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Abstract On average, 30% of patients with myelodysplastic
syndrome (MDS) develop overt acute myeloid leukemia
(AML) during the course of the disease. There is a continuous
search for the best model of individual risk assessment for
MDS patients. In this review, we summarize current findings
on factors that have been associated with increased risk of
AML transformation. These include laboratory values such as
high lactate dehydrogenase levels, complex karyotypes,
numbers and aberrant immunophenotype of bone marrow
blasts, bone marrow-related features such as numbers and
distribution of CD34+ cells, and recently establishedmolecular
markers. A wide range of described molecular aberrations in
MDS, including various gene mutations, chromosomal insta-
bility, short telomeres, high levels of gene methylation, and
histone modification, partly explains clinical heterogeneity of
this disease. Continuous research will bring more insight in the
pathogenesis of various MDS categories, making individual
risk assessment and tailored therapy for each patient possible.

Keywords Myelodysplastic syndromes . Acute myeloid
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Leukemogenesis

Myelodysplastic syndromes (MDS) are a heterogeneous
group of clonal stem cell disorders characterized by an
extremely variable clinical course ranging from indolent
disease with only minimal impact on survival of elderly
patients to a very aggressive course with quick progression to
acute leukemia [1]. On average, 30% of MDS patients
develop overt acute myeloid leukemia (AML) during the
course of the disease. The World Health Organization
(WHO) classification identifies several MDS subtypes with
a variable risk of AML transformation [1–3] (Table 1). There
is a continuous search for the best model of individual risk-
assessment for MDS patients. Several risk-related factors
have been described, including clinical features, laboratory
values, cytogenetics, bone marrow-related features, and
recently established molecular markers [2, 4–8].

Mechanisms of disease progression and transformation from
a chronic MDS phase to a more aggressive AML phase are still
poorly understood. A mechanism based on an accumulation of
cytogenetic and molecular aberrations during the course of
disease, following a multi-step model of leukemogenesis, has
been proposed (Fig. 1) [8]. However, most recently detected
molecular changes occur only in a fraction of MDS patients
and no universal molecular mechanism has as yet been found.
The balance between apoptosis and proliferation within
hematopoiesis, host-response related features, and stroma
defects seem also to play a role.

In the following review, we summarize current findings
from clinical, laboratory, morphological, phenotypical,
immunopathological, cytogenetic, and molecular research
as related to the transformation from MDS to AML.

Prognostic scoring systems and assessment of risk
for MDS–AML transformation

The International Prognostic Scoring System (IPSS),
published in 1997, was based on the percentage of blasts
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in the bone marrow (BM) smear, number of cytopenias
(defined as hemoglobin (Hb) levels less than 10 g/l, an
absolute neutrophil count (ANC) of less than 1.5×109/L,
and a platelet count of less than 100×109/L), and
cytogenetic findings [5]. The IPSS could be applied to
predict risk of AML transformation; 19% of low-risk
patients, 30–33% of intermediate-risk, and 45% of high-
risk patients died of AML in the primary cohort of
Greenberg et al. [5] (Table 2). The clinical significance of
IPSS has been verified in several studies [9–11] that also
found IPSS to be of high predictive value for AML
transformation [12]. Germing et al. [2] reported in 2005

that the addition of the lactate dehydrogenase (LDH) level
to IPSS improved its prognostic value. MDS patients with
elevated LDH had significantly higher risk of AML
transformation. Malcovati et al. [6] proposed a prognostic
scoring system based on the WHO2001 classification of
MDS, cytogenetic findings, and transfusion requirements
(WPSS). The WPPS defined five risk categories where very
low-risk patients had only a 3% cumulative probability of
AML transformation within 2 and 5 years, and for very
high-risk patients, the respective probability was 80% and
84% (Table 2). The most recent MD Anderson prognostic
scoring system is also based on the percentages of BM
blasts and cytogenetics, but it does not take the WHO
categories into consideration [7]. This system introduces
other clinical data such as age, performance status, and
transfusion requirements and applies a more detailed
assessment of peripheral blood values, i.e., Hb, white blood
cell count, and platelet levels. The MD Anderson system
identifies low-risk patients in the IPSS high-risk group and
patients with poorer survival within the IPPS low-risk
group. However, no data concerning the assessment of the
risk of transformation has been presented. Age ≥65 is
considered as an adverse prognostic factor by the MD
Anderson system. However, Nösslinger et al. [13] reported
that within the IPSS high-risk category, women <65 years
of age had the worst prognosis.

Morphological and immunophenotypic features related
to disease progression in MDS

All above-mentioned prognostic scores include the number
of BM blast evaluated in BM smears as a significant
prognostic factor for AML transformation risk (Table 2).
An arbitrary limit of 5% blasts has been used to define

Fig. 1 Two-hit model of trans-
formation from MDS to AML.
Class I targeted genes are in-
volved in signal transduction,
while mutations in Class II
genes affect transcription
factors. Both Class I and Class
II mutations can also lead to
de novo AML [8]

Table 1 Risk of AML transformation in myelodysplastic syndromes
classified according to the WHO 2008 classification [2, 3]

MDS category Frequencya

(%)
Risk of AML
transformation
(%)

Refractory cytopenia with unilineage
dysplasia (RCUD)

9.5

Refractory anemia (RA) 63b 8

Refractory neutropenia (RN) 18b 17

Refractory thrombocytopenia (RT) 19b 4

Refractory anemia with ring
sideroblasts (RA-RS)

3.5 0

Refractory cytopenia with
multilinegae dysplasia +/−RS
(RCMD±RS)

49 8–10

Refractory anemia with excess
of blasts 1 (RAEB-1)

15 16

Refractory anemia with excess
of blasts 2 (RAEB-2)

17 32.2

del(5q) 6 10

a Percent of MDS patients in [2]
b Percent of patients with RCUD in [3]
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patients with refractory anemia with excess of blasts
(RAEB) [1, 14]. A recent Chinese study indicated that
refractory cytopenia with multilineage dysplasia (RCMD)
patients with >3.5% blasts may have worse outcome [15].

Knipp et al. [16] reported the prognostic significance of
increased peripheral blasts in patients with <5% BM
blasts. Patients (16.2%) with at least 1% peripheral blasts
suffered AML transformation by comparison to 6.8% of
patients with less than 1% blasts in blood. Therefore,
patients with ≥1% peripheral blasts have been included in
the RAEB category in the 2008 WHO classification [1].
Several studies indicated that patients with multilineage
dysplasia had a higher risk of AML transformation
compared to those with unilineage dysplasia, which in
part may be related to the higher incidence of multi-
lineage dysplasia in patients with chromosomal changes
[3, 17–19].

Aberrant phenotypes in BM blast population such as
expression of lymphoid-associated markers CD7 (Fig. 2),
CD4, and CD56 have been more often seen in MDS in
transformation [20]. The aberrant expression of CD7 [20],
overexpression of CD34 and CD36 [21], expression of Tdt
[22], and the accumulation of phenotypic aberrancies, so
called high flow score [23], have also been associated with
the progression of disease in MDS.

Table 2 Prognostic scoring systems and risk of AML transformation
in MDS

Prognostic scoring
system

Risk category 5-year risk of AML
transformation (%)

IPSS [5] Low 20

IPSS Intermediate-1 35

IPSS Intermediate-2 35

IPSS High 100

WPSS [6] Very low 3a

WPSS Low 14

WPSS Intermediate 33

WPSS High 54

WPSS Very high 84

a In validation cohort in[6]

Fig. 2 Example of an emerging
pathological blast population
demonstrated by flow cytometry
in a bone marrow from MDS
patient. CD34+ cells are gated on
CD34/Side scatter plot (upper
right). Lower left plot shows that
the population of CD34+ blasts
partly displays an aberrant
expression of CD7 (red dots).
These cells can be found in the
blast region (CD45 dim, left
upper plot) and are only weakly
CD33 positive (right lower plot).
CD34+ CD7+ cells are not pos-
itive for CD56, but there is an
increased CD56 expression in a
subpopulation of granulopoietic
precursors (right lower plot)
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The extent of blast infiltration has also been studied in
BM biopsies by morphology and by CD34 immunohisto-
chemistry (Fig. 3) that helps to evaluate topographic
distribution of blasts [24–26]. Presence of abnormally
localized immature precursors (ALIPs) and clusters of
CD34 positive cells significantly increased risk of AML
transformation, independent of IPSS. ALIPs and CD34
clusters were more often seen in MDS patients with RAEB.
Causes of deaths in MDS patients who displayed CD34+
clusters were mostly related to leukemic transformation.
The increased expression of CD34 in megakaryocytes was
reported as a negative prognostic factor [27]. Clusters of
CD117+ cells have also been described as ALIPs, but their
significance in relation to AML transformation has not yet
been determined [28].

Patients with high BM cellularity have a higher risk of
transformation when compared to those with hypoplastic
MDS [29]. Significant fibrosis detected by reticulin staining
of BM biopsies from MDS patients also indicates an
increased risk of AML transformation, independent of
other variables [26, 30]. Literature data concerning a
possible role of BM stroma-related factors in MDS–AML
transformation is scarce. A variety of stromal defects may
be present in various MDS subgroups, and some of these
may facilitate transformation to AML [31]. Recent studies
have shown that stromal factors can increase the suscepti-
bility of stem cells to apoptosis in some MDS patients [32].
Fibroblasts derived from some MDS marrows, produced
significantly higher levels of interleukin-6 (IL-6) and tumor
necrosis factor-α (TNF-α). Macrophages from these MDS
patients produced significantly higher levels of TNF-α than
their normal counterparts [33]. Other MDS patients may
have normal BM stroma. Since it has been demonstrated
that following successful transplantation, fibroblasts
(stroma cells) remain of host origin [34], MDS patients
with normal BM stroma may have better chance to
respond well to stem cell transplantation [35]. In MDS
patients with del(5q), bone marrow stroma shows a

decreased capacity to support hematopoiesis, which could
be reversed by lenalidomide treatment [36].

Also, aberrant expression of vascular endothelial
growth factor (VEGF) has been demonstrated in ALIPs
of BM biopsies taken from MDS patients. It has been
suggested that VEGF may provide signals reinforcing
leukemia cell survival and this way contribute to
transformation [37].

Cytogenetics

There is a consensus in the literature that complex
karyotypes characterize a group of MDS patients with poor
prognosis and a high-risk of transformation to AML
[reviewed in [38]]. Most prognostic scoring systems
consider MDS patients with three or more cytogenetic
abnormalities within the same clone as having a complex
karyotype while patients with five or more abnormalities
are considered as a poor prognosis category in Medical
Research Council AML trials. Within the group of MDS
patients with complex karyotype, monosomal karyotype
defined as the presence of two or more distinct autosomal
monosomies or a single monosomy associated with a
structural abnormality was related to poorer prognosis and
shorter leukemia-free survival [39].

It has been shown that complex karyotypes arise by
stepwise accumulation of chromosomal changes and that
chromosomal instability of CD34+ population precedes
transformation to AML [40]. In the study of Bernasconi et
al. [41], 77% of sequentially tested MDS patients who
show cytogenetic evolution progress to AML in compari-
son to 30% of those patients without cytogenetic evolution.
In a recent large study of patients with 5q- abnormality,
there was a clear correlation between karyotype complexity
and the risk of transformation. Patients with isolated 5q-
had a 21.1% cumulative probability of AML evolution after
5 years, and patients with 5q-+1 abnormality had 57.6%
probability. Patients with 5q- and two or more aberrancies
had a 100% risk of transformation [42]. Also, it has been
shown that patients with del(5q) MDS who failed to
achieve sustained cytogenetic remission after treatment
with lenalidomide have an increased risk of clonal
evolution and AML transformation [43]. Most patients
who developed AML acquired complex karyotypes.

There was no similar correlation for patients with
abnormalities of chromosome 7, which at least in adults
carry a high risk of AML transformation, independent of
the presence of other abnormalities [38]. A high risk of
AML development in these patients may be related to up-
regulation of genes which have been implicated in leukemic
transformation, such as HOX9A, BRCA2, PRAME, BMI-1,
and PLAB. Other up-regulated genes included genes

Fig. 3 Increased numbers and pathological distribution of CD34 cells
in a bonemarrow fromMDS patient as shown by immunohistochemistry.
Original magnification ×20
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promoting cell proliferation, such as cell cycle regulator
SPHAR, the DNA replication check-point gene Rad17, and
signal transduction gene TPO [44].

Molecular mechanisms of transformation

Two classes of molecular changes play a role in the
development of MDS and transformation to AML
(Fig. 1). Class I targeted genes are mostly involved in
signal transduction and class II molecular changes affect
transcription factors (Table 3, reviewed in [8]). Class II
mutations [such as mutations of Tet2, RUNX1, or RSP14
haploinsufficiency in del(5q)] affect cellular differentiation
but are probably insufficient to induce AML transformation
but play a role in MDS initiation [45, 46]. Class I mutations
(such as Flt3, RAS, KIT, IDH1, and NPM1) affect cell
proliferation and survival and have been mostly found in
MDS patients at progression to AML [8]. When several
mutations were investigated in a cohort of MDS patients
and AML patients without a complex karyotype or
balanced translocation, mutations in the ASXL1 and CBL
genes were frequent in RAEB MDS patients. Mutations in
the TET2 gene were found both in MDS and in AML and
could be associated with either ASXL1 or NPM1 mutations
but not with a RUNX1 mutation. The latter could be
combined with mutations in the ASXL1 but not the NPM1
gene. Mutations in FLT3, IDH1, IDH2, NPM1, and WT1
were found mainly in AML patients [47]. However,
mutations of each of the above-mentioned genes occur
only in a relatively small fraction of MDS patients, which
points out the heterogeneity of the disease.

Overexpression of the Wilms Tumor gene (WT1) has
been reported in MDS [48]. Longitudinal studies have
shown that an increase in WT1 mRNA levels in blood was
a strong predictor of a short period of time to AML

transformation, independent of IPSS [49]. Interestingly,
patients with high levels of anti-WT1 antibody had a
significantly longer survival.

TP53 mutations have been mainly reported in high-risk
and therapy-related MDS and more often in patients with
complex karyotypes [50, 51]. An increased expression of
p53 protein as detected by the immunohistochemistry in
myeloid cells in the BM of MDS patients has been shown
to precede AML transformation [52] and to correlate with
TP53 mutations [53]. In a recent study using sensitive deep-
sequencing technology, small TP53 mutated populations
(median clone size 11%) could be demonstrated already at
the time of diagnosis in 18% of patients with del(5q) MDS
category [54]. These mutations were present years before
disease progression and were associated with an increased
risk of transformation to AML with 5-year cumulative
incidence of leukemic evolution: 77% and 24% in mutated
and un-mutated groups of patients, respectively. In patients
with TP53 mutations, small numbers of p53 strongly
positive cells in the BM could be demonstrated at diagnosis
and increased at the time of progression (Fig. 4), indicating
the expansion of TP53 mutated population [54]. These
results indicate that patients with early stages of MDS can
harbor sub-clones that can be resistant to therapy and give
rise to AML. The TP53 mutated patients did not achieve
complete cytogenetic response to lenalidomide, which
indicates therapy resistance. However, AML transformation
occurred also in patients without TP53 mutation, suggesting
other mechanisms of progression.

Global gene expression studies combined with detailed
annotated pathway analyses and gene oncology analyses
have identified multiple deregulated pathways in CD34+
hematopoietic stem cells in MDS patients [55]. In general,
the most down-regulated pathway in MDS was the Wnt
canonical pathway, which may lead to defective self-
renewal of hematopoietic stem cells. The most up-
regulated pathways were the “interferon signaling” path-
way, which may be responsible for cytopenia and the
“thrombopoietin signaling” pathway, which may be one of
the causes of megakaryocyte abnormalities and thrombo-
cytopenia. Major differences were found between low-risk
MDS cases where most deregulated pathways were related
to immune response and apoptosis and high-risk MDS
where the most deregulated pathways were related to cell
cycle check and DNA repair [55]. The results of this study
support a model for MDS in which immune deregulation
and apoptosis dominates in early MDS leading to ineffec-
tive hamatopoiesis while disruption of DNA damage check-
points and increased genomic instability characterize
advanced MDS leading to AML transformation (Fig. 5).

Another sign of genetic instability in MDS is reported
shortened telomere length, especially in patients with
complex cytogenetic abnormalities and advanced disease

Table 3 Some molecular changes implicated in increased risk of
AML transformation in MDS patients

Molecular
finding

Frequency
(% MDS patients)

Risk of AML
transformation

Reference

WT1 mRNA
in PB >102

46 40 [49]

IDH1 3.6 67 [82]

ASXL1 15 NE [83]

RUNX1 14 50 [45, 84]

Flt3 2–3 100 [85, 86]

RAS 9 75 [87]

KIT 1 Increased [88, 89]

NPM1 4 Not increased [86]

EV1 mRNA 29 Increased [90]
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[56, 57]. If telomeres reach a critically short length, they
may form dicentric chromosomes and undergo a break-
fusion-bridge cycle that may lead to further genomic
changes. A recent study applying the novel technique of
combining chromosome banding and T/C-FISH showed
that in MDS patients, telomere lengths were shorter in both
normal and aberrant metaphases [58]. These results suggest
that telomere shortening may be characteristic of all
hematopoietic stem cells in MDS or that telomere shorten-
ing may be a predisposing factor for development of MDS.
In MDS patients who accumulate further molecular changes
providing a proliferative advantage, clonal cells may
stabilize the aberrations by up-regulation of telomerase
activity or other telomere-elongating mechanisms [58].

Epigenetic mechanisms in MDS progression

Epigenetic changes have been recognized in the past decade
as major drivers prompting malignant phenotypes [reviewed
in [59]]. There are three general molecular mechanisms
carrying epigenetic information: DNA methylation, histone
modifications, and RNA interference. Aberrant DNA meth-
ylation is catalyzed by DNA methyltransferases and occurs
within “CpG islands” found in the promoter regions of

>50% of human genes. “CpG islands” are CpG dinucleotide-
rich regions with lengths of 4 kb or more. Hypermethylation
of CpG islands of tumor suppressor genes is probably a
progressive process that can confer a selective advantage for
the survival of the transformed cell [60]. In MDS, aberrant
methylation was seen in every studied BM sample, and the
number of methylated CpG sites was significantly greater in
high-risk MDS and MDS/AML in comparison to low-risk
MDS [61]. Five genes were hypermethylated in more that
70% of patients (ALOX12, GSTM1, HIC1, FZD9, and
HS3ST2). Of those, the FZD9 gene methylation was an
independent predictor of decreased survival. Clinical out-
come was poorest in patients with chromosome 7 deletion
and aberrant methylation of the remaining allele [61].
Another study reported that methylation of the CTNNA1
gene promoter was found in 31% patients with AML with
del(5q) but not in low-risk del(5q) MDS[62]. The CTNNA1
gene has been suggested as one of the candidate 5q tumor
suppressor genes. Thus, in cases of chromosomal deletion,
the aberrant DNA methylation of the remaining chromosome
may silence the remaining allele of a recessive tumor
suppressor gene and increase the risk of transformation.

Another target for methylation analysis in MDS is the
inhibitor of DNA binding/inhibitor of differentiation gene
(ID). The ID proteins form hetero-dimers with transcription
factors and act as the dominant negative inhibitors of gene
transcription [63]. Methylation of ID4, which is a putative
tumor suppressor gene, has been found in 35.1% of MDS
patients and patients with methylated ID4 progressed to
AML more rapidly that those without methylation[64].

Hypermethylation of the CDNK2B (p15INKAB) gene found
at diagnosis in patients with low-risk MDS has also been
strongly associated with AML transformation [65]. In a
recent study, a prognostic significance of a combination of
methylation profiles of ten selected genes was evaluated and
the high methylation score was shown to be an independent
predictor of shorter progression-free survival [66].

Histones are small proteins that form a core around
which DNA is wrapped, forming nucleosomes. The best
understood histone modifications are acetylation and
methylation of specific residues. Histone modifications
form a code that integrates gene activation/inactivation/
silencing signals, so that transcriptional activity of a
given promoter can be predicted by looking at the
specific histone modifications [59]. Specific studies of
histone modifications in MDS are rare, but mutations in
the EZH2 gene that codes for histone methyltrasferase at
chr.7q36.1 have been described [67]. There are a variety
of histone deacetylase (HDAC) inhibitors (HDIs) in
clinical trials as well as some drugs that can inhibit the
activity of histone methyltransferases [68, 69].

Fig. 4 Single cells with p53 overexpression are demonstrated by
immunohistochemistry in a bone marrow of a patient with del(5q)
MDS at diagnosis (upper panel). Virtually all bone marrow cells are
strongly p53 positive at the time of AML transformation (lower panel)
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Apoptosis and proliferation

Several studies have shown increased rates of programmed
cell death (PCD, apoptosis) in the BM of MDS patients
[reviewed in [70]]. Increased apoptosis, which exceeds
proliferation rate, is mainly considered as a characteristic of
the early-stage disease, while disease progression is
associated with a reduction in apoptosis [71]. Several
cytokines have been shown to be overexpressed in MDS,
including TNF-α, transforming growth factor (TGF)-β,
interferon (IFN)-γ, IL-6, and IL-1β [70]. TNF-α may be
produced by macrophages [72] and the levels of TNF-α in
BM plasma have been shown to correlate with pro-
apoptotic Fas expression and apoptosis [73, 74]. TNF-α
levels were lower in MDS patients with RAEB than in RA/
RA-RS, which suggests a decreased role of TNF-α at
progression. Other overexpressed molecules acting as
negative regulators of hematopoiesis in MDS include
FAS-ligand and TRAIL with their respective agonistic
receptors [70]. At progression, there is a shift of balance
in the signals and antiapoptotic/pro-proliferative signals
prevail, including increased expression of Bcl-2 (Fig. 5)
[71, 75].

Moreover, CD34+ BM cells from high-risk MDS patients
or at progression showed higher levels of NF-κB compared to
the early-stage of the disease. High NF-κB activity could lead

to up-regulation of FLIP (FLICE-inhibitory protein) and other
NF-κB dependent antiapoptotic regulators (such as Bcl-xL,
Bcl-2, XIAP) followed by increased resistance of CD34+ cells
to apoptosis in these patients [76].

Autoimmunity and host response

Several observations suggest that immune dysregulation
plays a role in the pathogenesis of low-risk MDS and
contributes to ineffective hematopoiesis in these patients. A
proposed model of immune pathogenesis implied that CD8
+ cells are stimulated by unique or overexpressed antigens,
which leads to T cell receptor repertoire contraction through
expansion of memory cells and repression of hematopoiesis
trough cross-reactive antigens expressed on normal BM
progenitors [77]. Both CD4 and CD8 subsets seem to be
dysregulated in MDS. In younger MDS patients, reduced
levels of naïve CD4+ T cells were associated with response
to immunosuppressive therapy [78]. It has been suggested
that loss of CD4+ cells in MDS may affect mainly
regulatory T cells (T-regs), which are important for
peripheral tolerance and prevention of an autoimmune
process, while the numbers of CD3+ CD4+ IL-17 producing
T cells were increased [79]. The levels of T regs in blood of
high-risk MDS patients were higher than in the low-risk

Fig. 5 Multiple mechanisms involved in transformation from MDS to AML
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group and the levels further increased in patients who
progressed to leukemia [80]. Also T-regs in patients with
advanced MDS retained their functional capacity in contrast
to T-regs from low-risk MDS patients that had a reduced
ability to suppress immune responses. Moreover, patients
with high-risk MDS have reduced natural killer (NK) cell
function and reduced expression of activating NK receptors
[81]. Thus, in high-risk MDS patients, impaired immune
surveillance may contribute to progression and leukemic
evolution.

Conclusions

Although great progress have been made in understanding
molecular pathogenesis of MDS, the exact defects that
make some patients quickly transform to aggressive and
usually therapy-resistant AML phase are often not clear and
are probably complex. Continuous research will bring more
insight in the pathogenesis of various MDS categories,
making individual risk assessment and tailored therapy for
each patient possible.
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