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Abstract
Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad
heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging
physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of
cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres)
and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade,
many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classifi-
cation of cerebellar malformations are needed. Here, we review the current literature on CH.We propose a systematic approach to
recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior
cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical
migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his
investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostica-
tion of associated neurodevelopmental outcomes.
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Introduction

The cerebellum accounts for only about 10% of the cerebral
volume (hence the name of “little brain”) but contains approx-
imately half of the 50 billion mature neurons of the adult brain

[1]. Beyond the well-known role of cerebellum in motor co-
ordination, an expanding literature has recognized the role of
different cerebellar subregions in many neurocognitive func-
tions, such as language and behavior [2, 3], suggesting that the
impairment of specific cerebro-cerebellar circuits is relevant to
the development of several neurodevelopmental disorders like
autism spectrum disorder (ASD) [4], language disorders [5],
and attention deficit and hyperactivity (ADHD) [6].

The term cerebellar hypoplasia (CH) refers to a “cerebel-
lum of reduced volume.” It encompasses an extremely hetero-
geneous group of disorders possessing a wide range of radio-
logic features, variable clinical characteristics and
neurodevelopmental outcomes, and diverse acquired and ge-
netic etiologies [7]. Over the past years, various neuroradio-
logical approaches have been proposed to classify CH and
related anomalies but an unanimous consensus has not been
attained, given the heterogeneous and overlapping phenotypic
spectrum among the CH-related disorders [8–12]. Here, we
review the current literature related to CH and propose a sys-
tematic diagnostic approach for clinicians evaluating patients
with cerebellar malformations.

We conducted a search of the PubMEd database from
January 1990 to October 2020, using the terms “cerebellar
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development,” “cerebellar hypoplasia,” “cerebellar dyspla-
sia,” “posterior fossa malformation,” “Dandy walker malfor-
mation,” and “pontocerebellar hypoplasia.” Additional refer-
ences that were cited in relevant articles were also used.

Overview of Cerebellar Anatomy and Embryology

The cerebellum consists of two hemispheres and a midline
vermis that are divided into 3 lobes and 10 lobules [13]
(Fig. 1a). The cortex is three-layered and formed by the inter-
nal granule cell, Purkinje cell, and molecular layers (Fig. 1c).
The excitatory glutaminergic granule cells receive inputs from
outside the cerebellum and project onto the inhibitory
GABAergic Purkinje cells. The Purkinje cells then project to
cerebellar nuclei, which in turn connect directly or indirectly
to the brainstem, spine, and diverse cerebral subcortical and
cortical regions [14] (Fig. 1b). The molecular layer, in which
granule cell axons and Purkinje dendrites interact, also con-
tains stellate and basket cells [15].

Human cerebellar development begins around the ninth week
of gestation and follows highly orchestrated processes that are
critical between 20 and 40 weeks of gestation and continue
postnatally [2, 16]. The cerebellum develops from the dorsal
aspect of the rhombencephalon, at the level of the fourth ventri-
cle. The rhombic lip, a thin strip of neuroepithelium that borders
the fourth ventricle roof plate, gives rise to all the glutaminergic
neurons (including granule cells and cerebellar nuclei neurons),
whereas the ventricular zone gives rise to the GABAergic neu-
rons (including the Purkinje cells).

Several transcription factors, such as Atoh1 and Pax6 in the
rhombic lip and external germinal layer, and Ptf1a in the ven-
tricular neuroepithelium, determine the spatio-temporal ex-
pression of cerebellar neuron progenitors during early devel-
opment [17, 18]. The proliferation of the granule cells, which
constitute the most abundant neurons in cerebellar neuronal
circuitry, is critically dependent on the secretion of Sonic
hedgehog (SHH) by the Purkinje cells [19], while their switch
from proliferation to differentiation is tightly regulated by
Notch and Wnt signalling [20]. Toward the end of the
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Fig. 1 Depiction of cerebellar anatomy. a The cerebellum is formed of 3
lobes (anterior, posterior, and flocculonodular) and 10 lobules, and is
divided into a midline vermis and two hemispheres. b The inferior and
middle cerebellar peduncles carry the main inputs to the cerebellum: (i)
the pontocerebellar and spinocerebellar fibers that form the mossy fibers
which synapse onto the granule cells, and (ii) the olivocerebellar fibers
which form the climbing fibers and synapse onto the Purkinje cells. All
the outputs from the cerebellum are relayed by the three cerebellar nuclei
(dentate, interposed, and fastigial) and are carried by the superior

cerebellar peduncle. c The cerebellar cortex is formed of three layers:
the molecular layer, Purkinje cell layer, and granule cell layer. The excit-
atory glutaminergic granule cells receive inputs from outside the cerebel-
lum and project their specialized axonal parallel fibers onto the dendrites
of the inhibitory GABAergic Purkinje cells in the molecular layer. The
Purkinje cells then project to cerebellar nuclei, which in turn connect
directly or indirectly to the brainstem, spine, and diverse cerebral subcor-
tical and cortical regions
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embryonic period, granule cell precursors have migrated from
the rhombic lip, reaching the superficial part of the cerebel-
lum, the external germinal layer [21].

The fetal cerebellum can be detected by maternal
transabdominal ultrasound as early as 12–13 weeks of gestation.
Starting at 18 to 20 weeks of gestation, prenatal fetal magnetic
resonance imaging (MRI) can reliably depict fetal cerebellar
anatomy. The vermis can be clearly visualized by 15 weeks
and the primary fissure at 18–20 weeks. After 21 weeks, the
posterior fossa structures are well defined [22]. Increase in size
of the vermis is more rapid in the third trimester, while the cer-
ebellar hemispheres have a more rapid growth after birth [22].

Approach to Cerebellar Hypoplasias

Traditionally, the diagnosis of cerebellar hypoplasia has relied
on the subjective evaluation of neuroradiologists who identify
either an isolated small vermis or an overall reduced volume
of cerebellum in comparison with brainstem and other brain
structures. Recently, reference biometric data of vermis and
brainstem have been provided, by studying a large cohort of
about 700 children with normal cerebellum [23]. However,
the relevance of these 2D measurements needs to be further
validated in diseases presenting with cerebellar abnormalities.

One of the first crucial steps when considering a small
cerebellum on imaging is to distinguish between hypoplasia
and atrophy, given the significant differences in terms of clin-
ical presentation, prognosis, and diagnostic work-up. CH re-
fers to a cerebellum of a reduced volume, but with a normal or
near-normal shape with normal interfoliate fissures and sulci
[24, 25] (Fig. 2A–C). On the other hand, cerebellar atrophy
implies a progressive loss of cerebellar parenchyma with sec-
ondary enlargement of the interfolial spaces and an increase in
the size of the fourth ventricle [9] (Fig. 2D, D’).
Distinguishing between cerebellar hypoplasia and atrophy is
not always straightforward, especially if follow-up imaging is
not available to document progressive changes. Some other
neuroimaging clues, such as the presence of abnormalities of
the cerebral cortex (such as polymicrogyria) or basal ganglia,
are suggestive of a malformative process associated with cer-
ebellar hypoplasia, whereas presence of signal abnormalities
of the cerebellum or the cerebral white matter is suggestive of
a metabolic process associated with cerebellar atrophy [25].
Cerebellar atrophy is not the subject of the current manuscript,
deserving an extensive and specific diagnostic approach. The
only group of disorders with cerebellar atrophy that we dis-
cuss is pontocerebellar hypoplasia (PCH) that, despite its
name, includes a heterogeneous group of disorders with pon-
tine and cerebellar hypoplasia and atrophy.

Once a radiologic diagnosis of cerebellar hypoplasia is
made, the clinician will have to try to establish whether the
hypoplasia is primary (i.e., developmental, genetic) or second-
ary (disruptive, acquired) [26] based on radiologic and clinical

features. Acquired causes of cerebellar hypoplasia include
prematurity, perinatal hypoxia, hemorrhage, prenatal infec-
tions, and exposure to teratogens. Therefore, a detailed prena-
tal and perinatal history should be obtained with particular
attention for the evidence of low birth weight, intubation, hy-
potension, and sepsis in the neonatal period [9, 11, 27, 28].
Clues on imaging that suggest an acquired/disruptive cause
include unilateral or asymmetric neuroradiological findings,
evidence of hemorrhage or stroke, presence of cerebellar
clefts, or posterior cerebral nodular heterotopias (Fig. 2E)
[29]. Inclusion of iron-sensitive imaging sequences with 3T
MRI in preterm infants enables the identification of hemor-
rhages as small as 2 mmwhich would provide evidence for an
acquired, non-genetic cause of cerebellar hypoplasia [30].
Note that genetic conditions may also lead to predispositions
to acquired cerebellar disruptions, such as dominant mutations
in COL4A1 which lead to change of the basal membrane of
capillaries resulting in microangiopathy and predisposition to
hemorrhage. Furthermore, cerebellar hypoplasia has been re-
ported in up to a fourth of subjects with PHACE syndrome, a
clinically recognizable neurocutaneous disorder characterized
by posterior fossa anomalies, hemangioma, arterial anomalies,
cardiac abnormalities/aortic coarctation, and eye abnormali-
ties [31]. Unilateral cerebellar hypoplasia along with an ipsi-
lateral posterior fossa cyst communicating with an asymmet-
rically distended 4th ventricle may be a clue for the prenatal
diagnosis of PHACE syndrome [32, 33]. Specifically, “a tilted
telephone receiver sign,” consisting of upwardly rotated and
deviated vermis merged with the contralateral cerebellar pe-
duncles forming an elongated oblique connection between the
cerebellar hemispheres on the coronal plane, has been sug-
gested as a prenatal hallmark of PHACE syndrome [33].

Classifying cerebellar hypoplasias through recognition of
neuroradiological patterns is essential in guiding investiga-
tions, establishing a specific diagnosis, and prognosticating
possible neurodevelopmental outcomes. A diagnostic algo-
rithm to CH is illustrated in Fig. 3. CH can be divided into
six different subgroups, based on the type and location of
associated neuroradiological anomalies (Table 1): [1] isolated
vermis hypoplasia (VH)/CH, i.e., without any additional
neuroradiologic anomalies; [2] VH/CH with posterior fossa
cerebrospinal fluid (CSF) anomalies; [3] VH/CHwith specific
brainstem or cerebellar malformation (e.g., molar tooth sign);
[4] VH/CH with brainstem hypoplasia; [5] VH/CH with
brainstem and cortical migration anomalies; and [6] CH with
cerebellar dysplasia (CD).

Isolated Vermis Hypoplasia and Cerebellar
Hypoplasia

VH refers to a decreased volume of the vermis sparing the
cerebellar hemispheres (Fig. 2B), whereas CH implies that
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both vermis and hemispheres are involved with a possible var-
iable gradient of severity (Fig. 2C). Isolated VH/CH refers to
presence of vermis or cerebellum hypoplasia in the absence of
other CNS radiological abnormality (i.e., normal brainstem and
supratentorial structures). Dysmorphic features and extraneural
congenital malformations, however, may be present.

Clinical features associated with isolated VH and CH are
variable and may include hypotonia, truncal, appendicular and
gait ataxia, and eye movement abnormalities (saccadic pursuit,
nystagmus, oculomotor apraxia). The neurodevelopmental out-
come of individuals with isolated VH or CH is extremely var-
iable; however, CH is consistently associated with more severe
motor and cognitive impairments and additional comorbidities
[34, 35]. A recent study revealed that though some individuals
with VH had normal intelligence, the majority had global de-
velopmental delay, and almost all had language delay though
were verbal [35]. In contrast, all individuals with isolated CH
had global developmental delay (mainly severe), with the ma-
jority being unable to ambulate independently, and almost half
having severe intellectual disability [35].

Isolated VH and CH may be a feature of syndromic and
non-syndromic intellectual disability and are associated with
various chromosomal aberrations and monogenetic disorders.
A dysmorphological assessment is crucial for diagnosis of an
underlying syndrome displaying VH/CH. For example, VH/
CH is a constant hallmark in CHARGE syndrome (MIM
214800), X-linkedmental retardation with cerebellar hypopla-
sia, and distinctive facial appearance (MIM 300486) due to
mutations in OPHN1, Galloway–Mowat syndrome 1 (MIM
251300), MARCH syndrome (MIM 236500) associated with
bi-allelic CEP55 mutations [36], and WDR37-associated

disorder presenting with global developmental delay and/or
intellectual disability, epilepsy, CH, coloboma, and facial
dysmorphisms reminiscent of CHARGE syndrome [37].

Recent studies have revealed a high detection rate of clin-
ically significant copy number variants (CNVs) in fetuses with
CH (19.6–54.6%) and VH (6.5–33.3%) [38–40]. Examples
include chromosome 2p15p16.1 deletion (due to BCL11A
haploinsufficiency) [41], 5p15.33 microdeletions (Cri-du-chat
syndrome) , 6q27 te rmina l de le t ions , and Xq28
microduplications [38–40]. The diagnostic yield of chromo-
somal microarray is significantly higher in the presence of
associated additional malformations [38]. Based on the cur-
rent literature, chromosomal microarray analysis should be
offered to all VH/CH individuals. Moreover, an intellectual
disability gene panel, or when available whole-exome or -
genome sequencing (WES, WGS), should be offered to VH/
CH individuals presenting with intellectual disability, since
VH/CHmay be a non-specific finding in intellectual disability
(ID) disorders [29]. A WES study in a large cohort of individ-
uals with cerebellar malformations elucidated an underlying
genetic cause in 51% of the CH cases [29]. Of note, the diag-
nostic yield was highest among individuals with CH who
lacked prenatal risk factors (46%) and significantly lower in
individuals with any prenatal risk factors (5%), underscoring
the importance of a careful review of the medical history be-
fore pursuing genetic testing [29].

VH/CH and Posterior Fossa CSF Anomalies

Dandy–Walker Malformation

Dandy–Walker malformation (DWM, MIM 220200) is a het-
erogeneous disorder neuroradiologically defined by a hypo-
plastic, upwardly rotated vermis and dilatation of the fourth
ventricle, resulting in a cystic appearance that may fill most of
the posterior fossa (Fig. 5a). Consequently, the tentorium,
torcular herophili, and transverse sinuses appear elevated
[27]. The cerebellar hemispheres are typically hypoplastic
and displaced anterolaterally. The main associated clinical
feature is hydrocephalus, detected in up to 90% of individuals
during infancy [42]. Additional cerebral malformations such
as agenesis/hypoplasia of corpus callosum, polymicrogyria,
nodular heterotopias, and occipital encephalocele are reported
in up to 50% of patients [27].

DWM can be distinguished from other cystic posterior fos-
sa malformations, such as Blake pouch cyst, posterior fossa
arachnoid cyst, and mega cisterna magna. Blake pouch cyst
consists of a retrocerebellar or infraretrocerebellar cyst that
directly communicates with the fourth ventricle and can result
in obstruction of CSF flow and tetraventricular hydrocepha-
lus. Blake pouch cyst is thought to arise from failure of regres-
sion of Blake’s pouch, the rudimental fourth ventricular tela

�Fig. 2 Radiologic patterns of cerebellar anomalies. A Normal
cerebellum. Brain MRI showing a normal posterior fossa, brainstem,
and cerebellum. On midsagittal section, the rostrocaudal length ratio of
the midbrain:pons:medulla is 1:2:1, the dorsal surface of the brainstem is
flat, and the position of the fastigium (arrowhead) is just below the mid-
point of the ventral pons. The axial images show normal orientation of the
cerebellar folia, running parallel to the calvaria. B Isolated cerebellar
vermis hypoplasia. The vermis is of reduced volume (arrow) but of nor-
mal shape. Cisterns (asterisk) are prominent, but interfoliate fissures are
normally spaced. The cerebellar hemispheres are normal. C Cerebellar
vermis and hemisphere hypoplasia. A patient with CDG1a showing equal
involvement of vermis (arrowhead) and hemispheres (arrows). D, D’
Progressive cerebellar atrophy. MRI at 13 months (D) shows a cerebel-
lum of normal shape, but increased space between the foliate fissures best
noted on sagittal section (arrows). Progressive atrophy of the cerebellar
vermis and hemispheres is noted on follow-up MRI at 4 years of age (D’)
with secondary enlargement of interfolial spaces and increase in the size
of the fourth ventricle (asterisk). E Disruptive pattern of cerebellar hypo-
plasia. Cerebellar vermis hypoplasia involving especially the inferior ver-
mis (arrow), and severe unilateral hypoplasia of the right cerebellar hemi-
sphere. There is asymmetry of the cerebral ventricles with bilateral pos-
terior periventricular heterotopias (arrowheads). The constellation of
asymmetric findings in the cerebellum and posterior cerebral nodular
heterotopias strongly suggests a prenatal disruptive/ischemic etiology
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choroidea, secondary to nonperforation of the foramen of
Magendie during development [43]. A posterior fossa arach-
noid cyst is a well-circumscribed posterior fossa extra-axial
fluid collection that can vary in terms of size and location
(retrocerebellar, supravermian, anterior, or laterally to the cer-
ebellar hemispheres) [27]. The posterior fossa arachnoid cyst
may exert a mass effect on the normal cerebellum resulting in
flattening of its curvature. Mega cisterna magna refers to an
enlarged cisterna magna (10-mm diameter on midsagittal
images) with a normal cerebellum and fourth ventricle.
There is no associated hydrocephalus, as the mega cisterna
magna freely communicates with the fourth ventricle and cer-
vical subarachnoid spaces [27]. Mega cisterna magna and
posterior fossa arachnoid cyst are often an incidental finding
with an intact cerebellum and without clinical relevance.

Neurodevelopmental outcomes in DWM range from se-
vere intellectual disability to completely normal development.

DWM usually occurs sporadically with low risk of recurrence
(1–5%) [44].

To date, only a few genes have been implicated in a mi-
nority of DWM cases. Heterozygous mutations in FOXC1 are
associated with DWM spectrum with white signal matter ab-
normalities [45]. FOXC1 encodes a transcription factor that
regulates neural crest cell development, playing a crucial role
in multiple developmental processes of the posterior fossa
mesenchyme, eye, cardiovascular system, and kidney [46].
Accordingly, FOXC1 mutations account for a wide range of
anomalies in addition to DWM and white matter
hyperintensities, including typical eye anomalies of
Axenfeld–Rieger syndrome (MIM 602482) and dilated
perivascular spaces and cerebral small-vessel disease [47].
Interestingly, a genotype–phenotype correlation has been
outlined in individuals carrying chromosome 6p25.3 deletions
that encompass FOXC1, with a more severe DWM phenotype
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Fig. 3 Diagnostic algorithm of cerebellar hypoplasia and related anomalies. VH, vermis hypoplasia; CH, cerebellar hypoplasia; PCH, pontocerebellar
hypoplasia; DWM, Dandy–Walker malformation
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in individuals with large 6p25.3 deletion and only VH in pa-
tients carrying small deletions [45].

DWM has been also described in individuals with 3q22.2–
3q25.33 deletions that encompass ZIC1 and ZIC4 [48], two
genes with an important role in cell proliferation and fate
specification of the dorsal hindbrain [49]. In addition, several
individuals with DWM and holoprosencephaly have been re-
ported with 13q32.2–32.3 deletions encompassing ZIC2 and
ZIC5 [50].

Recently, whole-exome sequencing has revealed pathogenic
heterozygous mutations in NID1 and its ligand LAMC1 in two
families with DWM and occipital encephalocele [51].
Furthermore, mutations inCCDC22, encoding a regulatory com-
ponent of the NF-ĸb pathway, have been linked to X-linked
intellectual disability with dysmorphic features and DWM
(MIM 300963), overlapping with the phenotype of Ritscher–
Schinzel syndrome (RSS)/3C (cranio-cerebro-cardiac) (MIM
220210), previously associated with DWM [52].

Lastly, CIP2A, a gene encoding an oncoprotein promoting
tumor survival via inhibition of protein phosphatase 2A
(PP2A), represents a novel candidate gene for DWM. A
gain-of-function missense variant has been shown to increase
the PP2A, mTOR, and c-Myc protein levels in peripheral
blood mononuclear cells from two siblings with severe ID
and DWM [53].

VH/CH with Specific Brainstem or Cerebellar
Malformation

There are several distinctive or pathognomonic radiologic ap-
pearance of the cerebellum or brainstem that should be spe-
cifically looked for when reviewing images, as they can dra-
matically narrow the differential diagnosis or direct manage-
ment and counseling regarding prognostication. We will dis-
cuss the molar tooth sign (MTS), rhombencephalosynapsis
(RES), pontine tegmental cap dysplasia, brainstem disconnec-
tion, diencephalic–mesencephalic junction dysplasia, and
oculocerebrocutaneous syndrome.

Molar Tooth Sign

MTS is characterized by elongated, thickened, and horizon-
tally orientated superior cerebellar peduncles and a deep
interpeduncular fossa, associated with vermian hypoplasia or
dysplasia (Fig. 4a). MTS is a pathognomonic sign of Joubert
syndrome and related disorders (JSRD) (MIM 616654), char-
acterized mainly by intellectual disability, hypotonia, ataxia,
ocular motor apraxia, and neonatal breathing dysregulation
[54–56]. In 20% of cases, JSRD is associated with extraneural
manifestations with possible involvement of the eye (retinal
dystrophy), kidney (nephronophthisis), liver (fibrosis), and
limbs (polydactyly). Additional brain malformations may

include polymicrogyria, cortical heterotopia, agenesis of the
corpus callosum, and encephalocele/cephalocele [57]. To
date, more than 30 genes have been associated with JSRD,
and all encode proteins that have a key role in the primary
cilium, establishing JSRD as ciliopathy [58]. Primary cilia
mediate various signaling processes in several developing or-
gans including the retina, kidney, liver, and brain [59]. MTS is
thought to be due to defective cilium-dependent neuronal mi-
gration and axon guidance [60]. In addition, defects in midline
fusion of the developing vermis are thought to be due to im-
paired Wnt signalling [61] and SHH-mediated neural tube
patterning and cerebellar granule cell proliferation [62].

Rhombencephalosynapsis

RES is a rare cerebellar malformation characterized by partial
or complete absence of cerebellar vermis and fusion of cerebellar
hemispheres and dentate nuclei [63] (Fig. 4b).Additional neuroradio-
logical featuresvariably reported includemidline fusionof the tectum,
absence of septum pellucidum, dysplastic corpus callosum, and
holoprosencephaly.

Clinical presentation and prognosis are extremely variable
ranging from motor delay with cognitive impairment to nor-
mal intelligence. Neurodevelopmental outcome has been
shown to correlate with the severity of RES and the presence
of associated brain anomalies, including hydrocephalus with
aqueductal stenosis, fused colliculi, and abnormal cerebral
cortex [64].

Despite this clinical heterogeneity, up to 85% of individ-
uals with RES typically display a characteristic figure-of-eight
headshaking behavior, a stereotypic hallmark, that may help
physicians to suspect RES before performing any imaging
[65, 66]. Although most RES cases are non-syndromic, RES
has been reported in some individuals with Gómez–López–
Hernández (GLH) syndrome (MIM 601853) and VACTERL-
H (vertebral defects, anal atresia, cardiac defects, tracheo-
esophageal fistula, renal defects, and limb defects; MIM
314390). Whereas the genetic locus of GLH is still unknown,
VACTERL-H has been recently associated with X-linkedmu-
tations in ZIC3 (MIM 314390) and FANCB [67], yet no indi-
viduals with RES have been reported to carry mutations in
those genes so far. Interestingly, C-terminal mutations in
MN1, a gene important for craniofacial and CNS develop-
ment, have been recently linked to syndromic intellectual dis-
ability (CEBALID syndrome, MIM 618774), presenting with
RES [68]. There does not seem to be any evidence of prenatal
events or risk factors associated with RES [69]. Though rare,
reports of intra-familial recurrence, consanguinity, and cyto-
genetic abnormalities support a possible genetic etiology [64].
Deficits in dorsal–ventral patterning of roof plate and midline
cerebellar primordium at the junction of the mesencephalon
and first rhombomere are hypothesized pathophysiological
mechanisms [64, 69].
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Pontine Tegmental Cap Dysplasia

Pontine tegmental cap dysplasia (PTCD) (MIM 614688) is
characterized by absence of the ventral pontine prominence,
with a vaulted pontine tegmentum (the “cap”) [70]. Severely
affected patients have a “beak-like” prominence on the dorsal
pons, with a kinked brainstem. Additional neuroimaging find-
ings include hypoplastic or absent inferior cerebellar pedun-
cles, hypoplastic middle cerebellar peduncles, VH, a MTS-

like aspect of the pontomesencephalic junction, and absent
inferior olivary prominence [70, 71]. Affected individuals
present with multiple cranial nerve deficits including facial
paralysis, trigeminal anesthesia, swallowing dysfunction,
and hearing loss. Additionally, congenital heart, kidney, ver-
tebral, and rib defects have been described [72].
Neurodevelopmental outcome can be extremely variable and
seems to correlate with the degree of brainstem involvement,
as patients with severe brainstem dysplasia (“beak-like”)
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Fig. 4 Specific brainstem and
cerebellar anomalies. Sagittal (left
panels), axial (middle panels), and
coronal (right panels) MRIs. a
Molar tooth sign (MTS) in a pa-
tient with Joubert syndrome. The
cerebellar vermis is hypoplastic
(arrowhead), and theMTS (dotted
circle) is appreciated on axial im-
ages, formed by the elongated,
thickened, and horizontally ori-
entated superior cerebellar pe-
duncles. b
Rhombencephalosynapsis.
Absence of the cerebellar vermis
and fusion of the cerebellar
hemispheres are best appreciated
on axial and coronal views. Other
midline abnormalities are present
including midline CSF cyst
(white asterisk) causing a cranial
displacement of the splenium of
the corpus callosum (arrowhead),
hypoplasia of the tentorium
(arrow) resulting in upward her-
niation of the cerebellum, and
agenesis of the septum
pellucidum (black asterisk). c
Brainstem disconnection.
Hypoplasia of the cerebellar ver-
mis and hemispheres associated
with markedly small pons and
presence of two thin bands of tis-
sue (arrows) connecting the mid-
brain and the medulla. d
Diencephalic–mesencephalic
junction dysplasia. The butterfly-
like appearance of the midbrain
(dotted circle) is formed by the
downward displacement of the
diencephalic–mesencephalic
junction and the anterior midbrain
cleft which is contiguous with the
third ventricle. The cerebellar
vermis is mildly hypoplastic
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usually die early in life, whereas others with milder neurora-
diological phenotype survive and may have normal intelli-
gence. PTCD is presumed to be an axonal guidance disorder
[71], although the genetic cause remains unknown and no
familial recurrence has been reported [73].

Brainstem Disconnection

Brainstem disconnection (BD) is a rare posterior fossa abnor-
mality characterized by total or subtotal absence of a
brainstem segment, with the rostral and caudal brainstem por-
tions connected only by a thin cord of tissue (Fig. 4c). Among
the 14 patients reported so far, only one survived after infancy,
whereas others had very poor outcome, dying within the first
2 months of life [74]. BD has been classified as
pontomesencephalic, pontomedullary, or pontocervical ac-
cording to the region of the brainstem that is most affected.
Cerebellar hypoplasia is a constant associated finding. Extra-
CNS anomalies have been variably reported, with vertebral
segmentation defects and hydronephrosis most commonly ob-
served. No intra-familial recurrence or consanguinity has been
recorded so far. Although deregulated expression of EZH2, a
histone methyltransferase, has been revealed in a recent au-
topsy study [75], the exact pathomechanism of BD remains
unknown [60, 74].

Diencephalic–Mesencephalic Junction Dysplasia

Diencephalic–mesencephalic junction dysplasia (DMJD) re-
fers to a poorly defined junction between the diencephalon
and mesencephalon, originally described in a few patients
with PCH [8]. Later, a peculiar shape of the DMJ with “but-
terfly”-like appearance of the midbrain on axial images was
described in six cases and was claimed as a distinctive feature
of this disorder [76] (Fig. 4d). The “butterfly”-like appearance
of the midbrain is formed by an anterior midbrain cleft which
is contiguous with the third ventricle and the downward dis-
placement of the diencephalic–mesencephalic junction.
Recently, the phenotypic spectrum of DMJ has been revisited
[77], revealing that the butterfly-like appearance may be sub-
tle and not present in all individuals with DMJD. The cerebel-
lum is often affected with variable severity, ranging from VH
to PCH. Further CNS malformations may include corpus
callosum anomalies and hydrocephalus [63, 77]. Clinical find-
ings include spastic tetraparesis, dystonia, hypothalamic dys-
function, epilepsy, and severe developmental delay.

Guemez-Gamboa et al. [78] reported that bi-allelic muta-
tions in PCDH12, previously linked to a primary microce-
phalic disorder with brain calcification (MIM 251280), cause
DMJD in a homogenous group of patients, including two of
the original families previously described [76]. Most of the
affected patients presented with progressive microcephaly,
craniofacial dysmorphism, early onset epilepsy, severe ID,

and spasticity. In addition to DMJD, brain MRI revealed thin
corpus ca l losum, puncta te bra in ca lc i f ica t ions ,
ventriculomegaly, and white matter tract defects. Of note,
midbrain–hypothalamic dysplasia was recognized even in
the first cohort without mention of “butterfly”-like appearance
[79]. PCDH12 is a vascular endothelial protocadherin that
promotes cellular adhesion, which is widely expressed not
only in the endothelial tissues as originally thought [80] but
also in the CNS, playing a crucial role in neurite outgrowth
[78]. The “butterfly”-like appearance of the midbrain may
reflect a disruption in cortical projections due to abnormal
axonal tract formation.

Oculocerebrocutaneous Syndrome

Oculocerebrocutaneous syndrome (OCCS) (MIM 164180),
a l s o k n own a s De l lm a n s y n d r ome , i s a r a r e
neurodevelopmental disorder characterized by a triad of eye
and skin anomalies [81]. Brain MRI of affected individuals
shows a specific mid-hindbrain malformation, consisting of a
giant dysplastic tectum, and absent or severely malformed
vermis. Additional brain malformations include frontal pre-
dominant polymicrogyria and periventricular nodular
heterotopia, agenesis of the corpus callosum, enlarged lateral
ventricles, or hydrocephalus. Clinically, affected individuals
present with orbital cysts, anophthalmia/microphthalmia, fo-
cal aplastic or hypoplastic skin defects, and skin appendages.
OCCS is thought to be genetic but the exact etiology remains
unknown [82].

VH/CH and Brainstem Hypoplasia

The brainstem includes the midbrain, the pons, and the me-
dulla oblongata. Traditionally, a normal pons has a
rostrocaudal length twice that of the midbrain (from the isth-
mus to the third ventricle), whereas the rostrocaudal length of
the midbrain should be approximately the same of the medulla
(from the level of the obex to the level of the ventral
pontomedullary junction) (Fig. 2A) [27]. The employment
of the recently identified reference biometric data of brainstem
[23] will provide further insights into the normal brainstem
morphology and its components.

Pontocerebellar Hypoplasia

PCH encompasses a heterogenous group of inherited autoso-
mal recessive neurodegenerative disorders with prenatal onset
of cerebellar and pons hypoplasia and atrophy (Fig. 5b).
Microcephaly and motor and cognitive impairments are pres-
ent in almost all individuals, whereas cortical atrophy, thin
corpus callosum, seizure, and optic atrophy are variably
reported.
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To date, there are 11 formally recognized PCH types with
17 causal genes identified (for recent review, see Van Dijik
et al. [83]). Most PCH genes play a role in RNA processing
and protein translation [84]: TSEN54, TSEN2, TSEN34,
CLP1, and TOE1 encode subunits of the tRNA splicing endo-
nuclease complex, whereas EXOSC3 and EXOSC8 encode
exosome complexes, RARS2 a mitochondrial tRNA arginyl
synthetase, and AMPD2 adenosine monophosphate deami-
nase 2 (Table 1).

Despite significant overlaps, specific neuroradiological
hallmarks have been traditionally recognized among various
PCHs, such as a “dragonfly appearance” of the cerebellum in
PCH2 and PCH4 [85] and a “figure-of-8” appearance of the
brainstem in PCH9 [86, 87]. PCH1 (MIM 607596 and MIM
614678) is linked to mutations in VRK1 [88], EXOSC3 [89],
EXOSC8 [90], and SLC25A46 [91], and is characterized by
spinal muscular atrophy, resulting in substantial global weak-
ness, decreased or absent reflexes, dysphagia, and respiratory
distress. Hypoplasia and atrophy of the pons and cerebellum
may be moderate on neuroimaging in PCH1. Some EXOSC3
cases with mostly a spinal muscular atrophy (SMA)-like pre-
sentation have been reported to have normal cerebellar and

pons appearance during first months of life [92]. PCH2
(MIM 277470, MIM 612389, MIM 612390, MIM 613811,
MIM 617026) is the most prevalent of all PCH subtypes and is
characterized by generalized myoclonus, dysphagia, dystonia,
chorea, and progressive microcephaly. The PCH observed on
imaging is severe. PCH2 is associatedwith mutations in tRNA
splicing endonucleases genes (TSEN54, TSEN34, TSEN2,
TSEN15) as well as a selenium transferase (SEPSEC5) and a
subunit of the Golgi-associated retrograde protein (VPS53)
[93–95]. TSEN54 is the most common cause of all PCHs
[96–99]. PCH3 (MIM 608027), described in only one family
so far, is associated with thin corpus callosum and optic atro-
phy on brain MRI, and is linked to a homozygous mutation in
the PCLO gene [100].

Individuals with PCH4 (MIM 225753) and PCH5 (MIM
610204) have the most severe clinical phenotype, with con-
genital contractures and polyhydramnios and a lethal course in
the neonatal period [83, 85]. Interestingly, TSEN54mutations
account for a phenotypic spectrum from the mildest clinical
presentation in PCH type 2 to the most severe phenotype in
PCH4 and PCH5 [85]. The presence of elevated CSF lactate
may help to recognize PCH6 (MIM 611523), an early-
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Fig. 5 Examples of cerebellar hypoplasia with or without pontine
hypoplasia and cortical anomalies. a Dandy–Walker malformation.
Note the enlarged posterior fossa, hypoplastic and upwardly rotated ver-
mis (arrowhead), dilatation of the fourth ventricle resulting in a cystic
appearance of the posterior fossa (asterisk), and elevation of the tentorium
(arrow). b Pontocerebellar hypoplasia. Severe hypoplasia of the cerebel-
lar vermis (arrowhead) and hemispheres, with reduced size and
rostrocaudal length of pons. c CASK-related pontocerebellar hypoplasia.
Note severe hypoplasia of pons and cerebellar vermis (arrowhead) and
hemispheres (arrows). d Tubulinopathy-associated cerebellar hypoplasia

and cerebral anomalies. This patient with a TUBB mutation has typical
radiologic findings associated with tubulinopathies which include hypo-
plasia of the cerebellar vermis (arrowhead) and pons, hypoplasia of the
corpus callosum (arrow), and dysmorphic and fused basal ganglia (aster-
isks). e Cerebellar dysplasia. Note the normal size but abnormal foliation
and orientation of the cerebellar cortex in both hemispheres. The vermis
and brainstem are normal. f Asymmetric cerebellar hypoplasia. Inferior
vermis hypoplasia (arrowhead) and left > right cerebellar hemisphere
hypoplasia
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infantile epileptic encephalopathy presenting with PCH and
caused by bi-allelic mutations in the mitochondrial arginyl-
tRNA synthetase gene, RARS2 [101]. PCH7, typically char-
acterized by ambiguous genitalia, has been recently linked to
bi-allelic mutations in TOE1, which is involved in pre-mRNA
splicing [102]. Loss-of-function mutations in CHMP1A [103]
have been associated with PCH8 (MIM 614961), typically
showing postanal microcephaly, PCH with proportionate ver-
mis and hemisphere hypoplasia and congenital contractures.
In addition to the “figure-of-8” appearance of brainstem and
PCH, individuals with PCH9 usually show hypodysgenesis of
corpus callosum, ventriculomegaly, poor neurodevelopmental
outcome, and possible neuropathy [86, 104]. A recurrent mis-
sense homozygous mutation inCLP1, a RNA kinase involved
in tRNA splicing and maturation, has been reported in some
individuals with PCH and possible peripheral nervous system
involvement, namely PCH10 [105]. Recently, a non-
degenerative form of PCH (PCH11) (MIM 617696) has been
linked to loss-of-function mutations in TBC1D23, a gene
mainly involved in vesicular trafficking, cortical develop-
ment, and immunity [106, 107]. Lastly, bi-allelic variants in
MINPP1, a gene involved in the hydrolysis of inositol phos-
phate in the endoplasmatic reticulum [108], have been report-
ed in several subjects displaying PCH and other brain anom-
alies, microcephaly, and additional features such as epilepsy,
micropenis, and cataracts [108, 109]. An incessant growing
literature of novel disorders presenting with PCH will expand
soon the number of PCH subtypes [83, 110, 111].

CASK-Related PCH

Heterozygous loss-of-function mutations in the X-linked
CASK gene are associated with progressive microcephaly, hy-
poplasia of the pons and cerebellum (with usually similar
involvement of cerebellar hemispheres and vermis, Fig. 5c),
ID, and epilepsy in females [112–115]. In contrast to the pre-
viously discussed PCHs, CASK-related PCH is not a progres-
sive neurodegenerative disorder. The severity of the
pontocerebellar hypoplasia observed on MRI is not of prog-
nostic value [113]. Supratentorial structures are usually
spared, although reduction of frontal gyri and cortical atrophy
may occur [112, 116]. The phenotype in males ranges from
severe epileptic encephalopathy with progressive microceph-
aly and PCH to a milder phenotype due to mosaicism or
hypomorphic mutations [115, 116].

Congenital Disorders of Glycosylation

Congenital disorders of glycosylation (CDG) are a group of
inborn errors of metabolism caused by defects in several syn-
thetic pathways of glycans, including N- and O-linked defects.
PMM2-CDG (CDG1a) is by far the most frequent among the
N-linked glycosylation defects, displaying a multisystemic

involvement [117]. Accordingly, the clinical picture may be
very broad, including eye anomalies, coagulation defects,
neuropathy, impaired liver function, and abnormal fat distri-
bution. Similarly, the neurodevelopmental outcome is ex-
tremely variable.

The cerebellum is typically affected in individuals carrying
bi-allelic mutations in PMM2 gene with a phenotypic spec-
trum ranging from isolated cerebellar hypoplasia (affecting
mainly the anterior vermian lobe) to more commonly progres-
sive cerebellar and pons atrophy, mimicking PCH cases.
Additional neuroradiological features may include
olivopontocerebellar hypotrophy/hypoplasia, Dandy–Walker
appearance, and cerebellar cortical hyperintensity [118, 119].
Cerebellar involvement has also been observed in individuals
with SRD5A3-CDG [120, 121] and occasionally in other
CDGs [122]. Although the role of N-glycosylation protein in
cerebellar/hindbrain development is largely unknown, it has
been suggested that the observed malformations may be the
result of abnormal protein folding and response to endoplas-
mic reticulum (ER) stress [123].

Of note, though serum transferrin isoelectrofocusing is
widely used as a screening for N-glycosylation disorders, a
normal serum transferrin pattern does not exclude CDG due to
possible false-negative results [124]. Therefore, a CDG gene
panel should be ordered if CDG is highly suspected based on
clinical and neuroradiological findings despite normal serum
transferrin patterns.

Cerebellofaciodental Syndrome: BRF1-Related PCH

Bi-allelic mutations in BRF1 gene, which encodes an RNA
polymerase III transcription initiation factor subunit, have
been associated with cerebellofaciodental syndrome (MIM
616202), an autosomal recessive disorder characterized by
microcephaly, short stature, ID, cerebellar and brainstem hy-
poplasia, and dysmorphic features including taurodontism.
Similar to some hypomyelinating leukodystrophies caused
by mutations in genes encoding Pol III subunits or tRNA
processing factors [125, 126], BRF1 mutations reduce Pol
III–related transcription activity and result in abnormal hind-
brain development [127, 128].

Osteogenesis Imperfecta, Type XV or WNT1-Related
PCH

A variable degree of cerebellar and brainstem hypoplasia has
been reported in autosomal recessive osteogenesis imperfecta
(MIM 615220) due to mutations in WNT1 [58]. WNT1 is
expressed in the developing rhombic lip and hindbrain
precerebellar nuclei [129, 130] where it plays a pivotal role
in signaling cascades that generate midbrain dopamine and
cerebellum neurons. Of note, the Wnt1 mouse model displays
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developmental defects of the midbrain, pons, and cerebellum,
similar to the human WNT1 phenotype [131, 132].

VH/CH with Brainstem and Cortical Migration
Anomalies

Tubulinopathies

Tubulinopathies are a wide and overlapping range of brain
malformations caused by mutations in one of seven genes
encoding different tubulin isotypes, namely alpha-tubulin
(TUBA1A), beta-tubulin (TUBB2A, TUBB2B, TUBB3,
TUBB4A, TUBB), and gamma-tubulin (TUBG1) isoforms
[133]. Tubulin proteins form heterodimers that incorporate
into microtubules. Microtubules are polarized cytoskeletal
structures essential for mitosis and intracellular trafficking that
play a crucial role in neurogenesis, neuronal migration, and
post-migrational organization [134]. The principal cerebellar
anomalies associated with tubulinopathies are cortical dyspla-
sia and hypoplasia [135–137], and these are consistently part
of more complex neuroradiological cerebral anomalies that
m a y i n c l u d e l i s s e n c e p h a l y , p o l ym i c r o g y r i a ,
microlissencephaly and simplified gyration, enlarged tectum,
pons hypoplasia, thin/absent corpus callosum, and dysmor-
phic basal ganglia. Fusion of the caudate nucleus and putamen
with absence of the anterior limb of the internal capsule is very
evocative of tubulinopathies (Fig. 5d) [133, 137, 138]. Some
genotype–phenotype correlations can be made. TUBA1A mu-
tations are associated with lissencephaly/microlissencephaly
and TUBB2B mutations with polymicrogyria-like cortical
dysplasia [133]. The constellation of mild to severe CH and
dysplasia (with predominant vermis involvement) in associa-
tion with brainstem hypoplasia, hypodysgenesis of corpus
callosum, and dysmorphic basal ganglia represents the distinc-
tive brain MRI pattern of tubulinopathies and is present in up
to 78% of individuals, mostly carrying heterozygous muta-
tions in TUBA1A, TUBB2B, or TUBB3 [133].

Tubulin-Like Phenotype Due to DDX3X Mutations

Recently, a tubulin-like phenotype has been described in a sub-
set of females harboring pathogenic variants in DDX3X [29,
139], a known X-linked ID gene (MIM 300958). DDX3X en-
codes an ATP-dependent “DEAD-box” RNA helicase in-
volved in RNA processing and has been shown to exert a piv-
otal role in neurite outgrowth and dendritic spine formation
through the translational activation of mRNAs involved in
Rac1 activation [140]. Main neuroradiological features include
bilateral frontal and perisylvian polymicrogyria and/or
dysgyria, callosal hypodysgenesis, dysmorphic basal ganglia
with indistinct anterior limbs of internal capsules, incomplete
hippocampal rotation, and pontine and inferior vermis

hypoplasia. DDX3X is thought to act through a similar patho-
genic mechanism as tubulinopathies, involving altered micro-
tubule stability and defective migration of cortical GABAergic
interneurons due to impaired Rac1 signaling [141].

RELN/VLDLR-Related CH

The association of PCH with lissencephaly spectrum on neu-
roimaging is also typically reported in individuals with a de-
fect in the reelin pathway, a critical signaling pathway that
regulates radial neuronal migration and cell layer formation
in both the cerebral cortex [142, 143] and cerebellum [143].
Bi-allelic mutations in RELN and its receptor VLDLR have
been reported in patients with cerebellar, pontine, and cerebral
cortical anomalies. Although VH with poor foliation is ob-
served in both conditions, hemispheric involvement is less
pronounced in VLDLR-mutated patients with some folia still
identifiable [144]. Similarly, lissencephaly/pachygyria is
more pronounced in individuals withRELNmutations, where-
as mild simplification or thickening of cortical gyration is part
of the VLDLR spectrum [144].

Cobblestone Cerebral Cortex Disorders:
Dystroglycanopathies and GPR56/COL3A1-Related
Cobblestone Cortex

Themuscular dystrophy–dystroglycanopathies (MDDG) are a
heterogeneous group of congenital muscular dystrophies
(CMD) characterized by a defective O-mannosylation of α-
dystroglycan due to mutations in an increasing number of
genes (Table 1) [117]. MDDG are systematically divided in
several categories based on their different clinical presenta-
tion. CH has been typically described in the most severe end
of the phenotypic spectrum of MDDG, including CMD with
cerebellar involvement (e.g., Fukuyama muscular dystrophy),
muscle–eye–brain disease, and Walker–Warburg syndrome.
Walker–Warburg syndrome represents the most severe phe-
notype, presenting with small and dysmorphic cerebellar
hemispheres (often with cysts), absent vermis and brainstem
hypoplasia, abnormal tectum and corpus callosum,
ventriculomegaly, and cortical anomalies including cobble-
stone cerebral cortex, lissencephaly, pachygyria, and
polymicrogyria [145, 146]. Cobblestone malformations are a
recognizable neuronal migration disorder characterized by
protrusions of neurons beyond the first cortical layer at the
pial surface of the brain [147]. Microcephaly, eye abnormali-
ties (e.g., cataracts, congenital glaucoma, microphthalmia),
neonatal hypotonia, and increased serum creatine kinase
(CK) are additional findings that may help in suspecting a
MDDG diagnosis. Of note, it is important for the clinician to
be careful not to overlook possible muscular involvement
even in the presence of the dramatic central nervous system
malformations.
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A cobblestone-like appearance of the cortex in combination
with CH has also been observed in GPR56-related
polymicrogyria (MIM 606854), a neurodevelopmental disorder
caused by bi-allelic mutations in ADGRG1 (also known as
GPR56). Affected patients usually present with bilateral
frontoparietal cobblestone-like “polymicrogyria,” cerebellar
hypoplasia/dysplasia with cysts mainly affecting the superior
vermis, myelination abnormalities, and variable corpus callosum
anomalies. In contrast to the cobblestone malformations de-
scribed in MDDG, the brainstem is less severely affected
[148]. Lastly, bi-allelic mutations in COL3A1, a collagen gene
responsible for autosomal dominant Ehlers–Danlos syndrome
type IV (MIM 130050), have been linked to a similar neurora-
diological phenotype [149, 150]. In addition to Ehlers–Danlos
features, brain MRI of affected patients show cerebellar hypo-
plasia (mainly of the vermis) and/or dysplasia with cysts, pons
hypoplasia, cobblestone cortex, and diffuse hypomyelination.
Interestingly, COL3A1 encodes the proα1(III) chains of type
III procollagen, a ligand of ADGRG1 (GPR56). Interaction of
GPR56 with COL3A1 regulates cortical development and lam-
ination by inhibiting neuronal migration through activation of
the RhoA pathway [151, 152].

Rare Disorders Due to CDK5, PI4KA, WDR81,
KIAA1109, MACF1, MAST1, and CTNNA2 Mutations

Novel neurodevelopmental disorders showing involvement of
cerebellum, brainstem, and cortex are continuously being
reported.

A severe phenotype characterized by cerebellar hypoplasia,
small pons, lissencephaly, agenesis of corpus callosum, and
microcephaly has been linked to a loss-of-function homozy-
gous mutation in CDK5 in a consanguineous Israeli Moslem
family [153]. Interestingly, CDK5 is a cyclin-dependent ki-
nase that has been shown to have a crucial role in Purkinje cell
dendritic growth [154] and cerebral cortical folding of upper-
layer neurons [155].

Compound heterozygous variants in PI4KA have been
identified in three fetuses of the same family showing
perisylvian polymicrogyria, VH, dysplastic dentate nuclei,
pons hypoplasia (in one case), and arthrogryposis [156]. Of
note, PI4KA encodes a phosphatidylinositol 4-kinase which is
involved in the biosynthesis of phosphatidylinositol 4,5-
bisphosphate, an important substrate of phosphoinositide
and PI3K-AKT-mTOR signaling pathways.

A wide phenotype, including microcephaly, PCH, and
lissencephaly at its most severe spectrum, has been associated
with bi-allelic mutations inWDR81, a gene with a crucial role
in mitotic progression and Purkinje cell survival [157–159].

Recently, bi-allelic loss-of-function/hypomorphic muta-
tions in KIAA1109 have been identified in several individuals
with CH, brainstem dysgenesis, lissencephaly/pachygyria,

possible ventriculomegaly, clubfoot/arthrogryposis, cardiac
and ophthalmologic anomalies [160].

Heterozygous missense variants and an in-frame deletion
involving highly conserved zinc-binding residues within the
microtubule-binding GAR domain of MACF1 (microtubule
actin crosslinking factor 1) have been recently linked to a
complex brain malformation characterized by predominantly
posterior pachygyria/lissencephaly, hypoplastic and dysplas-
tic brainstem, variably short corpus callosum, and mild to
moderate VH/CH hypoplasia, the latter being less pronounced
than the brainstem anomalies [161]. On axial images, the me-
dulla has a striking “W” shape formed by its very wide and flat
shape and small pyramids.

Heterozygous mutations inMAST1, another gene encoding
a microtubule-associated protein, cause a neurodevelopmental
disorder characterized by an enlarged corpus callosum, CH
(vermis > hemisphere hypoplasia), brainstem (mainly the
pons) hypoplasia, ventricular dilatation, and cortical
malformations ranging from subtle dysgyria to a tubulin-like
phenotype [162].

Lastly, bi-allelic truncating mutations have been reported
in CTNNA2 in 7 subjects with a distinct recessive form of
pachygyria associated with hypodysgenesis of the corpus
callosum, CH, and possible brainstem hypoplasia.

VH/CH with Cerebellar Dysplasia

Cerebellar dysplasia is characterized by abnormalities of cerebel-
lar foliation, fissuration, white matter arborization, and gray–
white matter junction on brain MRI (Fig. 5e) [27]. It is often
associated with a range of complex neurodevelopmental disor-
ders such as JSRD, tubulinopathies, alphadystroglycanopathies
and GPR56/COL3A1-related polymicrogyria. When the cerebel-
lar dysplasia is focal and unilateral in a cerebellar hemisphere of
reduced volume, a prenatal acquired etiology is assumed, espe-
cially in the presence of hemorrhages on MRI. A diagnostic
workflow for cerebellar dysplasia and related disorders is illus-
trated in Fig. 6.

Poretti–Boltshauser syndrome (PBS; MIM 150320),
caused by bi-allelic LAMA1mutations [163], and cobblestone
cerebral cortex disorders [164] are characterized by the pres-
ence of CH/CD and cerebellar cysts. The cerebellar dysplasia
in these disorders is thought to arise from basement membrane
defects resulting in abnormal neuronal migration. Chudley–
McCullough syndrome (MIM 604213) is a highly recogniz-
able clinico-radiological entity characterized by sensorineural
deafness, agenesis of the corpus callosum, frontal
polymicrogyria, quadrigeminal plate cyst, and ventricular en-
largement in addition to dysplasia of the inferior cerebellar
hemispheres with possible VH. Chudley–McCullough syn-
drome is caused by bi-allelic mutations in GPSM2, which
encodes a GTPase regulator needed for correct mitotic spindle

651Cerebellum (2021) 20:631–658



orientation during stem cell division [165]. Recently, a crucial
role of Gpsm2 in the regulation of actin dynamics in
epithelial and neuronal tissues has been elucidated
[166]. Cerebellar dysgenesis (along with VH, mega cis-
terna magna and patulous foramen Magendie) can also
be part of the PACS2-related epileptic encephalopathy,
a recently identified mendelian disorder whose main
f e a t u r e s a r e e p i l e p s y , ID , a nd c r a n i o f a c i a l
dysmorphisms. PACS2 is a trans-Golgi membrane traffic

regulator gene highly expressed during human embryon-
ic brain development, but its role in cerebellum is yet
unknown [167].

Practical Approach to the Diagnosis of Cerebellar
Hypoplasia

Accurate diagnosis of patients with cerebellar hypoplasia re-
quires a multidisciplinary team approach. First, a careful

yesBilateral CD,  +/- VH/CH, 
+ cerebellar cysts? Pore�-Boltshauser syndrome 

CD +VH/CH  
+ Molar tooth malforma�on Joubert syndrome related disorders

yesCD, +/-VH, 
+/- megacisterna magna and 

patulous foramen Magendie ? 

Possible PACS2-related disorders 
(if co-occurrence of epilep�c encephalopathy and 

craniofacial dysmorphisms)

yes

CD, + inferior VH, quadrigeminal 
plate cyst, corpus callosum 

agenesis, ventricular enlargement, 
frontal polymicrogyria 

+ sensorineural deafness

Chudley-McCullough syndrome
yes

CD, +VH/CD
+ cor�cal anomalies, +/- CNS 

anomalies?

Tubulinopathies
Dystroglycanopathies & GPR56/COL3A1

Lissencephaly 7 with cerebellar hypoplasia(CDK5)
Lissencephaly 9 with complex brainstem 

malforma�on* (MACF1) 

yes

Unilateral/focal cerebellar
dysplasia (CD) 

+/- unilateral vermis/ hemispheres 
hypoplasia (VH/CH) ?

no

Possible prenatal acquired e�ology 
(e.g. hemorrhage)

yes

no

no

no

no

Fig. 6 Diagnostic algorithm of cerebellar dysplasia and related anomalies. CD, cerebellar dysplasia; CH, cerebellar hypoplasia; DWM, Dandy–Walker
malformation; PCH, pontocerebellar hypoplasia; VH, vermis hypoplasia
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review of medical history and a physical examination, involv-
ing the pediatrician, neurologist, and clinical geneticist, are the
first steps to generate a thorough phenotypic characterization.
Concurrently, the brain MRI should be reviewed with a neu-
roradiologist to seek any possible hallmark of acquired causes
(e.g., hemorrhage in preterm infants, hemosiderin on
susceptibility-weighted imaging, cerebellar clefts) and should
be compared with previous imaging if available to assess for
possible signs of progression and cerebellar atrophy. Once
acquired etiologies are ruled out, we suggest relying on our
proposed algorithm (Fig. 3) to determine which of the six CH
classes the malformation corresponds to.

Thereafter, the diagnostic work-up should be customized
for each cerebellar subgroup. Array-CGH should be per-
formed in all VH/CH and DWM cases. If the clinical assess-
ment points to a specific syndrome (e.g., CHARGE), targeted
genetic testing should be organized. In the absence of clinical
clues, a broad ID panel (preferably trio-based which includes
proband and parents), or WES\WGS if available, should be
offered to all VH/CH cases with associated ID. Despite pos-
sible false-negatives, isoelectric focusing of serum transferrin
should be performed if a congenital disorder of glycosylation
is suspected based on clinical and neuroradiological findings.
Determination of CK level should be considered as increased
levels may provide clue to an α-dystroglycanopathy. Specific
panels including genes related to the corresponding cerebellar
subgroups (for example a JSRD gene panel for patients with a
MTS, a PCH gene panel in patients with PCH) should be
pursued. If available, WES may be performed as a first step,
first looking through a bioinformatic customized panel of
genes known to be associated with the identified cerebellar
class, and if this yields negative results, the analysis should
be expanded to include a broader set of genes not yet associ-
ated with that phenotype and potential new candidate genes.

Conclusions

Cerebellar hypoplasias are an extremely heterogenous group
of disorders with a wide range of etiologies, radiologic char-
acteristics, clinical features, and neurodevelopmental out-
comes. Recent advances in genetic methods such a whole-
exome and -genome sequencing have allowed the continuous
identification of novel CH-related disorders, providing insight
into the complexity of cerebellar development. Nevertheless,
the exact genetic or acquired etiologies remain unknown in a
considerable number of disorders, such as isolated VH and
CH, RES, and PCH. Accurate classification of cerebellar
malformations is key for diagnosis, work-up, and prognosis;
however, we still do not have a standard recognized classifi-
cation system that integrates neuroimaging and molecular ge-
netic and developmental biological criteria.

A neuroimaging-based classification remains a useful ini-
tial practical approach to classify CHs into one of six subcat-
egories, based on whether the CH is isolated or associated
with posterior CSF anomalies, specific midbrain or cerebellar
malformations, brainstem hypoplasia with or without cortical
migration anomalies, or dysplasia. Combining imaging, neu-
rological and dysmorphological assessments enable prompt
recognition and diagnosis of a specific CH, which will allow
the clinician to (1) perform appropriate genetic testing and
recurrence risk counseling, (2) screen for associated comor-
bidities, and (3) offer more precise neurodevelopmental prog-
nosis. All these efforts will lead to a better understanding of
molecular and clinical aspects of CH that may be pivotal to
develop novel therapeutic strategies in the future.
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