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Abstract Cerebellar granule neurons (CGNs) constitute the
most abundant neuronal population in the mammalian brain.
Their postnatal generation and the feasibility to induce their
apoptotic death in vitro make them an excellent model to
study the effect of several neurotransmitters and
neurotrophins. Here, we first review which factors are in-
volved in the generation and proliferation of CGNs in the
external granule layer (EGL) and in the regulation of
their differentiation and migration to internal granule
layer (IGL). Special attention was given to the role of
several neurotrophins and the NMDA subtype of gluta-
mate receptor. Then, using the paradigm of potassium
deprivation in cultured CGNs, we address several extra-
cellular factors that promote the survival of CGNs, with
particular emphasis on the cellular mechanisms. The
role of specific protein kinases leading to the regulation
of transcription factors and recent data involving the
small G protein family is also discussed. Finally, the
participation of some members of Bcl-2 family and the inhi-
bition of mitochondria-related apoptotic pathway is also con-
sidered. Altogether, these studies evidence that CGNs are a
key model to understand the development and the survival of
neuronal populations.
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Introduction

During the last decades, the cerebellum has been studied in
great detail, not only to understand its important role in the
control of motor coordination, but also because its laminated
structure and limited number of cell types have offered a mod-
el system to study neuronal development, differentiation, and
survival.

Cerebellar granule neurons (CGNs) are the most abundant
class of central nervous system neurons. Their progenitors arise
prenatally from the rhombic lip, in the boundary of the mesen-
cephalon and metencephalon (mes/met region), to form the
external granule layer (EGL). In rodents, the neuroblasts of
the EGL proliferate during the first postnatal week. During
the second postnatal week, neurons differentiate during their
migration through the molecular and Purkinje layers to reach
their mature state in the internal granule layer (IGL) by the end
of the third postnatal week [1]. During their migration from the
EGL towards the IGL, CGNs that fail to receive excitatory
inputs from mossy fibers will die by apoptosis [2, 3].

Extracellular Factors Involved in the Proliferation,
Differentiation, and Survival of CGNs

The study of the mechanisms and factors involved in CGN
proliferation, differentiation, and survival has been facilitated
by the possibility to maintain these neurons in culture in the
presence of a depolarizing medium. The combined use of
CGN primary cultures together with in vivo models has
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provided a deep knowledge of the main factors sequentially
involved in CGN proliferation in germinal layers and their
differentiation and survival during migration to the IGL
(Fig. 1).

Bone morphogenetic proteins (BMPs) seem to be the main
factors for the generation of CGN progenitors in the rhombic
lip. Work by Hatten and coworkers [4] has shown that BMP6,
BMP7, and growth differentiation factor 7 induce the expres-
sion of Math1, a transcription factor required for the specifi-
cation of CGN progenitors in the prenatal cerebellum.
Moreover, they demonstrated that BMP-treated explants from
the mes/met region were able to generate CGNs when
transplanted to the postnatal cerebellum. CGN progenitors
proliferate postnatally in the EGL. Several factors have been
implicated in their proliferation and in the exit from the pro-
liferative state to start differentiation. Numerous reports have
shown that sonic hedgehog (Shh), secreted by Purkinje cells,
is the main factor mediating the proliferation of CGN progen-
itors [5], probably by Nmyc1 activation [6]. However, other
factors, such as insulin-like grown factor (IGF) 1 and 2, have
also been implicated in the maintenance of the proliferative
state of CGN progenitors. Activation of IGF1 receptor by
IGF1 and IGF2 enhances Shh-mediated proliferation of puri-
fied CGN progenitors [7]. The synergy between Shh and IGFs
could be related to the fact that Igf2 expression is modulated
by Shh [8]. However, IGF1 and IGF2 are still able to stimulate
the proliferation of CGN progenitors (although to a lesser
extend) when Shh signaling is impaired [7], indicating that
proliferation of CGN progenitors in the EGL does not only
depend on the presence of pro-mitogenic factors such as Shh,
and that other mechanisms are involved. In fact, it is known

that transition from proliferation to differentiation in the EGL
starts even in the continuous presence of Shh. Thus, it should
be the presence of other factors (anti-mitogens) that drives
CGN progenitors towards differentiation. For example, IGF-
binding protein 5 is expressed when progenitors start to pro-
liferate (second postnatal week) and it blocks IGF and Shh-
mediated proliferation of purified CGN progenitors [7].
Another factor that has been reported to induce cell cycle exit
in CGN progenitors is BMP4. The expression levels of BMP4
and Smad1 (an intracellular protein needed for BMP signal-
ing) increase in the EGL during the second postnatal week,
and BMP4 promotes neuronal cell differentiation in CGN cul-
tures [9]. Other factors are also known to promote CGN dif-
ferentiation such as pituitary adenylate cyclase-activating
polypeptide (PACAP), vitronectin, Wnt3, or activation of
GPR3 receptors, which shows the complexity of the mecha-
nisms involved in this process at the end of the first postnatal
week in the EGL [10–13].

Differentiation and maturation of CGNs start during the
second postnatal week and occur in parallel to their migration
from the EGL towards the IGL [1]. During their migration,
stimulation of glutamatergic synapses between mossy fibers,
and CGNs are responsible for their survival [2, 3]. It has been
reported in vivo that activation of NMDA receptors
(NMDAR) is necessary for CGN survival since pharmacolog-
ical blockade of these receptors produce an increase in the
apoptotic rate [14]. Similar requirement has been observed
in vitro. Cultured CGNs die from apoptosis when potassium
chloride (KCl) concentration changes from 25 mM (K25) to
5 mM (K5). The addition of NMDA rescues CGNs from K5-
mediated apoptosis [15, 16]. Moreover, it has been reported

Fig. 1 Extracellular factors
involved in the proliferation,
differentiation, and protection of
CGNs at postnatal stages. Main
factors introduced in the text
involved in the proliferation
(prolifer.), differentiation (differ.),
and protection (antiapop.) of
CGNs at different postnatal
stages, from the external granule
layer (EGL) to the internal
granule layer (IGL). Dashed
arrow indicates the migration of
CGNs from EGL to IGL. In
brackets, the action of glutamate
is through the stimulation of
NMDA receptor (NMDAR). ML
molecular layer, PL Purkinje
layer, WM white matter
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that a 24-h exposure to NMDA in immature CGN cultures (2
DIV) is enough to promote a long-lasting neuroprotective ef-
fect since cells survive for up to 8 DIV in K5 [17]. Although
different signal transduction pathways have been related to the
protective effect of NMDA on differentiating CGNs (see be-
low), several studies have shown that NMDA-dependent re-
lease of the neurotrophin BDNF is a major factor in CGN
survival. Blocking TrkB receptor activation, by either antag-
onists or BDNF antibodies, produces an important reduction
in NMDA-mediated neuroprotection [17–19].

CGN primary cultures have also been used to search other
pro-survival factors. Interestingly, some of the factors that are
involved in the proliferation of progenitor cells were also re-
lated to survival of CGNs during their migration towards the
IGL. For example, IGF1 is involved in the proliferation of
CGN progenitors (see above), but it also promotes the survival
of CGNs, both in vitro and in vivo, by downregulating pro-
apoptotic factors such as Bax, Bim, and Bad and upregulating
Bcl-x(L) and Bcl-2 [20–22]. Also PACAP, which inhibits the
proliferation of progenitors in the EGL [11], acts as a pro-
survival factor for CGNs [23, 24]. Altogether, it seems that
an orchestra of several extracellular factors plays an important,
and complementary, role to glutamatergic inputs from mossy
fibers in the control of CGN survival during their migration

towards the IGL. Then, we examine by which molecular
mechanisms NMDA and the pro-survival factors induce the
survival of CGNs in the paradigm of KCl deprivation in cul-
tured CGNs.

Molecular Pathways Related to the Neuroprotection
of CGNs

It has been described that specific protein kinase cascades
involving phosphoinosite 3-kinase (PI3K)/Akt, extracellular-
signal regulated kinase (ERK), protein kinase A (PKA), or
calcium/calmodulin kinase IV (CaMKIV) promote the neuro-
protective activity of neurotransmitters and pro-survival fac-
tors by the increase of transcriptional activity. IGF1 exerts its
neuroprotective effect through the activity of PI3K [25] and
the phosphorylation of Akt [26]. The activation of PI3K/Akt
decreases the activity of Forkhead transcription factors, favor-
ing the survival role of IGF1 [22]. Other transcription factors,
such as the family of myocite enhancer factor-2, also partici-
pate in IGF1-mediated survival effect [27] (Fig. 2).

The requirement of PI3K/Akt pathway was also observed
in the neuroprotective effect of NMDA in immature [17] and
mature [28, 29] CGNs. But this effect is not restricted to the

Fig. 2 Cellular mechanisms
involved in the neuroprotection of
CGNs. We introduced the
signaling pathways involved in
the survival of CGNs promoted
by some neurotrophins,
neuropeptides, and the NMDAR
stimulation in the paradigm of
potassium deprivation. Bold
arrows indicate activation and
dashed arrows denote inhibition
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activation of PI3K/Akt pathway as other protein kinases have
also been involved. In mature CGNs, it has been showed that
neuroprotection by NMDA is mediated by ERK activation
[29]. However, other studies reported that inhibition of ERK
pathway does not prevent the neuroprotective activity of
NMDA [18, 28]. We recently reported that the survival role
of PI3K/Akt and ERK pathways in CGNs depends on the
small G proteins acting upstream [30]. We demonstrated that
both pathways are involved in NMDA-mediated neuroprotec-
tion when they are activated by Ras. In contrast, the stimula-
tion of the ERK pathway by other members of the small G
proteins family, such as Rap1, is not sufficient to promote
protection. Our results showed that the biological significance
of NMDA-mediated activity of PI3K/Akt and ERK pathway
depends on which monomeric-G protein is acting upstream.
Furthermore, the requirement of Ras to activate these path-
ways also occurs for other protective factors [31]. Thus, these
results support a central role for Ras in the survival of CGNs.
NMDA-mediated activation of PI3K/Akt and ERK pathways
stimulates the activation of CREB, an important transcription
factor for the pro-survival effect of NMDA [32]. As indicated
above, the neuroprotective effect of NMDA ismediated by the
release of BDNF [33]. We recently described that the interac-
tion of CREB with the Bdnf promoter is enhanced by potas-
sium depolarization, whereas it is not improved by NMDA
treatment [19]. We demonstrated that the stimulation of
NMDAR triggers the CREB-dependent Nurr1 activation,
which results in BDNF upregulation. Moreover, we have
characterized Nurr1 as a key factor in NMDA-dependent sur-
vival of CGNs. Other factors mediating the survival of CGNs
are related to the activation of ERK-CREB pathway.
Interestingly, BMP6 has been described to promote CGN sur-
vival in culture through the stimulation of MEK-ERK-CREB
pathway [34]. Thus, differential pathway activation by BMP6
could be related to its function promoting the formation of
CGN progenitors (Smad-dependent) or the survival of
CGNs (Smad-independent) during cerebellum development.

PACAP exerts a potent neuroprotective effect on cultured
CGNs [35, 36]. More recently, it has shown in mice deficient
for PAC1, the high-affinity PACAP receptor, that endogenous
PACAP is crucial for the survival of CGNs [37]. The neuro-
protective effect of PACAP is mediated through the activation
of ERK [24] and the cAMP-dependent PKA [38, 39]. The
increased activity of these pathways leads to the stimulation
of pro-survival gene expression, such as c-fos or Bcl-2 [40,
41]. In addition, it has been described that PACAPmediates its
neuroprotective effect, in part, by inhibition of delayed recti-
fier K(+) current (I(K)) via cAMP/PKA transduction pathway
[42, 43]. Moreover, the survival effect of PACAP could be
mediated by other pathways. It has been demonstrated that
PACAP promotes the increase of intracellular calcium from
intracellular stores and calcium influx through calcium chan-
nels [44, 45]. The mobilization of calcium allows the

activation of CaMKIVand then the increase of CREB activity
[46, 47]. More recently, it has been shown that PACAP-
mediated protective effect is also through the release of tissue
plasminogen activator [48].

The pivotal role of the Bcl-2 family proteins and the mito-
chondrial pathway in the apoptosis of CGNs has been exten-
sively documented. Bax and other members of the Bcl-2 fam-
ily are sufficient to promote apoptosis of CGNs [49, 50]. The
reduction of these proteins is an important step in the neuro-
protection of CGNs. It has been shown that neuroprotection
mediated by trophic factors is associated with the reduction of
Bax, Bad, and Bim levels [21, 22]. On the other hand, the
increased expression of anti-apoptotic members of Bcl-2 fam-
ily has been related to the neuroprotective effect of IGF1,
PACAP, NMDA, and others [21, 41, 51]. The regulation of
the Bcl-2 members allows a reduction of the apoptotic mito-
chondrial activity, reducing cytochrome c release [51, 52] and
the activation of caspases [17, 21, 53, 54]. The inhibition of
other apoptotic pathways is also an important step in the sur-
vival of CGNs. For instance, the inhibition of JNK prevents
the apoptotic death of CGNs [17], and the long-lasting neuro-
protective effect of NMDAwas also related to the inhibition of
JNK and the phosphorylation of c-jun [51]. Taken together,
the survival of CGNs mediated by NMDAR and neurotrophin
receptors results in the stimulation of common survival mech-
anisms and suppression of apoptotic pathways.

Conclusion

The data presented here support that CGNs are a key model to
decipher which factors and cellular mechanisms underlie neu-
ronal development and survival. Recent publications
unraveled the action of numerous neurotrophic factors and
stimulation of NMDAR in promoting the activity of CGNs
at postnatal stages. Moreover, significant works revealed the
similarity between these two, not only in the promotion of the
survival, but also in terms of the signaling pathways that they
activate in CGNs.
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