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Abstract The cerebellar cortex exhibits a strikingly high
expression of type 1 cannabinoid receptor (CB1), the
cannabinoid binding protein responsible for the psycho-
active effects of marijuana. CB1 is primarily found in
presynaptic elements in the molecular layer. While the
functional importance of cerebellar CB1 is supported by
the effect of gene deletion or exogenous cannabinoids on
animal behavior, evidence for a role of endocannabinoids
in synaptic signaling is provided by in vitro experiments
on superfused acute rodent cerebellar slices. These studies
have demonstrated that endocannabinoids can be tran-
siently released by Purkinje cells and signal at synapses
in a direction opposite to information transfer (retro-
grade). Here, following a description of the reported ex-
pression pattern of the endocannabinoid system in the
cerebellum, I review the accumulated in vitro data, which
have addressed the mechanism of retrograde endocannabinoid
signaling and identified 2-arachidonoylglycerol as the mediator
of this signaling. The mechanisms leading to endocannabinoid
release, the effects of CB1 activation, and the associated syn-
aptic plasticity mechanisms are discussed and the remaining
unknowns are pointed. Notably, it is argued that the spatial
specificity of this signaling and the physiological conditions
required for its induction need to be determined in order to
understand endocannabinoid function in the cerebellar cortex.
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Introduction

Cannabinoids are molecules related to the psychoactive
components of marijuana. In vertebrates, cannabinoids
and endocannabinoids (their endogenous analogs) mediate
most of their effects by binding to two types of G protein-
coupled receptors: type 1 and 2 cannabinoid receptors
(CB1 and CB2) [1]. CB1 is preponderant in the brain
[2] and highly expressed [3, 4]. It has even been proposed
to be the most abundant G protein-coupled receptor [5, 6],
with a notable high expression in the cerebellum [4]. The
cerebellar cortex is made of a highly conserved and re-
peated microcircuit with inputs converging onto Purkinje
cells (PC), the dendrites of which span the molecular
layer. CB1 is primarily found on axons in the molecular
layer: those of granule cells (GC), basket and stellate
cells, and climbing fibers [7, 8]. PC axon collaterals are
probably devoid of CB1 since no mRNA expression has
been detected in PCs [9, 10].

CB1 is located adjacent to synapses [11]. Although
CB1 is highly expressed at interneuron to PC synapses
[3, 7, 11, 12], expression at the GC to PC synapse quan-
titatively dominates due to the abundance of this synapse
type. In rat, the PC dendritic tree bears 175,000 granule
cell (GC) to PC synapses [13]. The total number of these
synapses may be estimated as about 50 1012 in human, a
number derived from the averaged density of GC to PC
synapses in the rat molecular layer (1 per μm3; [14]) and
the approximated volume of the human molecular layer
(50 cm3; [15]). The CB1 expression at the most abundant
synapse type in the cerebellar cortex suggests that
endocannabinoids are essential to cerebellar function.
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Accumulating evidence supports a general role of
endocannabinoids in synaptic plasticity [16]. Since the excit-
atory GC to PC synapse is generally believed to be a site of
information storage [17], most research has naturally focused
on endocannabinoid signaling at this synapse [18]. Further-
more, in contrast to inhibitory synaptic transmission, GC to
PC synaptic transmission can trigger endocannabinoid release,
the mechanism of which is key to understand, but remains
largely mysterious.

Contrary to the expectation from CB1 high expression, the
CB1 knockout phenotype appears rather mild [19, 20], suggest-
ing that endocannabinoid signaling function is subtle. Specific
cerebellum-dependent behavioral paradigms have been re-
quired to demonstrate the importance of CB1 for cerebellar
operation. Eyeblink conditioning, a well-established paradigm
demonstrated to involve the cerebellar cortex [21], is impaired
in CB1 knockout [22] or in chronic marijuana users [23, 24],
supporting the importance of endocannabinoid signaling for
normal cerebellar cortex function. However, some of these
effects may be caused by long-term compensatory changes,
such as increased CB1 expression [25, 26], CB2-modulated
microglia activation [27], or changes in GC to PC synaptic
strength [28].

A neurodevelopmental role of endocannabinoid signaling is
documented from prenatal to adolescent stages [29–31]. CB1
expression by granule cell precursors has been demonstrated
[32]. At this early developmental stage, CB1 activation by low
concentration of exogenous cannabinoid promotes granule cell
proliferation [32] while higher concentration induces apoptosis
[32, 33]. Furthermore, pharmacological manipulations enhanc-
ing endocannabinoid effects have appeared to prevent trauma-
induced granule cell degeneration [34]. In light of these reports,
clinical applications for cannabinoids, like counteracting re-
mote cell death in the cerebellum following brain injury [35],
may be considered.

Most data on endocannabinoid signaling in the cerebellum
have been obtained from rodent acute cerebellar slices
superfused with extracellular fluids, a convenient in vitro prep-
aration for electrophysiological and calcium imaging experi-
ments. These data indicate that endocannabinoids can signal in
response to neuronal activity, and shape information transfer
and storage. In this review, a brief description of the expression
of the molecular actors of endocannabinoid signaling in the
cerebellar cortex is followed by the assessment of accumulated
in vitro data to dissect the mechanism of endocannabinoid
signaling and address its role in synaptic plasticity.

Cerebellar Molecules Involved in Endocannabinoid
Signaling

The endocannabinoids and the proteins required for their
production, transport, action, and degradation define the

endocannabinoid system. Two arachidonic acid derivatives,
N-arachidonoylethanolamide (AEA or anandamide) and 2-
arachidonoylglycerol (2-AG) are considered the preponderant
endocannabinoids in the CNS [36]. Their metabolisms in-
volve different enzymatic pathways (Fig. 1a). Proteins other
than CB1 or CB2 may mediate endocannabinoids’ actions.
The most established such proteins are GPR55, TRPV1 re-
ceptors, and PPARs [37]. Although these receptors appear to
be expressed in the cerebellar cortex [38–41], their role is
currently unknown. CB2 coding mRNAs have been detected
in the cerebellum [42] and in cultured GCs [43]. CB2 is
generally believed to have an immune function linked to
expression by microglia throughout the CNS [44]. The appar-
ent staining of GC axons by anti-CB2 antibodies [45] might
suggest that CB2 function in the cerebellum goes beyond the
traditionally attributed immune function. However, the reli-
ability of antibodies used to detect specifically CB2 by
immuno-staining remains unclear [46]. Endogenous CB1 al-
losteric modulators have recently started to be identified [47]
and may add a new level of complexi ty to the
endocannabinoid system. Their physiological role remains
unknown.

In vitro experiments support that 2-AG is the main
endocannabinoid mediating phasic signaling in the cerebellar
cortex (see below). This may not sound surprising given that
the average 2-AG concentration in brain tissue is about a
thousand times higher than that of anandamide [48]. Most of
this 2-AG is inside cells, and its extracellular concentration is
much lower, but it is still considered about five times higher
than that of anandamide [48]. Amongst the several metabolic
pathways proposed for 2-AG synthesis [49–51], the hydroly-
sis of arachidonic acid-containing membrane phospholipids
into arachidonic acid-containing diacylglycerol (DAG), cata-
lyzed by Gq/11-activated phospholipase Cβ (PLCβ), followed
by conversion into 2-AG catalyzed by sn-1-specific DAG
lipase (DAGL), is considered as the main pathway (Fig. 1a)
[48]. For transient action of 2-AG (see below), the termination
of 2-AG action may involve its degradation. Pharmacological
and genetic studies indicate that the main pathway of 2-AG
degrada t ion is i t s hydro lys i s ca ta lyzed by the
monoacylglycerol lipase (MAGL) (Fig. 1a) [52–54].

The subcellular location of these enzymes in the cerebel-
lum is documented. The α type DAGL [55]) exhibits high
expression in PCs [56–58], which thus appear to be the main
producer of 2-AG. PLCβ4 is also highly expressed in PC
dendrite [59, 60] and is the best candidate to convert mem-
brane phospholipid phosphatidylinositol-4,5-diphosphate
(PIP2) into DAG in PCs [61]. In contrast, MAGL has been
reported to be localized in presynaptic compartments [62].
Together with the presynaptic localization of CB1, the local-
ization of the enzymes involved in 2-AG metabolism is con-
sistent with the notion that 2-AG signals from the PC den-
drites to presynaptic elements (Fig. 1b), as demonstrated by
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electrophysiological studies (see below). Despite the high ex-
pression of CB1 by molecular layer interneuron terminals,
MAGL appears mainly compartmented in GC terminals [62],
suggesting other enzymes might help to terminate 2-AG action
at inhibitory synapses. ABHD6 is currently the main alterative
candidate to mediate significant 2-AG degradation [63]. How-
ever, the lack of effect of a demonstrated ABHD6 blocker on 2-

AG-mediated plasticity in the cerebellum of MAGL knockout
mice, or in the presence of theMAGL-specific blocker JZL184,
appears to rule out its role in the termination of 2-AG signaling
[64].

Although N-acyl-phosphatidylethanolamine-specific phos-
pholipase D (NAPE-PLD) has been shown to mediate ananda-
mide synthesis [65], its role has been questioned by gene

b

a

Fig. 1 Known components of the endocannabinoid system in the
cerebellum. a Biochemical synthesis and degradation pathways for
endocannabinoids. Enzymes, the expression of which is reported in the
cerebellar cortex, are represented with colored symbols also displayed in
(b) . DAG diacylglycerol , AA arachidonic acid, 2-AG 2-
arachidonoylglycerol, AEA N-arachidonoylethanolamine (anandamide).
b Simplified representation of the two cerebellar synapses where CB1 is
the most highly expressed: the GC (PF) to PC and interneuron (basket or
stellate cell) to PC synapses. Postsynaptic calcium rise and mGluR1
activation both stimulate 2-AG mobilization from PCs. Although the

subcellular site of 2-AG release is unknown, it is likely to coincide with
DAGLα location, reported near the base of the spine neck [58]. The
action of 2-AG on CB1 is hypothesized to follow 2-AG insertion in the
cell membrane [115]. Quantitative immunogold labeling has revealed
contrasting features for CB1 expression in PF and interneuron terminals
[11] which are taken into account in the schematic diagram: CB1 is
preferentially found in axonal parts of PFs in contrast to its location in
synaptic boutons made by interneurons; CB1 is about six times more
concentrated in interneuron terminals [11]
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deletion studies that revealed the existence of other metabolic
pathways [48, 66]. The fact remains that NAPE-PLD has been
reported to be expressed in the cerebellar cortex [67], and its
function remains unclear. The pathway of anandamide degra-
dation is more solidly established (Fig. 1a): the role of fatty acid
amide hydrolase (FAAH) in the conversion of anandamide into
arachidonic acid and ethanolamine [68] has been confirmed by
gene deletion and pharmacology studies [48, 69]. High expres-
sion of FAAH in PC dendrites [62] suggests that anandamide,
in addition to 2-AG, is involved in cerebellar physiology.
However, to date, no physiological study has provided evidence
for a role of anandamide in the cerebellum.

Endocannabinoid Release from Purkinje Cells

In vitro electrophysiology experiments have demonstrated that
2-AG release can be triggered by depolarization-mediated cal-
cium transients in PC dendrites or by activation of type 1
metabotropic glutamate receptors (mGluR1) borne by PC
spines. The two effects synergize when wide beams of
densely packed parallel fibers (PFs, granule cell axons)
are activated (see below). Since “on demand”, increased
2-AG synthesis may cause its release and since the release
mechanism itself (i.e., transport across the cell membrane)
remains poorly understood [48], “mobilization” is used to
designate on demand synthesis and/or release [16].

Postsynaptic Calcium Rise

In acute cerebellar slices, depolarization of PCs through the
recording electrode at the soma can evoke short-term depres-
sion of GABA inputs onto PC [70]. This synaptic plasticity
mechanism, also found in other brain areas, was named
depolarization-induced suppression of inhibition (DSI; [71])
and was later extended to excitatory inputs onto PC:
depolarization-induced suppression of excitation (DSE;
[72]). In both plasticity mechanisms, postsynaptic depolariza-
tion mediates a presynaptic reduction in neurotransmitter re-
lease [70, 72]. This indicates the existence of signaling in the
opposite direction to information transfer: retrograde signaling
[16]. Endocannabinoids have been proposed to operate as
retrograde messengers [73]. Consistent with this hypothesis,
DSI and DSE have been shown to be blocked or occluded by
the CB1 antagonist AM251 or agonist WIN 55,212-2, respec-
tively [72, 74] (for a review on the DSI/DSE saga, see [75]).
More recently, the endocannabinoid mediating DSI or DSE
has been identified as 2-AG: DSI and DSE are abolished in
DAGLα knockout mice [56, 76], and strongly prolonged
when 2-AG degradation is inhibited by the highly selective
MAGL blocker JZL184 [64, 77].

DSI and DSE are both abolished by strong buffering of
postsynaptic calcium [70, 72], demonstrating that postsynap-
tic calcium rise is required to mobilize 2-AG. Calibration of
the depolarization-evoked calcium transients in PC dendrites
indicates that, while a brief (few seconds) Ca2+ transient must
reach 5 μM, a longer (15 s) transient only needs to reach 0.4–
1 μM to induce 2-AG release [78]. So, both the amplitude and
the duration of the calcium transient count. How does post-
synaptic calcium induce 2-AG mobilization? Is postsynaptic
calcium rise sufficient or is depolarization an additional re-
quirement? Are calcium microdomains required? Indeed, var-
ious sources of calcium coexist in PC dendrites [79, 80], and
they may exert specific effects depending on their
colocalization with calcium-sensing effectors. The effect of
caged-calcium photorelease and improved calcium channel
pharmacologywould be insightful to address these unresolved
issues.

The activities of PLCβ4 and DAGLα are modulated by
calcium [55, 81]. However, a role of PLCβ4 in DSI and DSE
has been ruled out by the lack of effect of acute PLCβ4 block by
U73122 [82] or PLCβ4 knockout [61]. DSI and DSE are
abolished in a DAGLα knockout [56] and DSI is blocked by
DAGL blockers [77, 82]. But the role of DAGLα in DSE
remains controversial. The DAGL blocker tetrahydrolipstatin
(THL; 2 μM) dialyzed into PCs through the patch pipette (to
avoid side effects on presynaptic CB1 receptors) has been re-
ported to be ineffective in blocking DSE [78, 83] while, in the
same experimental conditions, it blocked synaptically-induced
endocannabinoid release [83] (see below). A similar observation
was made with the other DAGL blocker RHC-80627 [83]. To
reconcile these data with the abolition of DSE in DAGLα
knockout mice, one might propose that depolarization stimulates
the release mechanism of “pre-formed 2-AG pools” [16, 84],
which would be depleted in DAGLα knockout animals. How-
ever, the effect of acute block of DAGLα has been re-evaluated
recently with the use of a blocker more specific than THL,
OMDM-188 [77]. In contrast to DSI, DSE was only partially
blocked following slice incubation with 2 μM OMDM-188,
complete block being obtained when using 5 μM [77]. Although
the pharmacological targeting of DAGL remains imperfect [85],
these recent data support the hypothesis that the effect of post-
synaptic depolarization and calcium rise on 2-AGmobilization is
mediated by an activation of DAGLα, i.e., the endocannabinoid
is synthesized on demand [5, 86].

Is DAGLα directly modulated by postsynaptic calcium?
The limited available data supporting such modulation by
calcium [55] reports a calcium concentration dependency
which does not match the physiological calcium changes oc-
curring in PC dendrites [78]. So, as for other parts of the brain,
the mechanism linking postsynaptic calcium to 2-AG mobili-
zation remains unclear [75]. Recently, an alternative pathway
for 2-AG synthesis has been suggested [87]. DSE has been
reported to be abolished in a cytosolic phospholipase A2
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(cPLA2) knockout or by acute cPLA2 block by AACOCF3
[87], suggesting a role for arachidonic acid (AA) metabolism in
PCs (Fig. 1a). In this study, the identification of 2-AG as the
retrograde messenger was confirmed by showing that dialysis
of PC cytoplasm with MAGL (to deplete 2-AG in PCs)
prevented DSE induction [87]. Future studies are required to
reconcile these data with the data supporting a role for DAGL
[56, 77] and establish a link betweenAA and 2-AGmetabolism
in PCs. 2-AG transport across the plasmamembrane, the mech-
anism of which is unknown [48, 75, 88], might also mediate the
modulation of 2-AG mobilization by calcium.

Depolarization-evoked endocannabinoid release has been
qualified as “global” since it affects all the synapses (including
the CF synapse) contacting the recorded PC [18]. A plasticity
mechanism similar to DSE can also be spatially restricted to a
region of the PC dendrites when large and non-propagating
calcium transients are elicited locally. Half of PFs are estimat-
ed to contact each PC they cross [89]. In typical experimental
protocols, beams of hundreds of adjacent PFs are stimulated
[90–92]. Such stimulation with tetanic stimuli (typically 10
pulses at 100–200 Hz) can evoke regenerative depolarization
in PC dendrites, identified as calcium spikes, which do not
propagate and remain localized to a few branchlets [93]. The
stimulation threshold to evoke these calcium spikes has been
found to be identical to that evoking short-term depression of
glutamate release [93], a posttetanic depression (PTD; [91]),
with a time course similar to that of DSE and abolished by
AM251 [90, 93, 94]. This endocannabinoid-mediated PTD is
abolished by knockout or acute block of DAGL [56, 77, 83],
and is strongly prolonged in the presence of JZL184 [95],
indicating that it is mediated by 2-AG. Similarly to the “glob-
al” DSE produced by depolarization of the entire dendrites,
this spatially localized PTD is abolished by chelation of post-
synaptic calcium [90, 93]. In addition to postsynaptic calcium,
tetanic stimulation of PF inputs activates mGluR1 receptors,
which also induce 2-AG release from PCs.

Postsynaptic mGluR1 Activation

The activation of mGluR1 by its specific agonist DHPG in-
duces negligible postsynaptic calcium changes compared to
those evoked by depolarization. However, DHPG induces a
transient depression of PF, CF, and interneuron inputs, shown to
be endocannabinoid-mediated [61, 94, 96, 97]. Thus, mGluR1
activation is sufficient to trigger endocannabinoid release. Since
burst stimulation of beams of PFs activates mGluR1s [94, 98],
which are highly expressed in PC spines [58, 99], their role in
PTD is expected.

The discovery of PTD at PF synapses [91] was soon
followed by the demonstration that it was mediated by
endocannabinoid retrograde signaling [56, 90, 94, 95, 100].
In addition to being abolished by postsynaptic calcium

chelation [90, 93], this PTD has been reported to be partially
blocked by mGluR1 antagonists [91, 93, 95]. To date, it
remains unclear whether the relative dependencies on post-
synaptic calcium transients and on mGluR1 activation vary
depending on conditions (stimulation strength, animal age,
temperature, sub-location within the molecular layer,
neuromodulation, PC activation state…). Nevertheless, a syn-
ergetic effect of postsynaptic calcium and mGluR1 activation
has been demonstrated (see below; [61, 101]). Themechanism
downstream of mGluR1 activation involves PLCβ4, the sup-
pression of which abolishes the endocannabinoid-mediated
PTD [61]. Thus, in PTD, “on demand” synthesis not only
involves the modulation of DAGL (as in DSI or DSE), but
also the modulation of the upstream step, DAG formation by
PLCβ4.

Burst stimulation of PFs also evokes transient
endocannabinoid-mediated depression of CF inputs [96],
and inhibitory inputs [97, 102, 103]. The mechanisms of these
heterosynaptic PTDs have been less thoroughly investigated.
Although the subcellular DAGL localization [58] suggests
that 2-AG might spill over micrometers in the extracellular
space before reaching presynaptic CB1 (Fig. 1b), diffusion of
the postsynaptic effects of PF synapse activation (extracellular
glutamate spillover, postsynaptic calcium rise, increased DAG
production, 2-AG diffusion in PCmembranes) may also cause
heterosynaptic 2-AG mobilization. Indeed, the stimulation of
beams of PFs is required (see below), a situation activating
clusters of PF synapses, enhancing postsynaptic calcium
transients [93] and glutamate spillover effect on mGluR1
activation [94].

The Effect of CB1 Activation

The overall effect of presynaptic CB1 activation is a decrease
in neurotransmitter release probability. Bath-applied CB1 ag-
onists have been shown to increase paired pulse facilitation
and coefficient of variation (which are generally considered to
correlate negatively with release probability) of GC to PC
transmission [104] and to reduce basal spontaneous inhibitory
postsynaptic current (IPSC) frequency [105]. Furthermore, the
effect of CB1 agonists on PF stimulation-evoked presynaptic
calcium transients and excitatory postsynaptic current (EPSC)
size is consistent with the predicted reduction in EPSC size
arising solely from alterations in action potential-driven pre-
synaptic Ca influx [106]. In DSI, similarly evoked at synapses
made by stellate cells or basket cells [7], the CB1-mediated
endocannabinoid action reduces GABA release by at least two
mechanisms. The reduction of miniature IPSCs (recorded in
the presence of TTX) demonstrates an effect on vesicular
release [7, 107]. Additionally, in absence of TTX, an effect
on the interneuron spontaneous firing rate has been reported
[107, 108]. This effect may be caused by CB1-mediated
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activation of a G protein-activated inward rectifier potassium
channel [108] (Fig. 1b). In DSE and endocannabinoid-
mediated PTD, CB1-mediated increase in paired pulse facili-
tation and reduction in action potential-driven presynaptic
calcium transient are consistent with depression being entirely
mediated by inhibition of presynaptic calcium signaling [72,
90, 95].

The mechanism linking CB1 activation and neurotransmit-
ter release has been investigated in most detail for PF synap-
ses, which can be readily bulk loaded with calcium dyes due
to their geometrical organization in transverse slices. The
mechanism has been proposed to involve inhibition of pre-
synaptic potassium channels [109, 110]. However, this would
be expected to affect the presynaptic action potential wave-
form. The lack of detectable change in the PF volley (an
indirect measurement of the presynaptic action potential
waveform) or in presynaptic calcium influx kinetics argues
against this hypothesis [104, 106, 109]. Instead, current data
are consistent with pertussis toxin-sensitive G protein-
mediated inhibition of presynaptic voltage-operated calcium
channel, irrespective of their type (P/Q, N, or R) [106, 110].

Amplitude and Time Course of Endocannabinoid Effects

DSI, DSE, and endocannabinoid-mediated PTDs amplitudes
reach 85 % [7], 85–95 % [83, 103], and 80–85 %, respectively
[93, 94], while external application of saturating WIN 55-212
concentration reduces interneuron-evoked IPSCs and PF-
evoked EPSCs and by up to 90 % [7, 105, 106]. These
reductions in neurotransmitter release are comparable in ampli-
tude, suggesting that mobilized 2-AG reaches saturating con-
centrations in the vicinity of presynaptic CB1 receptors. DSE,
DSI, and endocannabinoid-mediated PTD are short-term and
their time courses are similar, consistent with beingmediated by
similar mechanisms. The depression peaks 5–20 s following the
beginning of the stimulus and synaptic transmission recovers in
20–90 s [7, 64, 72, 74, 77, 82, 83, 87, 90, 93, 94, 103, 111, 112].
The time course of recovery is complicated by the occurrence
of overlapping longer-term depressions [95, 111] and its depen-
dence on temperature [108]. The use of the specific MAGL
blocker JZL184 significantly prolongs the endocannabinoid-
mediated PTD [95] but also delays the peak of the effect,
suggesting that 2-AG mobilization is a slow process and that
the time course of the 2-AG-mediated depression results from a
balance between 2-AG mobilization and degradation.

Spatial Specificity of Endocannabinoid Effects

DSI spreads to synapses contacting non-depolarized PCs up to
75 μm away from the depolarized PC [113]. This spatial

spread of DSI has been shown to be mediated by a decrease
of spontaneous interneuron firing [108, 113]. It is absent
in TTX. Thus, it does not reflect the spread of extracel-
lular endocannabinoid diffusion. Simultaneous whole-cell
recording from nearby PCs has enabled to detect some
spread of the DSE produced in one PC to synapses on the
neighboring PCs, at room temperature. However, at near
physiological temperature, in contrast to DSI, no spread
of DSE could be detected [108]. The limited spread of
extracellular endocannabinoid diffusion is best demon-
strated for PTD. When the PC is dialyzed with the calci-
um buffer BAPTA and the irreversible G protein inhibitor
GDP-βs, the endocannabinoid-mediated PTD is prevented
[90]. This lack of PTD, despite the fact that the induction
protocol (stimulation of wide PF beams) presumably in-
duces 2-AG release from neighboring (not dialyzed) PCs
in the slice, has been interpreted as the evidence that 2-
AG signaling is highly spatially restricted [90]. Assuming
that postsynaptic internal BAPTA and GDP-βs do not
interfere with presynaptic CB1-mediated signaling, and
that a large fraction of PCs are preserved in the slice,
these data suggest that diffusion of 2-AG does not spill
over to synapses on adjacent PCs. This is not unexpected
given the propensity of 2-AG to bind nonspecifically to
cell membranes due to its hydrophobicity [114, 115].
However, a quantification of the spread of endocannabinoid
effects over a scale corresponding to the actual distance be-
tween synapses is lacking [75]. The average distance between
neighboring PF synapses is about 1 μm, with on average 17
spines per linear micrometer of spiny branchlets [14]. Further-
more, DAGL is preferentially localized at the base of dendritic
spine necks [58], a location equidistant to several nearest
presynaptic boutons (Fig. 1b). Unless newly synthetized 2-
AG is transported to the spine head before being released, the
DAGL location suggests that 2-AG signaling is not spatially
restricted enough to achieve synapse specificity (i.e., 2-AG
mobilized by the stimulation of one bouton cannot act solely
on CB1 borne by this same bouton).

This spatial specificity issue is important to address if
we are to understand the function of 2-AG signaling. It is
generally accepted that the GC to PC synapse is a site of
information storage [17]. Independent operation of neigh-
boring synapses is predicted to maximize the information
storage capacity [116], and the GC to PC synapse appears
ideally designed to operate independently from its neigh-
bors as it is tightly wrapped by Bergmann glia processes
expressing high density of glutamate transporters which
help to prevent the glutamate spillover to neighboring
synapses [117, 118]. On these theoretical grounds, synap-
tic plasticity mechanisms mediating information storage
might be expected to be synapse-specific. The lack of
synapse specificity of 2-AG signaling would argue for a
role which might be more homeostatic. Alternatively, it
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would suggest that the information storage unit is larger
than the single spine.

Physiological Relevance of 2-AG-Mediated Short-Term
Plasticity

DSI and DSE are robust synaptic plasticity mechanisms, which
revealed the operation of the endocannabinoid system as a
retrograde signaling mechanism at central synapses, and are
expected to be useful to continue to explore how 2-AG is
mobilized. DSI and DSE are achieved with cesium-based in-
tracellular media in order to improve voltage-clamp and en-
hance the spread of the depolarization from the soma to distal
parts of the PC dendrites.What is the physiological relevance of
these plasticity mechanisms? Their dependence on
endocannabinoids may depend on postnatal development
[111]. Besides, they are evoked by sustained postsynaptic de-
polarization, the physiological correlate of which is unclear. CF
activation evokes depolarization spreading to distal parts of the
dendritic tree [80, 119]. However, endocannabinoid release has
not been reported to be induced by CF stimulation, unless
postsynaptic calcium changes are enhanced by experimental
manipulations, like the block of calcium-activated potassium
channels [93]. Only sustained CF stimulations at more than
5 Hz, the physiological relevance of which remains to be
shown, has been reported to induce endocannabinoid-
mediated inhibition of interneuron inputs [120]. The observa-
tion that 2-AG release occurs in depolarized states of PCs
(bursting mode) [78] only shifts the question: does the burst
mode occur in vivo [121–123]? Thus, the physiological rele-
vance of this depolarization-evoked endocannabinoid release
producing a “global” reduction of neurotransmitter release at all
synapses on PCs remains unclear.

In vivo, GCs have been reported to fire in short high fre-
quency bursts [124, 125] similar to those required to induce the
endocannabinoid-mediated PTD. However, experimental in-
duction critically depends on the spatial pattern of the input
(Fig. 2a–d) [94, 100]. Traditionally, GC to PC synaptic trans-
mission is studied in acute cerebellar slices by stimulating PFs
in the molecular layer (Fig. 2a). This configuration leads to the
stimulation of hundreds of adjacent parallel fibers [92]. The
geometric architecture of the cerebellar microcircuit enables
comparison of this dense pattern of synapse activation with
sparse patterns obtained by stimulation in the granular layer
[92] (Fig. 2b). These sparse patterns do not include synapses
made by GC ascending axons when the stimulating pipette is
sufficiently far from the PC sagittal plane [100]. To date,
endocannabinoid-mediated PTD has never been observed for
spatially sparse patterns of synapse activation [92, 94, 95, 100,
102, 103], even when PF stimulation is paired with CF stimu-
lation [94] (Fig. 1c, d). Our recent data based on the mapping of
PF input using an optogenetic approach indicate that, in young

mice, a density of activated PF larger than 3 μm−2 in the sagittal
plane is required to reliably induce endocannabinoid-mediated
PTD [92]. Dense input leads to enhanced postsynaptic calcium
transients [93] and glutamate spillover effects (mGluR1 activa-
tion) due to local saturation of glutamate transporters [94, 117].
Both effects are expected to enhance 2-AG mobilization.

The in vitro observation of the PTD dependency on the
spatial pattern of inputs raises questions about its physiolog-
ical occurrence. A PC receives more than 100,000 PF inputs.
Considering that about 90% of themmay be silent and that no
more than 200 non-silent synapses need be activated simulta-
neously to evoke a postsynaptic action potential [126], a
physiological input is unlikely to involve more than 2000
simultaneously firing PFs, i.e., less than 2 % of the PFs
contacting the PC. If homogeneously distributed, 2 % of
inputs would correspond to an average input density of
0.12 μm−2, which is too low to enable the induction of
endocannabinoid-mediated PTD [92]. However, random dis-
tributions of these inputs are expected to include clusters of
PFs which are, by chance, in close proximity [92]. Further-
more, data based on in vivo mapping of PF firing following
their bulk-loading with a calcium dye suggest that physiolog-
ical stimuli produce spatially clustered inputs [127]. Thus,
dense PF input may occur in physiological conditions. The
2-AG-mediated PTD resulting from such occurrence would
be an efficient homeostatic mechanism which, by reducing
glutamate release, would downregulate glutamate spillover
effects and promote independent operation of neighboring
synapses, thereby maximizing the storage capacity of the
cerebellum [94, 116]. 2-AG-mediated PTD has been shown
to reduce glutamate spillover effects following the activation
of synapses in close proximity (Fig. 2e) [94]. This homeostatic
function is further supported by the lack of synapse specificity
of 2-AG signaling: its synthesis site is equidistant to several
presynaptic terminals and 2-AG release requires a large num-
ber of neighboring synapses to be simultaneously activated
[94, 100].

Associative Plasticity

Similarly to sparse spatial inputs produced by granular layer
stimulation, weak molecular layer stimulation fails to evoke
endocannabinoid-mediated PTD [95, 101]. With weak molec-
ular layer stimulation, however, the PTD is rescued when the
PF tetanic stimulus is paired with CF stimulation [101]. This
associative property of the endocannabinoid-mediated PTD
can be explained by the synergic action of PF-mediated
mGluR1 activation and the CF-mediated calcium transient
propagating through the entire dendritic tree [61]. This syner-
gistic effect does not appear to be sufficient to induce
endocannabinoid-mediated PTD for the very sparse spatial
pattern of PF firing produced by granular layer stimulation
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[94] (Fig. 2d). However, the CF-evoked calcium transient
is a highly modulated process, which is compromised in
standard in vitro conditions [80]. Future work taking into
account this modulation may reveal the occurrence of
associative 2-AG-mediated PTD for sparse spatial pat-
terns of PF firing, like the ones obtained with granular
layer stimulation.

Long-Term Plasticity

The best-characterized associative plasticity mechanism at PF
synapses is long-term depression (LTD) [17, 128]. Although
the protocol traditionally used to induce LTD has been 1 Hz
repetitive pairing of CF stimulation with single or double PF
stimulation [129, 130], the pairing with short PF bursts has
also proved effective [83, 131]. Since PF bursts induce 2-AG
mobilization, a role of 2-AG signaling might be expected.
Strikingly, LTD induced by such protocols has been shown

to be prevented in CB1 knockout mice, or in the presence
of AM251 or THL [83]. Unexpectedly, LTD induced by
the standard protocol using single PF stimulation (which
does not induce 2-AG mobilization) is similarly prevented
in CB1 knockout or in AM251 [83]. These data suggest
that LTD induction requires CB1 activation but not phasic
2-AG mobilization. Tonic CB1 activation may be re-
quired. Selective CB1 gene deletion in GCs has been
reported to similarly prevent LTD induction [132],
confirming that CB1s required for LTD induction are on
PF boutons, despite the well-established postsynaptic ex-
pression of LTD [128]. However, these findings are in-
consistent with previous report showing a lack of effect of
SR141716A (a CB1 antagonist, more potent than AM251)
on LTD induction [104]. Thus, the involvement of 2-AG
signaling in LTD may depend on experimental conditions.
Furthermore, the role of 2-AG remains to be tested for
sparse GC inputs which may require different protocols
for LTD induction [100].

c d
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e

Fig. 2 Cerebellar endocannabinoid signaling dependence on spatial
pattern of PF synapse activation. a Spatial pattern of PF activation by
molecular layer stimulation (ML stim) in a sagittal slice. Schematic
diagram showing the position of the stimulation electrode, expected to
stimulate a beam of PFs perpendicular to the sagittal (x,y) plane. Image of
fluorescence change evoked byML stimulation in a sagittal slice obtained
from a mouse expressing the genetically encoded calcium indicator
GCaMP2 selectively in granule cells [92]. This fluorescence change is
produced by stimulation-evoked presynaptic calcium rise. It maps, in the
sagittal (x,y) plane, the section of the beam of adjacent stimulated PFs. b
Spatial pattern of PF activation by granular layer stimulation (GL stim) in
a sagittal slice. The stimulation electrode is positioned within the GL. The
stimulation-evoked change of fluorescence detected in the ML, in the
sagittal (x,y) plane, consists in isolated dots detected over the noise
threshold (insets). This mapping of PF activation demonstrates the spa-
tially scattered distribution resulting from GL stimulation, as predicted

previously [94]. c Endocannabinoid-mediated PTD. Electrophysiological
traces illustrating the PTD observed at GC to PC synapses 2 s following
stimulation of the same synapseswith a burst of 10 stimuli at 200Hz. This
PTD is readily observed forML stimulation, but not for GL stimulation. d
Time course of endocannabinoid-mediated PTD obtained for ML stimu-
lation (black symbols). GL stimulation produces instead a posttetanic
potentiation (red symbols). The pairing of GL stimulation with CF stim-
ulation does not rescue the PTD (open triangles) [94]. e Downregulation
of glutamate spillover effects following endocannabinoid-mediated PTD.
In voltage-clamped PCs, ML stimulation with short burst (4 pulses at
200 Hz) evokes a fast AMPA receptor-mediated EPSC followed by a
slow mGluR1-mediated EPSC which little overlap. The slow EPSC
detection strongly correlates with the amount of glutamate spillover effect
[94]. Following endocannabinoid-mediated PTD induction, the slow
EPSC is undetectable, indicating strong reduction of glutamate spillover
effects [94]
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Recently, 2-AG signaling has also been reported to be
required for postsynaptic long-term potentiation (LTP) at
GC to PC synapses [133]. Stimulation of PFs at 1 Hz for
5 min induces an LTP expressed postsynaptically [129,
134]. This LTP is blocked by AM251, suggesting that it
requires presynaptic CB1 activation [133]. The LTP was
prevented when the recorded PC was dialyzed with
0.7 μg/ml MAGL, supporting the hypothesis that LTP
induction requires 2-AG originating in PCs [133]. In the
absence of data indicating that PF firing at 1 Hz promotes
2-AG mobilization (PF bursting is normally required), the
results by [133] suggest that LTP induction requires tonic
2-AG release from PCs. As for LTD [132], the mechanism
translating presynaptic CB1 activation into changes in
postsynaptic strength remains to be investigated.
Endocannabinoids having also been shown to be required
for presynaptic LTD induction [135, 136], their role in
modulating long-term plasticity at the GC to PC synapse
appears central and complex.

Endocannabinoid Tone

If there was an endocannabinoid tone, CB1 antagonists by
themselves would be expected to affect synaptic transmission
at synapses expressing CB1. The application of AM251 alone
on acute rat cerebellar slice has been reported to increase the
firing frequency of interneurons [108]. This effect was not
observed in another study using the antagonist SR141716A
[137]. AM251 has also been reported to produce a small but
significant increase in the amplitude of evoked IPSCs [97].
Furthermore, SR141716A and AM251 have been reported to
produce 20 and 50 % increases in mIPSC frequency in P9-14
and P21-35 mice, respectively [138, 139]. Overall, these data
suggest that there is tonic activity of CB1 on interneurons,
which could be due to constitutive activity of CB1 or to an
endocannabinoid tone. The lack of reported effect of CB1
antagonists on excitatory transmission onto PCs suggests either
that CB1 borne by excitatory terminals are less constitutively
active or that excitatory terminals express less CB1 proteins. In
this latter hypothesis, supported by quantitative immunocyto-
chemistry [11], tonic CB1 activation would be mediated by a
low endocannabinoid tone, the effect of which would be more
readily detected at terminals expressing high quantities of CB1.

The hypothesis of a 2-AG tone is supported by the obser-
vation that SR141716 induces an increase in baseline EPSC
amplitude in MAGL knockout mice [64]. In wild-type ani-
mals, this 2-AG tone may be tuned by modulation of 2-AG
synthesis, release, uptake, and degradation. This tone might
explain how CB1 activation is involved in long-term plasticity
induction while the stimulation protocols used do not produce
any detectable phasic 2-AG-mediated effects. A contribution
of anandamide to this tone remains to be investigated in the

light of the report of a daily temporal change in FAAH
activity in the mouse cerebellum [140]. Furthermore,
the endocannabinoid tone may vary with postnatal de-
velopment, as suggested by the effect of MAGL gene
deletion on DSE, which was not detected at P10-14,
but was at P20-25 [64].

Concluding Remarks

In 1990, binding studies using radiolabeled cannabinoid
revealed strikingly high CB1 expression in the cerebel-
lum [4]. In 2001, retrograde endocannabinoid signaling
at synapses onto Purkinje cells was demonstrated [72].
Thirteen years later, 2-arachidonoylglycerol has been
identified as the endocannabinoid mediating this retro-
grade signaling, the roles of postsynaptic DAGL and
presynaptic MAGL have been established [56, 64, 77].
Despite a large amount of work exploring the mecha-
nism of this retrograde signaling, key issues remain
unsolved. As in other parts of the brain, it is unclear
how postsynaptic calcium triggers endocannabinoid mo-
bilization. In the cerebellar cortex specifically, it re-
mains unclear whether physiological patterns of activity
(PC depolarized states, CF or GC synaptic transmission)
can actually induce endocannabinoid mobilization. Data
on long-term plasticity even suggest that what matters is
CB1 tonic activation.

The strong dependency of endocannabinoid signaling
on the spatial pattern of GC to PC synaptic activation has
led to the proposal that endocannabinoid-mediated de-
pression of transmitter release could be homeostatic,
downregulating excessive glutamate release arising from
dense spatial pattern of synapse activation, thereby reduc-
ing glutamate spillover effects and promoting independent
operation of neighboring synapses [92, 94, 95, 100]. This
hypothesis would be challenged if experiments were to
demonstrate endocannabinoid release induced at individ-
ual, spatially isolated, GC to PC synapses. In vivo ap-
proaches would help to meet physiological conditions.
Alternatively, in acute slice models, one needs to control
the spatial pattern of synapse activation and take into
account modulation of dendritic electrogenesis [80] and
the role of neuromodulators like monoamines [95].
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