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Abstract Essential tremor (ET), clinically characterized by
postural and kinetic tremors, predominantly in the upper ex-
tremities, originates from pathological activity in the dynamic
oscillatory network comprising the majority of nodes in the
central motor network. Evidence indicates dysfunction in the
thalamus, the olivocerebellar loops, and intermittent cortical
engagement. Pathology of the cerebellum, a structure with
architecture intrinsically predisposed to oscillatory activity,
has also been implicated in ET as shown by clinical, neuroim-
aging, and pathological studies. Despite electrophysiological
studies assessing cerebellar impairment in ET being scarce,
their impact is tangible, as summarized in this review. The
electromyography–magnetoencephalography combination
provided the first direct evidence of pathological alteration
in cortico-subcortical communication, with a significant em-
phasis on the cerebellum. Furthermore, complex

electromyography studies showed disruptions in the timing
of agonist and antagonist muscle activation, a process gener-
ally attributed to the cerebellum. Evidence pointing to cere-
bellar engagement in ET has also been found in electroocu-
lography measurements, cerebellar repetitive transcranial
magnetic stimulation studies, and, indirectly, in complex anal-
yses of the activity of the ventral intermediate thalamic nucle-
us (an area primarily receiving inputs from the cerebellum),
which is also used in the advanced treatment of ET. In sum-
mary, further progress in therapy will require comprehensive
electrophysiological and physiological analyses to elucidate
the precise mechanisms leading to disease symptoms. The
cerebellum, as a major node of this dynamic oscillatory net-
work, requires further study to aid this endeavor.
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Abbreviations
ET Essential tremor
EMG Electromyography
MEG Magnetoencephalography
EOG Electrooculography
rTMS Repetitive transcranial magnetic stimulation
Vim Ventral intermediate nucleus of the thalamus

Introduction

Essential tremor (ET) is a slowly progressive disorder defined
by postural and kinetic tremors predominantly in the forearms
and hands, eventually spreading to the head and other body
regions [1, 2]. ET is not a benign condition considering the
disability during daily life activities and the negative impact
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on a patient’s quality of life [3] and even the increased mor-
tality [4].Moreover, ET is one of the most commonmovement
disorders with a prevalence of approximately 3 % in those
aged over 50 years [5]. However, it is assumed with reason-
able confidence that the underlying pathology develops far in
advance of clinical signs [6].

The mechanisms giving rise to this seemingly
monosymptomatic disorder have been elusive, but several
lines of converging evidence from animal models [7], func-
tional imaging [8–10], and neuropathological studies [11] im-
plicate dysfunction of the oscillatory network comprising the
cerebello-thalamo-cortical loops. In addition, a potential role
of cerebellar hyperactivity in ET pathophysiology has been
highlighted by clinical observations [12, 13], but cortical mo-
tor regions seem to be entrained in the tremor rhythm only
intermittently [14].

The aim of this review is to summarize the available neu-
rophysiological and electrophysiological evidence of involve-
ment of the cerebellum in the pathophysiology of ET.

Oscillatory Mechanisms of the Cerebellum and Its
Network

Theoretically, the architecture and neuronal structure of the
majority of the motor centers enable the production of oscil-
latory activity [15]. Particularly, the cerebellum has high po-
tential for repetitive cyclic processes. The dendritic structure
of cerebellar neurons, with a basic three-layer organization
comprising a line of Purkinje cells between the outer molecu-
lar and deeper granular layers, is markedly dissimilar to that of
pyramidal cells and cells found elsewhere in the motor net-
work and allows for oscillatory modulations in the cerebellum
[16]. Purkinje cell inhibitory GABAergic neurons exhibit ton-
ic activity, with spontaneous discharges modulated by efferent
motor action or incoming stimuli [17]. Input from climbing
fibers arising from the inferior olivary nucleus appears to drive
complex spikes, a large initial spike followed by a train of
lower-amplitude potentials [18] and oscillations in the alpha
range. Such complex spikes arise owing to the ability of
climbing fibers to generate periodic synchronous discharges
[19]. Furthermore, cerebellar granular cells generate oscilla-
tions of up to 25 Hz in low-frequency ranges synchronized
with the cerebral cortex [20, 21]. Lastly, the architecture of
parallel fibers, axons arising from granular cells, allows for the
creation of synchrony between Purkinje neurons [16] (see
Fig. 1 for a schematic drawing).

Invasive recordings of the human cerebellum are extremely
rare [22], and largely functional hypotheses only have been
proposed for cerebellar oscillatory activities. Local field po-
tentials oscillating in the delta (1–4 Hz) and theta (4–9 Hz)
bands, generated in the granular layer, have been attributed to
learning-dependent timing [23], sensory state assessment, and

intermittent motor control [24]. Generally, tremors with com-
parable frequencies are associated with oscillations in the cer-
ebellum and motor cortex at the tremor frequency and its first
harmonic [25]. The beta band (10–30 Hz) is associated with
movements and sensorimotor processing [26, 27]. Thus, low-
er frequencies of cerebellar oscillations are closely related to
activity in the cerebral cortex during specific stages of behav-
ior [18], in accord with the posture-dependent clinical charac-
ter of ET. Unfortunately, the function of frequencies above
30 Hz remains elusive, owing to vastly different neural archi-
tecture, and it is not clear to what extent cerebellar gamma
activity is similar to that of the cerebral cortex [16].

In addition to the cerebellum, almost the entire physiolog-
ical central motor network is involved in the generation of ET.
The inferior olive in the brainstem and the thalamus play im-
portant roles, with multiple lines of evidence indicating a role
of cortical motor centers as well [14, 25] (see Fig. 1). Howev-
er, network activity is not stable over time and its components’
participation may fluctuate and change. Specifically, cortical
involvement in tremor generation is intermittent, and given
that it is not essential for the persistence of ET symptoms
[28], it must affect the cooperation of all other components
in tremor generation, thus changing network composition in a
complex and dynamic way [14]. It has been hypothesized that
cortical inputs, not phase-locked to voluntary movement, can
depolarize thalamic neurons and, even when not leading to
active movement, may elevate tremor inputs from deep cere-
bellar nuclei above a specific threshold, thus enabling thalam-
ic tremor-related activity [29]. Another hypothesis proposes
activation of reverberating cerebello-thalamo-cortical circuits
during posture as the foundation for posture-dependent tha-
lamic oscillations [29, 30], leading to tremor activity genera-
tion during posture and movement but not at rest. However,
the mechanisms for switching from a non-oscillatory pattern
during rest to oscillatory patterns during tremor, in the context
of significant resting cerebellar activity found in functional
imaging studies [9], have yet to be determined. In both hy-
potheses, the thalamus is a key structure for oscillatory en-
trainment of subcortical and cortical nodes, with the highest
percentage of tremor cells found in the ventral intermediate
nucleus (Vim) [29]. Interestingly, the Vim primarily receives
excitatory input from the cerebellum and projects to the pri-
mary motor cortex [31]. Indeed, the considerably higher mean
spontaneous firing rate of Vim neurons in patients with ET
[32], combined with the periodic activity of thalamic neurons
coherent with electromyographic (EMG) findings during pos-
ture (but not rest) [29], suggests a close pathophysiological
relationship between the thalamus and ET. Moreover, the po-
sition of this structure in the oscillatory network provides a
possible explanation for the effectiveness of Vim neurosurgi-
cal lesions and microstimulation in ET treatment [33]. Indeed,
ischemic lesions in any of the components of the proposed
oscillatory network have been found to abolish ET in single
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patients [34]. Last, the inferior olivary nucleus, a major
source of input to the cerebellum, is hypothesized to be
a possible source of oscillations, further transmitted via
the cerebellum to the whole motor network and respon-
sible for ET symptomatology [35]. The electrotonic cou-
pling of neurons of the inferior olivary nucleus predis-
poses mammals to synchronous rhythmic discharges
[36]. Peculiarly, the discharge pattern of this structure
in healthy awake monkeys was shown to be just the
opposite, aperiodic to the extent of being random [37].
The harmaline model of drug-induced continuous
olivary oscillations with generalized 8–12-Hz tremor
has been frequently compared with ET [7]. Interestingly,
even direct functional correlates of the affected
olivocerebellar circuit have been hypothesized with the
character of associative learning dysfunction in the form
of delayed eyeblink conditioning [38], which showed
clear improvement to the conditioning rates within the
range of controls after ventrolateral thalamus deep brain
stimulation (DBS) [39]. Hence, different central network
structures seem to be comparably effective in producing
oscillations, implying that there might be no single driv-
er. Rather, all network components may contribute in a
specific way to the complex clinical picture of ET.

Functional Electrophysiology

The functional electrophysiology of the cerebellum remains
poorly characterized compared with the cerebral cortex. Al-
though intracranial EEG recordings from neurosurgery pa-
tients have greatly improved our understanding of the neuro-
physiology of the cerebral cortex and subcortical structures,
clinical cerebellum surface recordings are performed less fre-
quently. Indeed, reports detailing direct recordings from the
cerebellum are extremely rare. EEG studies in ET have clearly
demonstrated cortical activity coherent with ET [28, 40], but
have not yet provided direct evidence concerning the cerebel-
lar contribution to the pathophysiology of ET. Intrathalamic
recordings have shown that the highest number of neurons
with oscillatory properties is contained within the Vim. The
close neuroanatomical link between cerebellar nuclei and Vim
neurons provides compelling, although indirect, evidence for
a cerebellar pathology [29], but there are no reports of intra-
cranial recordings that have specifically targeted the cerebel-
lum itself.

Thus, existing knowledge supporting a cerebellar role in
the oscillatory network of ET originates mainly from neuro-
imaging studies [9], an intriguing magnetoencephalography
(MEG) study reporting a core structure consistently linked to

Fig. 1 Schematic drawing of
cerebellar connections. Excitatory
connections in full line and
inhibitory connections in dashed
line. ION inferior olivary nucleus,
DCN deep cerebellar nuclei, TAL
thalamus, RN red nucleus. The
cerebral cortex and the
olivocerebellar system are
strongly connected via
reverberating loops involved in
sensorimotor processing
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brainstem and cerebellar activities in ET [25], transcranial
magnetic stimulation (TMS) studies, indirect evidence based
on complex EMG, and electrooculographic (EOG) studies
showing signs of cerebellar dysfunction in ET (for summary,
see Table 1).

Cerebellar TMS in ET

Repetitive TMS (rTMS) is a convenient method for
studying human brain cortex and cerebellar physiology
[41]. In general, fast rTMS at frequencies >5 Hz gives
rise to increased cortical excitability, whereas low-
frequency rTMS (1 Hz) has the opposite effect, as evi-
denced by decreased neuronal metabolic rate [42]. The
physiological foundation of this phenomenon is yet to
be determined. Thus, the extrapolation of the effects
observed in motor cortex studies to the human cerebel-
lum is plausible but not definitive. Nonetheless, interfer-
ence of rTMS with the action of oscillatory cerebellar
neurons affects populations of neurons entrained at a
particular frequency, thus removing them from participa-
tion in their potentially pathologic function. As a proof
of concept, an exploratory study using active rTMS pro-
duced a notable, albeit transient, tremor improvement in
patients with ET [43]. Furthermore, single-pulse TMS of
the cerebellum in patients with ET elicited no disruption
in cerebello-thalamo-cortical pathways, suggesting the
presence of abnormalities with cerebellar afferent input
[44]. Therefore, even if the therapeutic utility of cere-
bellar rTMS in patients with ET is low, owing to the
short-term anti-tremor effect compared with DBS of the
Vim [33], the ability of rTMS to reduce tremors argues
strongly for a critical role of the cerebellum in ET
pathophysiology.

EMG

In addition to evidence of cortical involvement in simulta-
neous EEG-EMG recordings [40], and strong correlation of
thalamic neuronal activity with forearm EMG signals in ET
[45], complex EMG tests based on timing of activation of
different muscles involved in movement have provided indi-
rect evidence of cerebellar dysfunction in ET.

Fast limb movements are controlled by a triphasic pattern
of EMG activity. The timing of burst discharges is under cer-
ebellar control, in line with the major contribution of cerebel-
lar circuitry in timing function [46]. The first agonist burst
initiates movement and is followed by an antagonist burst,
which provides decelerating torque. A second agonist burst
attenuates oscillations induced by deceleration [47]. Move-
ments performed by patients with ET have a normal duration
and adequate peak velocities and peak accelerations. Howev-
er, delayed onset of phasic activity of the second agonist mus-
cle has been repeatedly reported [48, 49], allowing the antag-
onist to operate unopposed for longer periods of time. Conse-
quently, the higher-than-normal peak deceleration leads to a
series of dampened oscillations around the target point, possi-
bly reflecting abnormalities in anticipatory muscle activity
timing, a process generally attributed to the cerebellum
[50–52]. Furthermore, the latency of the second agonist
EMG burst correlates significantly with the tremor period
[48] and the clinical presentation of ET. This was more pro-
nounced in a group of patients with ETwith additional inten-
tion tremor compared with patients with isolated postural
tremor [49]. In agreement with the general interpretation of
intention tremor as a hallmark for cerebellar dysfunction, pa-
tients with ET with this symptom have an additional delay of
the antagonist burst, suggesting even more marked dysfunc-
tion of the cerebellum [49]. Hence, differences in the clinical
presentation of ET may reflect various stages of disturbed

Table 1 Summary of electrophysiological studies providing evidence of cerebellar involvement in ET

Study Method Result Interpretation

Gironell et al. [43] rTMS of cerebellum Transient tremor improvement Possible abolition of pathologic
cerebellar
rhythms leading to ET

Pinto et al. [44] Single-pulse TMS of
cerebellum

No disruption in cerebello-thalamo-
cortical pathways

Possible presence of abnormalities in
the cerebellar afferent input

Britton et al. [48]
and Köster et al.
[49]

EMG Delayed onset of second agonist muscle
activity, correlating with the tremor period

Impairment in EMG bursts timing—a
process generally attributed to the
cerebellum

Schnitzler et al. [25] EMG-MEG Pathologically altered communication between
contralateral primary motor cortex, premotor
cortex, thalamus, brainstem, and ipsilateral
cerebellum

The first direct evidence of
pathologically altered
communication in a network
involving the cerebellum

Helmchen et al. [56] EOG Smooth pursuit initiation impairment and
impaired vestibulocerebellar function

Impairment in complex visuomotor
functions—processes generally
attributed to the cerebellum
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cerebellar timing function related to ET severity. Nonetheless,
thalamic stimulation, even though providing a dramatic im-
provement of ET, does not lead to the reduction of the delayed
antagonist muscle response [53]. Conversely, Elbe et al. found
no differences in the latencies of the triphasic EMG burst
complexes in ET, but highlighted the fact that the onset of
the initial agonist muscle activation was in phase with a rhyth-
mic tremorous burst in EMG of opposite momentum to the
volitional movement, thus contributing to the impaired perfor-
mance in fine motor tasks of the patients with ET [54].

Moreover, simultaneous EMG recordings made in an ele-
gant MEG study of peripheral tremor activity [25] provided
the first direct evidence of pathologically altered communica-
tion in a network involving the contralateral primary motor
cortex, premotor cortex, thalamus, brainstem, and ipsilateral
cerebellum. Additionally, the presence of oscillatory activity
was related to the clinical presentation of ET. Despite the
limited spatial resolution of this method in subcortical areas,
this finding provides a reasonable foundation to exclude the
possibility of oscillation entrainment within the network from
one central driving oscillator to other nodes and further pro-
motes the ET as a network disorder hypothesis. Even so, the
activity of the network might be launched by a node within the
loops.

EOG

The cerebellum is a crucial structure for many complex
visuomotor functions, including saccade processing,
smooth pursuits, adaptation of vestibulo-ocular reflex,
and the optokinetic reflex [55]. Although no oculomotor
deficits are detected in patients with ET during bedside
clinical examination, a more subtle impairment, assumed
to be of cerebellar origin, may nevertheless be found
[56]. This is in the form of smooth pursuit initiation
impairment with normal latency (thus not likely of cor-
tical origin [57, 58]) and impaired vestibulocerebellar
function in reducing the time constant of post-rotary
vestibular nystagmus [59]. Moreover, the impairment
of initial pursuit acceleration was found to correlate
with clinically apparent intention tremor, possibly indi-
cating a similar pathophysiological background [56].
The sole center participating in cerebellar visuomotor
processing that could elicit both such deficits is the
caudal vermis (nodulus and uvula) [60, 61]. Further-
more, the uvula receives climbing fiber afferents origi-
nating from the dorsolateral pontine nuclei and the in-
ferior olive [62], an important node in the proposed
oscillatory network in ET. Hence, cerebellar dysfunction
in ET is not limited to clinically apparent control of arm
and leg movements but extends to complex oculomotor
and vestibular processes as well.

Conclusions

Although classically positioned as one of the most prominent
brain structures associated with motor control, research indi-
cates that the cerebellum may be a center for far more diverse
processes [55]. Its pathology is now implicated in a wide
range of neurological disorders [63–65], in addition to ET.
Complex imaging techniques have provided evidence of func-
tional alterations [8, 9] and morphological changes [10, 66] in
the cerebellum in patients with ET, further supported by post-
mortem studies showing signs of pathology not only in the
cerebellum but also in the brainstem [11, 67]. However, there
is still debate as to whether ET is primarily a degenerative
cerebellar disorder emerging from genetic abnormalities with
putative non-genetic factors [67].

Frequently, abnormal neuronal oscillations are regarded as
a fundamental event in ET, leading to well-documented clin-
ical cerebellar symptoms via interference of oscillations with
the motor functions of the cerebellum [12, 13], and even sec-
ondary neuronal damage and neuroplastic changes, if allowed
to persist [68]. Even improvement of tremor and cerebellar
deficits associated with alcohol, a substance with typical toxic
effects on the cerebellum [69], casts doubt on a primary cere-
bellar neurodegenerative affection categorization. However,
the mechanism behind the effect of ethanol might be based
on restoration of the function of glutamatergic pathways, as
shown in the harmaline model [70], thus providing a plausible
backing for the hypothesis supporting the neurodegenerative
nature of the disease. Irrespective of the character of the dys-
function, these alterations argue strongly for cerebellar in-
volvement in ET. Furthermore, direct involvement of cerebel-
lar circuits in the initial stages of the disease has been hypoth-
esized, with some data pointing to a pathogenic mechanism
starting in the cerebellum, especially in Purkinje neurons, and
disseminating secondarily to the entire motor circuitry [71].

The presence of dynamic oscillatory disturbance in ET is
also supported by a wide spectrum of electrophysiological and
physiological studies summarized in this review, including
EMG, MEG, rTMS, and EOG studies, providing both direct
and indirect evidence of cerebellar dysfunction. Furthermore,
the architecture of the cerebellum encourages iterative cyclic
processes with character close to oscillatory activity leading to
tremor [14].

However, the intricate pathophysiological mechanisms and
pathways giving rise to the clinical expression of ET are still
undetermined. Simplistic models of individual centers or sin-
gle loops, including the simple olivocerebellar drive, which
partly replicate the clinical scenario, do not provide explana-
tions consistent with the clinical expression of the disease. A
6–10-Hz tremor may also be generated in decerebrated prep-
arations, caused by rhythmic activation of Purkinje cells syn-
chronized with spinal motor neurons [72], and harmaline ap-
plication leads to continuous olivary oscillations with clinical
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presentation frequently compared with ET [6]. However, the
continuous oscillatory drive generated by this circuit (and
transmitted to the periphery without modulation by limb
movement or position) would not produce postural and kinetic
tremors with minimal symptoms at rest. In contrast, cerebellar
efferent structures do not exhibit oscillatory behavior at rest,
but show dramatic pattern changes during arm tremor that
correlate with forearm EMG signals [29]. Thus, ET does not
appear to emerge from a single node, but rather from a com-
plex structure encompassing a significant part of the motor
network, without one driver transmitting the oscillatory activ-
ity to other neural nodes and peripheral muscles. All of the
network components provide important inputs, which dynam-
ically entrain each other, that can induce the observed dynam-
ic oscillatory disturbance. The cerebellum, while crucially im-
portant for ET pathophysiology, does not intrinsically possess
the structural, physiological, or functional qualities needed to
generate the entire ET symptomology.

In summary, notwithstanding the progress to date, we are
far from a clear understanding of the precise underlyingmech-
anisms of ET oscillatory activity and the cascade of events
triggering such oscillations. Thus, currently, all available ther-
apeutic approaches remain relatively unspecific and target
symptoms rather than the primary cause of ET. Surgical le-
sions or DBS of Vim remain the only treatments which can
abolish the symptoms of the disease [33, 73]. Our review
underlines the need for further research in this area and for a
particular focus on the cerebellum’s role as one of the crucial
components of the oscillatory network in ET.
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