCP workbench (https://​www.​human​conne​ctome.​org/​softw​
are/​conne​ctome-​workb​ench) and entered into SPM12 (http://​
www.​fil.​ion.​ucl.​ac.​uk/​spm/​softw​are/) to learn a Dynamic 
Causal Model (DCM) as described in the forthcoming sec-
tions.1 By using the extreme values of functional gradients 
in the cerebellar cortex that define the poles of functional 
organization based on connectivity from cerebellum to cer-
ebral cortex (default mode, motor, and attentional process-
ing), and the most strongly connected areas in the cerebral 
cortex to each of the three areas of interest in the cerebellum, 
we capture the most important data points for this functional 
analysis while still considering a sufficiently small network 
to ensure reasonable DCM results.

Fig. 2   Schematic representation of calculation of functional gradi-
ents using diffusion map embedding. (A) This example presents a 
schematic representation of diffusion map embedding. It illustrates 
the calculation of the principal functional gradient of 4 cerebellar 
voxels (red, green, blue, magenta) based on their functional connec-
tivity with two target cerebellar voxels (yellow, orange). (B) Con-
nectivity from each cerebellar voxel (red, green, blue, magenta) to 
the two target cerebellar voxels (yellow, orange) is represented as a 
two-dimensional vector. (C) All vectors can be represented in the 
same two-dimensional space. (D) Cosine distance between each pair 
of vectors is calculated, and (E) an affinity matrix is constructed as 
(1-cosine distance) for each pair of vectors. This affinity matrix rep-
resents the similarity of the connectivity patterns of each pair of vox-
els. (F) A Markov chain is constructed using information from the 
affinity matrix. Information from the affinity matrix is thus used to 
represent the probability of transition between each pair of vectors. 
In this way, there will be higher transition probability between pairs 
of voxels with similar connectivity patterns. This probability of tran-
sition between each pair of vectors can be analyzed as a symmetric 

transformation matrix, thus allowing the calculation of eigenvectors. 
(G) Eigenvectors derived from this transformation matrix represent 
the principal orthogonal directions of transition between all pairs of 
voxels. Here we illustrate the first resulting component of this anal-
ysis – the principal functional gradient of our four cerebellar voxels 
(red, green, blue, magenta) based on their connectivity with our two 
target cerebellar voxels (yellow, orange) progresses from the blue, to 
the green, to the magenta, to the red voxel. (H) This order is mapped 
back into our cerebellum map, allowing us to generate functional neu-
roanatomical descriptions. Of note, our cerebellar functional gradi-
ents were calculated using functional connectivity values of each cer-
ebellar voxel with the rest of cerebellar voxels (rather than between 
four voxels and only two target cerebellar voxels, as in this exam-
ple). Vectors in our analysis thus possessed many more than just two 
dimensions, but cosine distance can also be calculated between pairs 
of high-dimensional vectors. Diffusion map embedding using func-
tional connectivity values from each cerebellar voxel to all cerebellar 
voxels thus captures the principal gradients of cerebellar functional 
neuroanatomy. Adapted from [13, 14].

1  Note that the traditional implementation of DCM with SPM uses 
the first eigenvariate instead of the mean. However, in the case of 
uncentered data, the first eigenvariate points towards the mean so we 
expect this will not greatly affect our results.
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Spectral DCM

In this paper, we use spectral dynamic causal modeling 
(sDCM)(Friston et  al., 2014), a variant of dynamical 
causal modeling (DCM, [33] which has been proposed 
specifically for the analysis of resting-state fMRI. sDCM 
learns a model of the evolution of the neuronal state in n 
regions, represented by the vector x ∈ Rn , via the observed 
output from those regions, represented by the vector 
y ∈ Rn . It is assumed that the model has the following form

where A captures how neuronal activation spreads 
between regions, v is neuronal noise, e is measurement 
noise, and � is the set of parameters of the hemodynamic 
response function, h(x, �) . What differentiates sDCM from 
other DCM variants that incorporate noise (called stochas-
tic DCM [34]) is that the noise signals v and e are assumed 
to have spectral density, g(�, �) , which satisfies the fol-
lowing form:

where � is the frequency, � determines the amplitude 
of the spectral density, and � captures the decay of the 
spectral density as frequency increases. For example, for 
white noise � = 0 and for pink noise � = 1.

In order to specify the full generative model, there 
need to be assumptions on the observation noise, which 
allows observed cross spectra to be related to the expected 
cross spectra from the model. Here an additive Gauss-
ian sampling error was used. The full generative model 
p(g(�), �) = p(g(�)|�)p(�|m) is then completed by speci-
fying prior beliefs p(�|m) about the parameters, which 
define a particular model m . With the full generative 
model, one can evaluate the likelihood or the probability 
of getting some spectral observations given the parameters 
p(g(�)|�) , as described in depth in Friston et al. (2014).

The full sDCM formulation provides a model of hidden 
neuronal dynamics which generate complex cross spectra 
in the measured response. While this could be used to esti-
mate the activity in neuronal populations, the output of the 
model which will be studied in this paper is the effective 
connectivity matrix A . As we consider six time courses for 
inference, this matrix has 36 directed connections between 
the six ROIs under consideration. These 36 links include 
connections between regions as well as self-loops which 
show how an ROI’s current activity affects its own future 

(1)ẋ = Ax + v

(2)y = h(x, �) + e

(3)gv(�, �) = �v�
−�v

(4)ge(�, �) = �e�
−�e

activity. A positive link from ROI i to ROI j means that 
activity in ROI i is expected to lead to an increase in activ-
ity in ROI j , while a negative link means that activity in 
ROI i is expected to lead to a decrease in activity in ROI j.

sDCM was motivated by the difficulty in calculating 
effective connectivity through a typical DCM formulation 
in resting-state data, which has no external stimuli (Friston 
et al., 2014). The form of sDCM results in a determinis-
tic formulation which is solved in the frequency domain, 
which reduces the number of parameters which must be 
estimated. This has been shown to result in better recovery 
of true effective connectivity as well as higher sensitivity to 
changes in the magnitude of edges in the effectivity connec-
tivity matrix on simulated time courses where the underlying 
effective connectivity is known [35].

The six mean time courses extracted from the HCP work-
bench were used as input into SPM12 to calculate sDCM, 
which is implemented in a Bayesian fashion such that all the 
parameters of the model are given a prior value, which is 
then updated via data to generate a posterior estimate of the 
values. The priors on the A matrix were specified as being 
completely connected. In the next section, we discuss how 
to move to the connectivity profile at the group level once 
the individual models had been inverted.

There has been much debate around the complexity of 
subject-level DCMs (Lohmann et al., 2012). Previous work 
identified that if there was no prior hypothesis about inter 
region connectivity, DCM can reasonably infer effective 
connectivity for less than 8 regions of interest [36]. While 
this has remained a limitation in the past, recent work using 
spectral DCM specifically addresses this limitation and suc-
cessfully identified the effective connectivity between 36 
ROIs from a fully connected network (Razi et al., 2017). 
As such, we expect that the sDCM will be able to infer a 
reasonable model for each subject using six time courses.

The code used for these analyses is freely available at 
github.com/sfruf/DCM_Cerebellum.

DCM for Group Analysis

Once the individual level sDCM was computed, SPM rou-
tines for Parametric Empirical Bayes (PEB) were used to 
perform a group-level analysis [37]. Briefly, PEB learns a 
statistical model of the subject level sDCM parameters �1 
based on the group level sDCM parameters �2 with the fol-
lowing form

where �1 and �2 are zero mean Gaussian noise, � is the 
mean of the group level sDCM parameters, and Γ is a 

(5)�1 = Γ
(
�2
)
+ �1

(6)�2 = � + �2
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nonlinear function. The output of the PEB analysis is the 
mean � and noise �2 which characterize the posterior dis-
tribution of the group-level parameters. In practice, the 
nonlinear function, Γ , which determines how the individual 
parameters relate to the group level parameters, is taken as 
a linear model which is characterized by a between-subject 
design matrix X . Here X was taken to be a matrix with one 
column of all ones, which ensures that the only group-level 
parameters returned are the mean sDCM parameters across 
all two hundred subjects.

The group comparison method used here (PEB) does not 
specifically rely on the spectral DCM formulation. To the 
author’s best knowledge, it has not been considered in the 
DCM literature whether there is a relationship between the 
size of an individual model and the ability to apply PEB. 
As we have done here, the typical approach is to ensure that 
each subject level DCM can be reasonably inferred based 
on model complexity without worrying about the complex-
ity of the comparison. However, given the large number of 
subjects relative to the model size, we believe that this is a 
reasonable approach.

Results

The results of the PEB analysis are shown in Figs. 3 and 4. 
Figure 3 shows the posterior effective connectivity of each 
of the 36 connections in the group mean sDCM. Figure 4 
visualizes the same information as a network, showing the 
group-level mean interaction pattern thresholded to include 
only links which have a greater than 0.99 posterior prob-
ability, i.e., once the prior on the values have been updated 
with data there is a probability near 1 that these are non-zero. 
For greater clarity, the significant links that connect different 
networks are shown in isolation in Fig. 5.

The effective connectivity matrix shown in Fig. 3 shows 
that the pattern of within-network coactivation between 
the cerebellum and the cerebral cortex is shared across all 
three networks. More specifically, task-positive, motor, and 
default-mode networks all mutually activate each other in 
their interaction between cerebellum and cerebral cortex. 

We will argue in the “Discussion” section that this finding 
supports the UCT theory.

Additional relationships were obtained from our anal-
yses. DMN in cerebral cortex and cerebellum as well as 
task-positive and motor regions in cerebral cortex showed 
negative self-loops. Negative self-loops match an underlying 
assumption of the sDCM method, which is that the A matrix 
corresponds to a stable, continuous time linear system. One 
way to guarantee that a linear system is stable is for all self-
loops to be negative and sufficiently strong; this is due to 
the fact that for stability to hold in a continuous system, the 
eigenvalues of A must be strictly negative [38]. There are a 
number of sufficient conditions for the eigenvalues of A to 
be strictly negative which can be shown to hold in the pres-
ence of strong, negative self-loops (based on matrix analysis 
tools such as the Gershgorin Disc Theorem among others 
[39]. In contrast, the motor regions in the cerebellum show a 
small positive self-loop. This may suggest that there are dif-
ferent intra-cerebellar patterns of motor functional connec-
tivity which can co-activate each other and that are captured 
in the large-scale mask applied to extract the time course of 
cerebellar motor functional connectivity. The task-positive 
regions in the cerebellum have no statistically significant 
self-loop,however, if the threshold is relaxed sufficiently 
it can be seen that there is a very small positive self-loop 
which suggests that a similar organization might be present 
in the task-positive network.

When looking at between-network relationships between 
cerebellar cortex and cerebral cortex, networks in the cer-
ebellum tend to co-activate with positive links in both 
directions between DMN and task-positive as well as task-
positive and motor networks. A similar pattern holds in the 
cerebral cortex, with mutual activation between task-positive 
and motor networks. Negative links (outside of self-loops) 
are found when crossing from cerebellum to cerebral cortex 
or vice versa. Default mode in the cerebellum has a negative 
interaction both to and from task-positive regions in the cor-
tex suggesting a mutual inhibition of activity. There is a neg-
ative link from task-positive network in cerebellum to DMN 
in cerebral cortex, and a negative link from motor network 
in cerebral cortex to task-positive network in cerebellum.

Fig. 3   Posterior Effective Connectivity Estimates. (Left) Effective Connectivity Estimates for all 36 connections between the six regions at the 
group level. (Right) Effective Connectivity Estimates showing only connections that are non-zero with greater than 0.99 probability
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Discussion

Evidence from anatomical, clinical, and neuroimaging stud-
ies has established that the cerebellum is implicated in vir-
tually all domains of human behavior, ranging from motor 
control to cognitive and affective functioning [1]. Functional 
MRI investigations have delineated distinct territories in the 
cerebellar cortex [15], as well as other structures in the cer-
ebellum such as the dentate nuclei [40], that are specifically 
engaged in distinct aspects of movement, thought and emo-
tion regulation. Despite this knowledge, the nature of the 
contribution of the cerebellum to neurological function has 
remained difficult to study.

The UCT theory holds that the same neurological pro-
cess underlies cerebellar modulation of movement, thought, 
and emotion [2, 3, 13, 14, 41]. This theory is supported by 
the observations that cerebellar cortex cytoarchitecture is 

essentially uniform [42, 43],by clinical observations that 
there is a similar direction of abnormality in the motor, cog-
nitive, and affective deficits that result from cerebellar injury 
(Franziska [4–6, 44, 45],and by neuromodulation experi-
ments in humans showing a common pattern of electrophysi-
ological changes in the cerebral cortex after stimulation of 
different areas of the cerebellar cortex [46]. Alternative 
views exist in the literature that highlight subtle variations in 
cerebellar structure [47], or that propose that uniform archi-
tecture is not incompatible with distinct computations [48].

The results of the present investigation provide new evi-
dence supporting the UCT theory, and serve as a building 
ground for future confirmatory analyses. All within-network 
interactions from cerebellar cortical to cerebral cortical 
default-mode, task-positive, and motor regions followed 
the same directionality. Specifically, activation in a given 
cerebellar network was followed by an increase in activation 

Fig. 4   Group mean DCM 
links with greater than 0.99 
probability in the mean of all 
200 subjects. Superior panel: 
Group mean DCM visualized 
as a network. Red lines cor-
respond to a positive flow of 
activation, i.e., activation in a 
given network will lead to an 
increase in activation in linked 
networks; blue lines correspond 
to a negative flow of activation. 
The link weights correspond to 
the amount of activation that is 
spread, so a link with weight 2 
results in double the effect of a 
given amount of activation than 
a link with weight 1. Thickness 
of the edges is scaled based on 
link weight. Notably, within-
network interactions between 
cerebellum and cerebral cortex 
mutually activate each other 
in all cases. Inferior panel: 
Group mean DCM visualized 
as a matrix. Links that are not 
significant are shown in white. 
CC = cerebral cortex. C = cere-
bellum. Motor = motor network. 
Task = task-positive network. 
DMN = default-mode network
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in the linked network in the cerebral cortex as measured by 
sDCM. A uniform pattern of interaction was not observed 
from cerebral cortex to cerebellum—specifically, there was 
not a positive link detected from motor cerebral cortical to 
motor cerebellar network, while a positive link was detected 
from default-mode cerebral cortical to default-mode cerebel-
lar network, and a positive link was detected from task-pos-
itive cerebral cortical to task-positive cerebellar network. A 
uniform pattern of interaction from cerebellum to cerebral 
cortex, but not from cerebral cortex to cerebellum, is the 
relationship that would be expected based on the theory that 
a similar neurological process underlies the contribution of 
the cerebellum to all domains of behavior. Some of the con-
nectivity patterns reported here had also been reported pre-
viously; for example, the negative connection between task-
positive cerebellum and DMN was also observed in Parker 
and Razlighi [49].

Our results serve as a building ground for future analyses 
that are needed in order to validate the findings presented 
here. While these additional analyses are beyond the scope 
of this publication, new analytic methods ought to be devel-
oped to quantify whether there is a detectable difference in 
the amount of similarity of within-network interactions from 
cerebellum to cerebral cortex compared to other network 
pairs. While our study shows positive links in all cases of 
cerebellum to cerebral cortical within-network interactions, 
there was also uniformity in the interactions from cerebral 
cortex to cerebellum in within-network analyses, with the 
exception that there was no positive link from cerebral corti-
cal motor network to cerebellar motor network—the absence 
of such a link is a central result to support our discussion that 
uniformity in within-network connectivity is unique to the 
interactions from cerebellum to cerebral cortex. Our results 

show for the first time a common nature in the influence 
that cerebellar networks have in their linked cerebral corti-
cal networks, but more research is needed to definitively 
establish whether this is a unique feature of the cerebellum, 
or instead a pattern of positive reinforcement that is equally 
present in all within-network interactions between all struc-
tures in the brain.

Between-network interactions were not uniform in cer-
ebellar cortex (there were bi-directional positive links 
between motor and task positive, DMN and task positive, 
but not between motor and DMN cerebellar networks) or 
between cerebellar cortex and cerebral cortex (there was 
a negative link from cerebral cortical motor to cerebellar 
task network, and a negative link from cerebellar default-
mode to cerebral cortical task-positive network, but no other 
between-network significant links detected between cere-
bellum and cerebral cortex). Our interpretation is that non-
uniform interactions between different network kinds (e.g., 
between default-mode and task-positive networks) are not 
against the notion of a UCT, but are instead consistent with 
the well-established knowledge that interactions between 
different network kinds are not uniform in the brain. For 
example, it is well established that there is a negative rela-
tionship between default-mode and task-positive networks 
in the brain [50]—this relationship was detected in our study 
between cerebellar default-mode and cerebral cortical task-
positive network—and that such a relationship is not equally 
present between other network kinds. In this way, finding 
different kinds of interactions between networks of different 
kinds is not an argument against the notion of a UCT, and 
instead provides an example of how a modular organization 
of the cerebellum—where distinct networks with different 
patterns of between-network interactions exist within the 

Fig. 5   Between-network links in 
the group mean DCM visual-
ized as a network
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cerebellum—is compatible with the notion of a UCT where 
there is a similar neurological process underlying cerebellar 
modulation of extra-cerebellar activity, as indexed by our 
analyses of within-network connectivity from cerebellum 
to cerebral cortex. The same logic applies to the differences 
observed in self-loop interactions between cerebellar motor 
network and cerebellar default-mode and task-positive self-
loop interactions.
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