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Abstract
Spinocerebellar ataxia subtypes 1, 3, and 6 (SCA1, MJD/SCA3, and SCA6) are among the most prevalent autosomal dominant
cerebellar ataxias worldwide, but their relative frequencies in Peru are low. Frequency of large normal (LN) alleles at
spinocerebellar ataxia-causative genes has been proposed to be associated with disease prevalence. To investigate the allelic
distribution of the CAG repeat in ATXN1, ATXN3, and CACNA1A genes in a Peruvian mestizo population and examine their
association with the relative frequency of SCA1, MJD/SCA3, and SCA6 across populations. We genotyped 213 healthy mestizo
individuals from Northern Lima, Peru, for ATXN1, ATXN3, and CACNA1A using polymerase chain reaction (PCR) and poly-
acrylamide gel electrophoresis (PAGE). We compared the frequency of LN alleles and relative disease frequency between
populations. We also tested 40 samples for CAT repeat interruptions within the CAG tract of ATXN1. We found no association
between disease frequency and population frequency of LN alleles at ATXN1 and ATXN3. All 40 ATXN1 samples tested for CAT
interruptions were positive. Frequency of LN alleles at CACNA1A correlates with SCA6 frequency across several populations,
but this effect was largely driven by data from a single population. Low frequency of SCA1 and MJD/SCA3 in Peru is not
explained by frequency of LN alleles at ATXN1 and ATXN3, respectively. The observed correlation between CACNA1A LN
alleles and SCA6 frequency requires further assessment.
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Introduction

Spinocerebellar ataxias (SCAs) are a group of genetically het-
erogeneous neurodegenerative disorders characterized by the
deterioration of the cerebellum and its afferent and efferent
pathways. Some of these are caused by expansion of
polyglutamine-encoding CAG trinucleotides, like SCA1,
SCA2, Machado–Joseph disease (MJD/SCA3), SCA6, SCA7,
SCA12, SCA17, and dentatorubro-pallidoluysian atrophy [1].

The overall prevalence of SCAs is ~ 3 per 100,000 individ-
uals, with MJD/SCA3, SCA6, and SCA1 among the most
common worldwide [2, 3]. Nevertheless, there are local dif-
ferences in SCA subtypes prevalence and relative frequency.
SCA1 represents approximately 6% of patients with autoso-
mal dominant cerebellar ataxia (ADCA) worldwide; however,
its relative frequency among ADCAs ranges between 0% in
Mexico and South Korea [4, 5] and 88% in Siberian Yakuts
[6]. SCA3 is considered the most frequent ADCA in Japan,
Taiwan, Portugal, and Brazil with a relative frequency
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between 43 and 85% [7–9]. In contrast, no cases of SCA3
have been reported in Czech and Finns, and its frequency is
very low in Southern India (0.8%) [10–12]. The overall prev-
alence of SCA6 is approximately 0.02 to 0.31 per 100,000
individuals and represents approximately 15% from ADCAs
worldwide [3, 13]. The highest frequencies of SCA6 were
reported in Japan, Australia, and Germany with 25.5%,
30%, and 42%, respectively [7, 14, 15]. However, there are
no cases in Mexicans and Northern Indians [5, 16].

Frequency of LN alleles can influence repeat disease
prevalence by altering the microsatellite mutation rate.
Disease-causing microsatellites have higher mutation rates
than non-disease microsatellites [17], which stem from their
propensity to form secondary DNA structures that promote
defective DNA synthesis mediated by repair complexes [18,
19]. Microsatellite mutation rate increases with repeat size,
even within non-pathogenic ranges [20–22]; thus, a high
population frequency of LN alleles is expected to increase
the probability that at least one non-expanded allele will
reach a pathogenic size. There is a well-documented corre-
lation between Huntington disease prevalence and frequen-
cy of large alleles within non-pathogenic range (LN alleles)
[23, 24]. Likewise, in the case of SCA2, the high frequency
of LN alleles has been related to the high prevalence of this
disease in Cubans [25]. While an association between fre-
quency of LN alleles and disease prevalence has also been
proposed for SCA1, MJD/SCA3, and SCA6, other studies
did not validate this association [5].

Lack of interruptions in the CAG repeat tract is also asso-
ciated with microsatellite instability. A pure CAG repeat tract
is prone to form hairpin structures that promote faulty DNA
synthesis mediated by repair complexes targeting the DNA
hairpins [18, 19]. Thus, DNA sequences interrupting CAG
repeat tracts destabilize secondary DNA structures and impair
hairpin formation [18, 26]. The ATXN1microsatellite presents
up to three instances of the CAT trinucleotide within the CAG
tract, with varying frequency across populations. Studies per-
formed in North American, Indian, Chinese, and Siberian
Yakuts people suggest that the higher the population frequen-
cy of alleles carrying a single CAT interruption, the higher the
relative frequency of SCA1 among SCAs [27–29].
Furthermore, except for very rare cases, most expanded alleles
are uninterrupted by CAT trinucleotides [30]. A study of a
SCA17-causing microsatellite shows similar results, with mu-
tation frequency of pure CAG tracts at least twice as high as in
alleles bearing CAA interruptions [31].

The distribution of normal alleles at ATXN1, ATXN3, and
CACNA1A has been described in several ethnic groups from
Asia, Europe, and Africa, but studies in Latin American pop-
ulations other than Brazilians and Mexicans are lacking [5, 9,
11, 32–36]. Furthermore, the frequency or presence of CAT
interruptions at ATXN1 gene has been described in some pop-
ulations but not in Latin America [27, 28, 36]. Studying the

population frequency of LN alleles and microsatellite repeat
interruptions could therefore help inform the epidemiology of
these diseases in Latin America.

The Neurogenetics Research Center has implemented the
genotyping of ATXN1, ATXN3, and CACNA1A CAG
microsatellites, which has allowed us to provide the diagnosis
for SCA1, SCA3, and SCA6, as well as to study the epidemi-
ology of these diseases in Peruvian population. Little is known
about the factors that drive the prevalence and incidence of
these diseases in Peruvian population. In this study, we sought
to test whether allele size distribution correlates with frequen-
cy of SCA1, MJD/SCA3, and SCA6 in Peru. To this end, we
PCR-genotyped 213 individuals of self-reported mestizo an-
cestry from Northern Lima, Peru, and compared the allele
distribution of ATXN1, ATXN, and CACNA1A unstable
microsatellites with the frequency of SCA1, MJD/SCA3,
and SCA6 across populations. We also tested 40 individuals
for the presence of CAT interruptions within the ATXN1
microsatellite.

Methods

Subjects

Using the Minsage software, we estimated that we required
213 subjects to obtain a 95% probability to detect an allele
with 1.4% population frequency under no Hardy–Weinberg
equilibrium [37]. We targeted for such allele because it was
the rarest allele observed, in Brazilians, in any of the studied
genes that has a high-enough frequency not to be considered a
mutation (< 1%) [32]. Therefore, we recruited 213 healthy
unrelated individuals from Northern Lima during a 6-month
period of 2013. All participants were self-declared mestizo
adults (admixed Peruvian individuals of mostly Amerindian
and European ancestry), having Peruvian ancestors for at least
two generations. Lima’s population has admixed ancestry,
mostly from native Americans and Europeans [38].
Participants were 26.3% male, with ages ranging between 18
and 84 years (median 36, interquartile range 29.25). A stan-
dardized neurological examination by trained neurologists
was performed with all participants to exclude any current gait
instability and any other neurodegenerative disorder. The
study was approved by the Institutional Review Board at the
Instituto Nacional de Ciencias Neurológicas and informed
consent was obtained from all individuals.

Samples

Genomic DNAwas extracted from peripheral blood samples
by the salting out method and were stored at − 20 °C until
analysis [39]. DNA concentration and quality were assessed
by EPOCH spectrophotometer (Biotek ®, Winnoski, USA).
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Genotyping

Samples were genotyped for CAG repeat size at ATXN1,
ATXN3, and CACNA1A. All three loci were amplified by
PCR in different reactions using anABI Prism Thermal cycler.
Primers for (CAG)n in ATXN1 gene were Rep1: 5′-GTAC
GTCCACATTTCCAGTT-3 ′ and Rep2: 3 ′ -CAAC
ATGGGCAGTCTGAG-5′ [40]; for (CAG)n in ATXN3 were
MJD52 5′-CCAGTGACTACTTTGATTCG-3′ and MJD25
3 ′-AACCCTCACTAGATCCATTC-5 ′ [41]; and for
CACNA1A were S-5-F1 5′-CACGTGTCCTATTCCCCTGT
GATCC-3′ and S-5-R1 5′-CACCAGCGGCCCTCGGAGGT
ACCCA-3′ [42]. PCR products were genotyped by 6% poly-
acrylamide gel electrophoresis. Briefly, we used samples of
known genotype (previously analyzed by capillary electro-
phoresis) to perform a linear regression of repeat size versus
distance migrated on polyacrylamide gel electrophoresis.
Next, we used the linear model to predict repeat size of un-
known samples based on their migrated distance.

Given that the mutability of the ATXN1CAGmicrosatellite
is influenced not only by the repeat tract length, but also by the
presence of CAT interruptions, we also analyzed the frequen-
cy of this interruption in the normal population. We selected
the forty individuals with the largest ATXN1 normal alleles
and tested them for the presence of CAT interruptions by
RFLP. The PCR products were enzymatically digested by
LweI (SfaNI) 10 U/μL (Fermentas Life Sciences), for 5 h at
37 °C, and subsequently were electrophoresed in 8% PAGE.

Statistical Analysis

Hardy–Weinberg equilibrium was tested with the
Genepop v.4.5.1 [43]. For each gene analyzed, alleles
were grouped in normal and large normal according to
previously reported thresholds [44]. Specifically, we
considered LN alleles those with over 31, 27 and 13
CAG repeats for ATXN1, ATXN3, and CACNA1A, re-
spectively [44]. Normality of each distribution was
assessed by Shapiro–Wilk test (S-W). Frequency of
LN alleles across populations was compared by a chi-
squared test (α = 0.05) and Fisher’s exact test performed
with the Stata v.12. We used the Bonferroni correction
to adjust for multiple testing. We divided 0.05 by the
number of total comparisons to find the new cutoff val-
ue to declare that a statistical test was significant. We
estimated the 95% confidence interval of the frequencies
of large normal alleles using the Klopper–Pearson meth-
od [45] implemented in the binom package [46] for the
R v.3.5 [47].

Relationship between frequency of LN alleles and relative
SCA frequency was tested by Spearman’s correlation coeffi-
cient. All figures were created using the R v.3.5.

Results

Distribution of CAG Repeat Size of ATXN1, ATXN3,
and CACNA1A Genes in Peruvian Population

ATXN1 showed a normal distribution (S-W, p value > 0.05)
slightly asymmetric, while ATXN3 and CACNA1A presented a
prominently asymmetric and non-normal distribution (S-W, p
value < 0.05) (Fig. 1). ATXN1 presented 12 different alleles
ranging between 24 and 35 CAG repeats, with 29 and 30
CAG repeats as the most frequent alleles. DNA digestion with
LweI restriction enzyme showed that all forty individuals car-
ried at least one CAT interruption within the ATXN1 CAG
repeat tract in both chromosomes.ATXN3 showed 28 different
alleles in the range between 9 and 38 CAG repeats; the most
frequent ones were 14, 23, and 24 CAG repeats. CACNA1A
displayed 12 different alleles ranging from 3 to 17 CAG re-
peats. The most frequent ones were 11, 12, and 13 CAG re-
peats. All three loci deviated from Hardy–Weinberg equilibri-
um with p values 0.014 (ATXN1), < 0.001 (ATXN3), and <
0.001 (CACNA1A) and presented heterozygotes deficit, as
shown by the moderate FIS statistics (0.114, 0.154, and
0.227 for ATXN1, ATXN3, and CACNA1A, respectively).

Frequency of LN Alleles

We found 68 (16.0%), 40 (9.4%), and 31 (7.3%) LN alleles at
ATXN1, ATXN3, and CACNA1A genes, respectively.
Differences in LN allele frequency between Peru and other
populations did not allow us to conclude any association with
relative frequency of SCA1, MJD/SCA3, and SCA6
(Table 1). There was no correlation between frequency of
LN alleles and frequency of SCA1 or MJD/SCA3 cases (p
value > 0.05). However, there was a significant correlation
between frequency of LN alleles at CACNA1A and relative
SCA6 frequency (Fig. 2).

Discussion

Frequency of LN alleles at disease-causing unstable
microsatellites has been proposed to be associated with prev-
alence of the corresponding diseases including SCAs [23, 24,
44], presumably because mutation rate increases with micro-
satellite length, even within non-pathogenic range [22, 50]. In
this study, we sought to test whether allele size distribution
correlates with frequency of SCA1, SCA3, and SCA6 in Peru.
For this purpose, we PCR-genotyped 213 self-reported mesti-
zo individuals from Northern Lima, Peru, and compared the
allele distribution of ATXN1, ATXN3, and CACNA1A unstable
microsatellites across populations with differing frequency of
SCA1, MJD/SCA3, and SCA6. The frequency of LN alleles
in the studied population was 16%, 9.4%, and 7.3% for
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ATXN1, ATXN3, and CACNA1A genes, respectively, and was
not associated with relative frequencies of SCA1, MJD/
SCA3, and SCA6 in the Peruvian population.

Observed allele size ranges were similar to those re-
ported in other populations (Fig. 1). ATXN1 allele size
range (24–35 CAG repeats) in Peruvians was similar to
that of Mexican (26–38) [5], Chinese (26–35) [28], and

African (21–36) [51] populations. The allele size range
of ATXN3 (9–38) was similar to that of individuals in
other Latin Americans countries such as Mexicans (14–
34) [5], Brazilians (12–34) [32], and Portugueses (14–
36) [52], as well as to that of other populations across
the globe [14, 16, 44]. CACNA1A repeat range (3–17)
was similar to previous reports worldwide [5, 44, 53,

Mean (SD): 29.7 (1.9)
Median: 30 
Q3(31) - Q1(29): 2

Mean (SD): 20.9 (5.6)
Median: 23 
Q3(24) - Q1(15): 9

Mean (SD): 11.3 (2.1)
Median: 11
Q3(13) - Q1(11): 2

a

b

c

Fig. 1 Distribution of CAG
repeat size in ATXN1, ATXN3,
and CACNA1A genes. The X-axis
represents the CAG repeat
number and the Y-axis the percent
frequency of each allele
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54]. We did not find any individual carrying triplet ex-
pansions or mutation-prone, intermediate alleles on any
of the genes analyzed.

Frequency of ATXN1 LN alleles in Peru (16%) was mod-
erate compared with other populations (Table 1). Interestingly,
frequency of LN alleles in Peruvians was similar to that of
Caucasians (16%) even though SCA1 frequency in this pop-
ulation is much higher (15%) than that in Peru (2.6%) [44, 49].
Given the intermediate frequency of ATXN1 LN alleles in
Peruvians (Table 1), a moderate frequency of SCA1 cases
could be expected in Peru according to the hypothesis that
LN alleles are a source of de novo repeat expansions [23,
24, 44]. Moreover, frequency of LN alleles of ATXN1 in
Mexican population (27.5%) is among the highest worldwide,
although there are no reported SCA1 cases [5]. Furthermore,
populations with a varying frequency of SCA1 cases, such as
Brazilian (Paraná) [32], Northern Indian [16], Caucasian [44],
and Portuguese [9], do not show statistically significant dif-
ferences in frequency of LN alleles. Particularly, the Siberian
Yakuts show a markedly high frequency of SCA1 (88.1%),
but their frequency of LN alleles (11.2%) is similar to that of
Peru (16.0%, Table 1). These results seem to challenge the
role of LN alleles on influencing the SCA1 prevalence; how-
ever, we note that, if this effect exists, it may be stronger in
populations with high frequency of low number of CAT inter-
ruptions. For instance, the frequency of singly interrupted
CAG tracts in Siberian Yakuts (65%) is much greater than that
of other populations where SCA1 has a low prevalence, such
as Chinese Han (8% singly interrupted alleles) [28]. The fre-
quency of LN alleles in India is similar to that of Caucasian
populations, but their SCA1 prevalence is higher; these results
have been attributed to the difference in the frequency of sin-
gly interrupted ATXN1 alleles (2% in Polish and 16% in
Indians) [12, 36].

All 40 samples analyzed tested positive for the presence of
CAT interruptions within the CAG tract at both chromosomes.

DNA sequences interrupting (CAG)n tracts destabilize repeat-
induced secondary DNA structures and impair formation of
hairpins that promote expansions during DNA synthesis [18,
19, 26]. Thus, the lack of agreement between the frequency of
LN alleles and SCA1 frequency in Peruvians might be ex-
plained by the high frequency of alleles that have at least
two CAT interruptions in this population. However, further
analyses quantifying the number of CAT interruptions in the
CAG tracts are required to test this hypothesis.

The frequency of LN alleles at the ATXN3 locus was also
intermediate in Peru (9%) compared with countries with the
most extreme values, such as Southern India (1%) and Japan
(21%) [12, 44]. Frequency of LN alleles in Peruvian people was
similar to that of Spanish [53], Northern Indian [16], and
Caucasian [44] populations, where the frequency of SCA3
ranges between 5 and 30%. However, frequency of LN alleles
in Peru was greater than in Mexican [5], Southern Brazilian
[32], and Australian [14] which feature low frequency of LN
alleles (1.75–5%) but high frequency of SCA3 (12–74%) com-
pared with Peru (5.26%) [49]. Likewise, Czechs and Finnish
populations have a similar frequency of LN alleles to that of
Peruvians but no cases of SCA3 [10, 11]. These seemingly
random differences and similarities in allele frequencies be-
tween divergent populations could be explained by genetic drift
[55]. Therefore, we could not identify a clear-cut correlation
between frequency of LN alleles and relative SCA3 frequency
as was suggested in a previous study [44]. This is in agreement
with the putatively few inferred origins of the SCA3 mutations
according to the association of two common haplotypes with
the SCA3mutation in different worldwide populations and lack
of associations of these haplotypes with large normal alleles in
healthy population [56, 57].

Frequency of LN alleles at CACNA1A in Peru was
moderate (7.28%) compared with other locations such as
Northern India (1.7%) and Japan (20%, see Table 1) [16,
44]. Interestingly, populations with higher frequency of

Fig. 2 Population frequency of
CACNA1A LN alleles correlates
with relative SCA6 frequency
across populations
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CACNA1A LN alleles tend to have a greater SCA6 fre-
quency (Fig. 2), which is consistent with previous studies
[44]. Nevertheless, this correlation was strongly driven by
a single point corresponding to Japanese population, since
statistical significance was lost by removing this single
point (p = 0.0745). Further studies are necessary to con-
firm the observed correlation.

Overall, we found no evidence of association between
SCA1 and SCA3 frequency with frequency of LN alleles at
their corresponding causal genes. CACNA1A LN alleles
showed a statistically significant correlation with SCA6 fre-
quency, but doubts regarding its robustness remain. Thus, our
results disagree with a previous study that proposed that fre-
quency of LN alleles is associated with SCA prevalence [44].

We propose that further studies are necessary to dis-
cern the role of the frequency of LN alleles, especially
for ATXN1 and CACNA1A. Further studies of ATXN1
allele distribution should quantify the number of CAT
interruptions, not performed in this study, since this ge-
netic feature seems to play a major role in ATXN1 re-
peat instability. Correlation between CACNA1A LN al-
leles and SCA6 frequency should be confirmed by
collecting additional data from other populations.
Future studies should replace relative disease frequency
with disease prevalence, because the relative frequency
of any particular SCA will be affected by the epidemi-
ology of other disorders.
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