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Abstract
Metabolic reprogramming is a newly emerged hallmark of cancer attaining a recent consideration as an essential factor for the
progression and endurance of cancer cells. A prime event of this altered metabolism is increased glucose uptake and discharge of
lactate into the cells surrounding constructing a favorable tumor niche. Several oncogenic factors help in promoting this
consequence including, pyruvate kinase M2 (PKM2) a rate-limiting enzyme of glycolysis in tumor metabolism via exhibiting
its low pyruvate kinase activity and nuclear moon-lightening functions to increase the synthesis of lactate and macromolecules
for tumor proliferation. Not only its role in cancer cells but also its role in the tumor microenvironment cells has to be understood
for developing the small molecules against it which is lacking with the literature till date. Therefore, in this present review, the role
of PKM2 with respect to various tumor niche cells will be clarified. Further, it highlights the updated list of therapeutics targeting
PKM2 pre-clinically and clinically with their added limitations. This upgraded understanding of PKM2 may provide a pace for
the reader in developing chemotherapeutic strategies for better clinical survival with limited resistance.
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Abbreviations
ANGPT2 Angiopoietin 2
AKT Serine/threonine-specific protein kinase
ALCL Anaplastic large cell lymphoma
ALT Alanine aminotransferase
AMPK 5' AMP-activated protein kinase
ANGPTL4 Angiopoietin-like 4
AP-1 Activator protein 1
C/EBPβ CCAAT-enhancer binding protein β

CD4 Cluster of differentiation 4
COX-2 Cyclooxygenase-2
CTGF Connective tissue growth factor
CXCL8 C-X-C motif chemokine 8
DASA-58 Dihydro benzodioxin sulfonyl hexahydro

diazepin sulfonyl benzenamine
EGF Epidermal growth factor
EMT Epithelial–mesenchymal transition
ErbB3 Erb-B2 Receptor tyrosine kinase 3
ERK-5 Extracellular-signal-regulated kinase 5
FBP Fructose bisphosphate
FGF Fibroblast growth factor
FGFR1 Fibroblast growth factor receptor 1
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
GLUT-1 Glucose transporter -1
HCT-116 Human colon cancer cell line
HIF-1α Hypoxia induced factor-1 alpha
HK-2 Hexokinase-2
HMGB1 High mobility group box-1
IFN-ϒ Interferon-gamma
IL-10 Interleukin-10
IL-13 Interleukin-13
IL-1β Interleukin-1β
IL-4 Interleukin-4
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IL-6 Interleukin-6
JAK Janus kinase
JNK c-Jun N-terminal kinases
LDH Lactate dehydrogenase
LDH-A Lactate dehydrogenase-A
LOX Lysyl oxidase
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinases
MAP K-5 Mitogen activated protein kinase-5
MCT-1 Monocarboxylase transporter -1
MCT4 Monocarboxylate transporter 4
MDM2 Mouse double minute-2 homolog
miRNA-
124

MicroRNA-124

MMP Matrix metalloproteinase
MMP-2 Matrix metalloproteinase 2
mTOR Mechanistic target of rapamycin
NF-kB Nuclear factor kappa B
NK cells Natural killer cells
OXPHOS Oxidative phosphorylation
p53 Tumor protein p53
PD-1 Programmed cell death-1
PD-4 Programmed cell death-4
PDGF Platelet-derived growth factor
PDGF-BB Ligand for platelet derived growth factor

receptor
PGAM1 Phosphoglycerate Mutase 1
PGE2 Prostaglandin E2
PI3K Phosphoinositide-3-kinase
PIN1 Peptidyl-prolyl cis-trans isomerase
PTP1B Tyrosine-protein phosphatase non-receptor

type 1
ROS Reactive oxygen species
RT-PCR Real time-polymerase chain reaction
SAICAR Su c c i n o 5 - am i n o - 4 - i m i d a z o l e - N -

succinocarboxamide ribonucleotide
SDF-1 Stromal cell-derived factor 1
shRNA Small hairpin ribonucleic acid
siRNA Small interfering ribonucleic acid
SOD2 Superoxide dismutase 2
STAT3 Signal transducer and activator of transcription 3
TCA Tricarboxylic acid
TCR T cell receptor
TEPP-46 Thieno-pyrrole-pyridazine
TGFα Transforming growth factor alpha
TGFβ Transforming growth factor beta
TH-1 T helper cell-1
TIMP Tissue inhibitor of metalloproteinases
TNF-α Tumor necrosis factor-alpha
TRAF-5 TNF-receptor associated factor-5
US28 G-protein coupled receptor homolog US28
VEGF Vascular endothelial growth factor
vGPCR Viral G protein-coupled receptor

Introduction

Cancer, a dynamic disease which develops one in three people
during lifetime and considered as a major health burden to the
society across the worldwide. According to the National
Cancer Institute (NIH), roughly 1.7 million new cases will
be identified and 0.6 million people will perish with cancer
in the USA [1]. Typically, throughout the progression of a
disease, cancers become more variant due to their somatic
evolutionary changes [2] and this is referred as tumor hetero-
geneity which was explained by a pathologist, Rudolf
Virchow in 1800s [3]. Moreover, it has been considered as a
key element for the failure of classical and modern therapeu-
tics and offers multiple hindrances like chemotherapeutic re-
sistance [4] cancer pharmacogenomics [5] and development
of cancer stem-like cells [6]. It means the tumor shows the
existence of divergent tumors cells in terms of genetic and
phenotypic patterns within the subpopulations of same histo-
pathological types of cancer in different patients or within
tumors that show divergent biological behavior and metastatic
potential [7, 8]. This heterogeneity may be spatial and tempo-
ral in which former describes the uneven distribution of can-
cers subclones in various sites of primary tumors due to ge-
netic instability whereas the latter describes the variation in
molecular markers expression in same sites of tumors over a
period of time [9]. However, a new perspective of heteroge-
neity has been explained recently based on the metabolic de-
mands of cancer cells termed as metabolic heterogeneity [10].
Clinical studies of various cancers like breast cancer, acute
myeloid leukemia, and Barrett's esophagus showed a positive
correlation with tumors heterogeneity and displayed a high
risk for cancer progression [11–13]. Four inter-dependent
drivers like epigenetic regulation, cellular differentiation hier-
archies, gene expression stochasticity, and microenvironment
have direct control of cancer cells resulting in the tumor het-
erogeneity [14]. Many researchers found a high spatial and
metabolic heterogeneity under different microenvironments
such as developing more vascularate in the hypoxic region
[15], aberrant expression of glycolytic enzymes [16], lactate
mediated acidification [17], and autonomous cell proliferation
without stimuli [18]. Consequently, these relationships be-
tween cancer cells with its microenvironment might contribute
the cancers cells to adopt various conditions existed within the
tumor niche [19].

Despite these heterogeneities, cancer cells even display
some basic analogous characteristics of various cancers which
are often described as Bhallmarks of cancer^ required for their
growth and multiplication [20]. Amongst all, dysregulated
cellular energetics has a starring role in supporting the tumor
development by providing the desired necessities to the cells
for fulfilling their metabolic demands by increasing aerobic
glycolysis. This fulfillment gets accomplished by modifying
the crucial metabolic enzymes (Hexokinase II, PKM2, LDH-
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A, and enolase, etc.) [21, 22], transporters (GLUT1, MCT-1,
and MCT-4 etc.) [23] involved in different biosynthetic path-
ways through various oncogenic stimuli (HIF-1α, c-Myc,
PI3K/mTOR signaling) [24, 25]. Amongst all, PKM2 has a
major role in shifting the tumor towards the aerobic glycolysis
and even remodels the tumor microenvironment (TME) cells
towards the tumor development, invasion, and metastasis.
Lately, the studies on cancer cell metabolism greatly expanded
the understanding of cancer pathology and even revealed the
presence of a widespread metabolic heterogeneity in tumors
compared to spatial and temporal heterogeneities [10]. This
disclosure exhilarated the researchers to focus more on recog-
nizing the root cause of the phenotype and even the genetic
anomalies facilitating these progressions in the TME. Even
though the aerobic glycolysis is understood in many aspects,
yet the role of a glycolytic enzyme PKM2 which catalyzes the
last step of glycolysis has not been understood properly with
respect to its role in various cells of TME. In addition, a study
even suggested the differential requirement of PKM2 among
the TME population [26] and has a positive correlation with
cancer growth, metastasis, and resistance [27, 28]. Therefore,
this contemporary review in detail highlights the role of
PKM2 in the metabolic reprogramming of different cell pop-
ulation involved with the TME. Further, we discussed the
preclinical and clinical studies with respect to PKM2 and the
limitations included by aiming its activation or inhibition for
modulating the metabolic conditions of cancer cells.

Glycolysis and its Metabolic Reprogramming

In both prokaryotes and eukaryotes, glycolysis is a central
metabolic pathway for the energy generation and anabolism
with coupled TCA [29]. In the 1920s, Dr. Otto Warburg and
his colleagues observed an alteration in the glycolysis of the
tumor. Huge amounts of glucose were consumed by the can-
cer cells in comparison to normal cells, and the consumed
glucose was further fermented to lactate in aerobic conditions
characterizing it as aerobic glycolysis or Warburg effect
[30–32]. For the detailed process of aerobic glycolysis and
the upregulated enzymes involved with it were mentioned in
Fig. 1. Uptake of glucose is considered as a rate-limiting step
of glycolysis in both cancer and fast dividing cells. Its uptake
above the threshold level gradually increases aerobic glycol-
ysis and slightly decreases mitochondrial respiration. This re-
lationship between metabolic switching form mitochondrial
oxidation to aerobic glycolysis improves the cancer cell pro-
liferation and progression. Even the dysfunction of mitochon-
drial respiration and dysregulated glycolysis promoted the
transformation of cells to form tumor [33].

In the conditions of malignancies, increased expression of
GLUT1 occurs due to the different signaling molecules (HIF-
1α, c-Myc) preparing the cell to uptake more glucose. A study

displayed the involvement of transporter (GLUT1) in the drug
resistance of EGFR inhibitors (Gefitinib and Erlotinib) by
increasing the glucose metabolism in lung cancer suggesting
that glucose uptake by GLUT1 is a critical factor for the
EGFR resistance [34]. Even the enzymes entailed with this
process are upregulated and are modified post-translationally
[35–37] by which the intermediates of the pathway like
glucose-6-phosphate (G6P), fructose-6-phosphate (F6P),
glyceraldehyde-3-phosphate (G3P), dihydroxyacetone phos-
phate (DHAP) are fluxed for the biosynthesis of various mac-
romolecules (nucleic acids, fatty acids, phospholipids, amino
acids, and sphingolipids) and maintains the redox system
against ROS in cancer cells by making NADPH [38].
Recently, researchers are more interested to target the in-
creased expression of various signaling molecules (β-catenin,
c-Myc, HIF-1α, STAT), glycolytic pathway enzymes (HK,
PKM2, PDK1, enolase, LDH) and glucose transporters
(GLUT1, GLUT2) using siRNAs, small molecules treatment
and formulation based strategies. From the above-mentioned
proteins, PKM2 has a major role in assisting the progression
of cancer by shifting the cellular metabolism to aerobic gly-
colysis by its nuclear moonlighting functions [39, 40].

PKM2

In the glycolytic pathway, a rate restrictive enzyme termed as
pyruvate kinase (PK) catalysis the phopho-transfer reaction of
phosphoenolpyruvate (PEP) to pyruvate with the generation
of one molecule of ATP. Inmammals, it exists in four isoforms
namely PKM1 in high energy demanding tissues (skeletal
muscle, heart, and brain), PKM2 (proliferating more cells
and most cancer cells), PKL (liver and intestine), and PKR
(erythrocytes) [41]. PKL and PKR isoforms are encoded from
the gene PKLR, whereas PKM1 and PKM2 isoforms are
encoded from a mutually exclusive exon of a gene PKM
through alternative splicing [42–44]. Heterogeneous nuclear
ribonucleoproteins (hnRNPs) - hnRNPA1 and hnRNPA2 con-
trols this alternative splicing of PKM gene and inclusion of
either the exon 9 or exon 10 into the pyruvate kinase mRNA
results in PKM1, a constitutively active tetramer, and PKM2
respectively. Low expression of hnRNPs allows, exon 9 rec-
ognition by splicing machinery and favors the exon 10 inclu-
sion into the PKMmRNA resulting in the upregulated PKM2
protein expression. Apart from hnRNPs some oncogenic fac-
tors like HIF-1α and c-Myc were reported to enhance the
splicing of PKM2 [45, 46]. In addition, both the PKM iso-
forms possess a pyruvate kinase activity towards the PEP. But,
due to the presence of 22 amino acid residues difference in
mRNA of PKM2 exon 10 with respect to PKM1 exon 9, it
offers an FBP binding pocket and letting it dependent on the
FBP for the allosteric regulation and induction of tetrameric
PKM2 [47].Moreover, PKM2 exists in tetrameric and dimeric
forms and the ratio of these isoforms in the cancer cells
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depends on the influence of different oncogenic proteins and
has no fixed value. The dimeric form has the less affinity
towards its substrate PEP at physiological conditions (Km,
0.46mM) and acts as an active nuclear protein kinase whereas
the tetrameric form has a high affinity toward PEP (Km,
0.03mM) [48]. Post-translational modifications of PKM2with
signaling molecules (EGF, β-catenin, and FGFR), glucose
and ROS mediate the phosphorylation at Y105 [49], acetyla-
tion at K305, and oxidation at C358 respectively promoting
the dimeric form instead of a tetrameric form [50]. While, in-
built molecules like serine, FBP and SAICAR were recog-
nized allosteric PKM2 activators. Recently, small molecules
like DASA-58 and TEPP-46 were found to be the reported
synthetic PKM2 activators which act by steadying or stabiliz-
ing the tetrameric form [51].

This peculiar enzyme has both canonical and non-
canonical roles in both glycolysis and cancer development
respectively. It executes the canonical role by upholding the
metabolic program of cancer cells. PKM2 contains a nuclear
localization sequence (NLS) similar to importinα-5, by which

it takes the assistance of importin α-5 for its translocation to
the nucleus [52]. In addition, in the nucleus, this dimer PKM2
possess the protein kinase activity and phosphorylates
STAT3 at Y705 [53] resulting in the upregulation of N-
cadherin and metalloproteases like MMP-2, MMP-9 promot-
ing colorectal cancer (CRC) and metastasis [54]. Further, by
acting as a transcription factor, it phosphorylates histone at
threonine 11 (T11) and upregulates the cell cycle proliferation
markers (cyclin D and c-Myc) promoting brain tumorigenesis
[55]. Interaction with the phosphotyrosine-containing proteins
and JMJD5 [56] inhibits the pyruvate kinase activity of PKM2
and supports the accumulation of the glycolytic metabolite.
Apart from this PKM2 also upregulates expression of various
tumor proliferation (β-catenin) and metastasis markers (E-
cadherin, N cadherin and vimentin). So, these findings indi-
cated that PKM2 has both protein kinase and pyruvate kinase
role. Butyrate (short-chain fatty acid) found in the gut lumen at
higher concentration decreases glycolytic intermediates and
nucleotide synthesis in HCT-116 cells by inhibiting Warburg
effect due to dephosphorylation and tetramerization activating

Fig. 1 Aerobic glycolysis in
cancer cells: Illustration
represents that cancer cells
undergo aerobic glycolysis by
inflowing the glucose molecules
and converts the produced
pyruvate to lactate instead of
allowing it to enter TCA cycle in
the aerobic conditions. Oncogenic
proteins involved with the
tumorigenesis upregulate many
enzymes and transporters
(indicated by *) of glycolysis
further supporting this process
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PKM2 [57]. Many researchers reported that small molecules
activating PKM2 tetrameric form attenuated PKM2 mediated
tumor growth and metastasis, although some reports sug-
gested that inhibition of PKM2 with its inhibitors like
shikonin and lapachol inhibits tumor growth [58, 59].
Structural studies revealed that these small molecules bind at
the subunit interface of PKM2 site but not at the endogenous
activator FBP binding sites [60]. However, understanding the
mechanism of PKM2 in the metabolic reprogramming of cells
(cancer cells and TME cells) is an important criterion for
targeting it in anticipation to inhibit the cancer progression.

The Interplay between PKM2
and the Metabolic Reprogramming of Tumor
Niche

Metabolic reprogramming is one of the newly emerged hall-
marks of cancer for the fast and continuous proliferation of a
cancer cell. It is an important feature in satisfying the biosyn-
thetic and redox requirement of a cell by reprogramming the
important biosynthetic cycles like glycolysis, OXPHOS, pen-
tose phosphate pathway, and glutaminolysis [61, 62].
Signaling molecules (Akt, β-catenin, Nrf2, c-Myc, Ras, and
HIF-1α) along with the specific isoforms of metabolic en-
zymes (dimeric PKM2, hexokinase, and LDH) can enhance
the reprogramming of cells in tumor niche in accordance to
their needs [63].

Tumor Microenvironment (TME)

Formation of the tumor niche involves, the cancer cell com-
munication with its surrounding cells necessary for the metas-
tasis and resistance to cancer therapeutics. It acts like an ocean
with embedded tumor cells encircled by extracellular matrix
and stromal cells. It consists of non-malignant (TME cells)
and malignant (cancer) cells and exists a bidirectional interac-
tion between these cell components creating an environment
known as TME, which partakes a role in tumor development
and metastasis of cancer in all stages of carcinogenesis.
Consistency in these interactions is maintained by paracrine
and juxtracrine signalings involving different pathways like
Notch, Foxp3, TGFβ, and IFN-γ [64, 65]. Early stages of
tumorigenesis show an inflammatory microenvironment with
a co-operative effect of COX-2/PGE2 and TLR/MyD88 path-
ways [66]. Hypoxia, altered pH, condensed extracellular ma-
trix and immunosuppression are the features of TME which
helped in developing different strategies like physical based
targeting (thermal), pulsed based targeting, permeability based
targeting, and chemical based targeting based on pH and hyp-
oxia for targeting TME. Further, nano-therapeutic targeting
(nanomedicines, nanoparticles, nanocarriers and ultra-small
gold nanosatellite bearing nanoparticles), molecular-based

targeting (siRNA, anti-PD-1, anti-VEGF, anti-HIFα) and can-
cer vaccines were developed focusing the tumor niche
[67–69]. TME consist of different types of components name-
ly non-cellular and cellular components surrounded by stro-
mal cells Fig. 2 [70, 71].

Activation of PKM2 in TME cells results in different phys-
iological functions like reversed metabolic shift, increased
OXPHOS, reduced lactate production, inhibition of tumor
growth [72], and even provides immunity depending on the
cell specificity [73]. Till date many reviews suggested the role
of PKM2 with respect to the cancer cells [74–76], therefore in
the next sections of the review, wewill focus on discussing the
importance of PKM2 in TME cells for their modulation and
their maintenance Fig. 3.

T cells

T cell plays an important role in cell-based immunity against
the pathogen. Naive T cell requires low energy requirement to
prevent cells from atrophy and to keep cell survival and mi-
gration into circulation. However, activated T cell has high
metabolic demand for rapid proliferation, differentiation and
massive synthesis of cytokines and interleukins. The purpose
of activated T cells to increase metabolic demand is either for
its self-development or to erect the pathogens. To achieve this
high metabolic demand, T-cell subtypes like TH1, TH2, and
TH17 starts the massive influx of nutrients like glucose and
amino acids via increased expression of GLUT1 and glyco-
lytic enzymes shifting the cell to aerobic glycolysis. In con-
troversy, regulatory T-cells downregulate GLUT1 increasing
fatty acid oxidation. This phenomenon of metabolic shifting
was even observed in CD4+ inflammatory T-cells but not with
the CD4+ regulatory cells [77]. Moreover, aerobic shifting
initiated by T-cell receptor (TCR) was sustained by cytokines
like interleukin-2 and PEP concentration [78, 79]. But, TME
shows glucose limiting condition which suppresses the
tumouricidal function of T cell, compromising TCR-induced
proliferation and growth increasing the expression of effectors
molecules such as IFN-γ.

Many preclinical studies have shown the relation of PKM2
with the T-cell activity. Programmed death ligand 1 (PD-L1), a
transmembrane protein present on the normal and cancer cells
interacts with PD-1 checkpoint receptor existing on T-cells.
This interaction plays a crucial role in autoimmunity and can-
cer by acting as Boff-switch^. It means this interaction halts
the T-cell activity towards the PD-L1 representing cells [80].
A report suggested that PKM2 dimer upregulates the PD-L1
expression by binding to the PD-L1 promoter region, and
either the RNA silencing of PKM2 or treatment with TEPP-
46 (PKM2 activator) inhibits LPS induced PD-L1 expression
showing the significant role of PKM2 in limiting the T-cell
response against tumors [81]. Even the increased expression
of c-Myc proteins also resulted in modulating T inflammatory
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cell metabolic reprogramming contributing to the inflamma-
tion of tumor [82, 83]. c-Myc signaling has a role in post-
transcriptional modification levels of PKM2 where it controls
the splicing pattern by upregulating hnRNPAI (primary tran-
script) expression resulting in the high expression of PKM2 in
glioma cells [84]. In controversy to the above study, the hap-
loid efficiency of a transcriptional repressor of c-Myc gene,
FUSE-binding protein (FBP)-interacting repressor (FIR) re-
sulted in the alternative splicing of PKM2 by inhibiting
hnRNPAI expression [85]. Apart from these signaling mole-
cules, some co-stimulatory molecules found on T-cell surface
like CD43 also affect PKM2 expression and proliferation,
activation and migration of T cells [86]. CD43 and TCR co-
signaling stimulates the phosphorylation of Y105 of PKM2
and Y705 of Signal transducer and activator of transcription 3
(STAT3) transducer molecules resulting in the activation of
MEPK5/ERk5 pathway which activates nuclear localization
kappa B (NF-kB), Myc as well as Bcl-2-associated death pro-
moter (BAD) phosphorylation promoting the survival [87].
Abnormal expression of this protein is also observed in some
non-hematologic neoplasms such as lung, colon, and salivary
gland cancers [86]. Even the siRNA silencing of CD43 in-
creased the vulnerability of breast and lung cancer cells to
NK cells and apoptosis [88, 89].

Nuclear factor of activated T cells (NFAT1), a member of
transcription factors family act as a tumor repressor by
inhibiting the growth and differentiation of cancer cells [90].

Moreover, the substrate of PKM2, PEP was involved in the
activation of calcium-dependent NFAT1 signaling by
repressing the calcium uptake in the endoplasmic reticulum
by Sarco/ER Ca2+-ATPase (SERCA) in T-cell. So, glucose
deficient TME may diminish the anti-tumor activity of T-cell
by downregulating NFTA1 signaling [91]. Even, NFAT1 was
found to regulate MDM2 oncogene in-vitro and in-vivo in
MCF-7 and MDA-MB-231 cells in which JapA showed in-
hibitory activity [92]. Interacting proteins of PKM2, like
PTPB1, promotes cell proliferation and colony formation in
ALCL cells by facilitating pY105 of PKM2 and nuclear
STAT3 activation [93]. Further, a sulfur-containing amino ac-
id homocysteine found to regulate the T-cell glycolytic
reprogramming by upregulating PKM2 expression through
PI3K/AKT/mTOR signaling in the conditions of hyperhomo-
cysteinemia mediated inflammation in Apo-/-mice (apolipo-
protein E-deficient mice) promoting atherosclerosis [94].
Moreover, high serum levels of homocysteine show a positive
correlation with risk of cancer [95]. So, an additional study is
required to know the possibility of homocysteine in
dysregulating PKM2 levels of T-cells within TME in promot-
ing the inflammation induced cancer progression.

B cells

B-cells are the part of the immune system and are the subtypes
of lymphocytes, which gets differentiated into plasma cells

Fig. 2 Components of tumor microenvironment: Illustration represents the cellular and non-cellular composition of the tumor microenvironment
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and memory cells. Plasma cells finally get differentiated into
antibodies and memory cells that help in keeping a track re-
cord of attacked antigens. These are derived from bone mar-
row stem cells and contribute a major role in immune response
and immune system related disease such as autoimmunity and
alloimmunity [96]. B-cell infiltration is common in draining of
lymph nodes and lymphoid structures and also in the progno-
sis of some cancers like breast and ovarian cancers which are
associated with TME [97].

A study disclosed the role of PKM2 in B-cell activation, in
which homocysteine upregulated the expression of enzymes
involved in both glycolysis and oxidative phosphorylation
activating B-cell by shifting the glycolysis towards pentose
pathway. PKM2 inhibitor like shikonin or knockdown of
PKM2 attenuated Hcy mediated metabolic changes, B-cell
proliferation and antibody synthesis (IgM & IgG) in-vitro
and in-vivo implies the role of PKM2 in B-cell activation.
The in-depth analysis showed the involvement of Akt depen-
dent mTOR signaling, whereas the treatment with mTOR in-
hibitor (rapamycin) and shikonin attenuated Hcy induced

metabolic changes and ultimately diminished atherosclerotic
lesion [98]. These findings conclude that PKM2 activation is
involved with the B-cell activation which is necessary for the
immune response.

Macrophages

Macrophages are considered as a protective and pathogenic
driver for an immune response [99]. Their activation is clas-
sified as classic vs. alternative or also M1 and M2. M1 stimuli
e.g. Granulocyte-macrophage colony-stimulating factor (GM-
CSF), Toll-like receptors (TLRs), IFN-γ, LPS or TNF that
show Th1 dependent response whereas M2 stimuli e.g. mac-
rophage colony-stimulating factor (M-CSF), IL-4, IL-10, IL-
13, and glucocorticoids show Th2 dependent response [100].
They perform wide range of functions involving some recep-
tors and different molecules like TLR (Toll-like receptors,
intracellular pattern recognition receptors), nitric oxide (NO),
reactive oxygen species (ROS), various types of inflammatory

Fig. 3 Regulation of TME cells in the tumor microenvironment: Illustration represents the regulatory molecules modulated by PKM2 in different TME
cells. This modulation helps in their activation and progression
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markers like TNFα, cytokines, chemokines, tissue-damaging
proteases, and different types of interferon [101].

In macrophages, PKM2 act as a critical modulator for the
production of cytokines as well as inflammatory markers. An
endotoxin named lipopolysaccharide (LPS), which is a Toll-
like receptors 4 (TLR4) agonist activatesM1macrophages by
increasing the three-fold expression of PKM2. These activated
macrophages induce the inhibition of HIF-1α and modulate
the differentiation of T-helper cells. Activators of PKM2 like
DASA-58 and TEPP-46 promote tetramer form, inhibits the
IL-1β production and boost up the production of IL-10 in-vivo
[102, 103]. Already studies had proved that over-production
of ROS by glucose metabolism has a positive correlation with
various types of pathologies like diabetes, cancer and neuro-
degenerative diseases. Glucose metabolism increases the cel-
lular ROS by means of several mechanisms like glucose au-
toxidation, polyol pathway, and glycation [104].
Overconsumption of glucose drives up the glucose-ROS-
PKM2-STAT3 pathway which led to the increased expression
of various cytokines (IL-6, IL-1β, TNF-α). Thus, ultimately
resulting in the hyper-inflammatory macrophages leading to
the host damage [105]. So, the glucose-rich tumor niche can
even activate the macrophages in the TME and may encour-
age the tumor inflammation by releasing cytokines promoting
tumor progression. 5' AMP-activated protein kinase or AMPK
(5' adenosine monophosphate-activated protein kinase) is an
enzyme that has a role in energy metabolism, inflammation,
and cell homeostasis. Like p53 and liver 9 kinase B1 (LKB1),
activation of AMPK was also closely related to tumor sup-
pressor function [106]. However, deficiency of AMPK
upregulates PKM2 expression which results in the release of
HMGB1 and lactate production in macrophages. But, admin-
istration of the shikonin reduces the lactate production and
HMGB1 release [107]. Even, AMPK shows the protective
effect by modulating PKM2 expression. Plumbagin plant-
derived naphthoquinone also showed the similar actions of
PKM2 inhibitors decreasing the lactate production and pro-
inflammatory cytokines expression in lipopolysaccharide
(LPS) activated macrophages [108].

Apart from oxidation, acetylation, and phosphoryla-
tion of PKM2 dimeric form, succinylation is another
factor that promotes PKM2 dimer transition. SIRT5
overexpression predicts the poor survival of non-small
cell lung cancer patients [109]. In LPS activated macro-
phages, PKM2 act as a substrate for SIRT5 and regu-
lates the hyper succinylation and inhibit the PKM2 ac-
tivity by upregulating its transition from tetrameric to
dimeric form. It promotes PKM2 nuclear accumulation
where it complexes with HIF1α and promotes transcrip-
tion of inflammatory cytokines like IL-1β. But, PKM2
activators like TEPP-46 attenuates IL-1β production and
macrophages activation in SIRT5 deficient mice [110]
indicating the role of nuclear PKM2 in the activation

of macrophages. Further, the ω-Alkynyl arachidonic ac-
id treatment decreased the expression of macrophages
M1 biomarkers (TNF-α, CXCL10, iNOS, and IL-6)
and displayed a cardio protective effect by upregulating
PKM2 expression in a mouse model of myocardial in-
farction. But downregulation of nuclear expression of
PKM2 in LPS activated macrophages was observed.
[111]. Thus, a further investigation is needed to under-
stand the effect of ω-alkynyl arachidonic acid on the
nuclear accumulation of PKM2 in cancer cells as its
nuclear accumulation has a major oncogenic role in can-
cer progression. Altogether, PKM2 acts as a pivotal
regulator in cytokines production, tumor inflammation
and macrophage activation involved with the mainte-
nance of TME.

Dendritic Cells

Dendritic (DC) cell is a bone marrow-derived leukocytes, as
well as a potent antigen-presenting cell type. Paul Langerhans
in 1968, was the first person in observing DC cell in human
skin. Major subtypes in human DC includes myeloid DCs
(e.g. Dectin1 and Dectin2), Plasmacytoid DCs (e.g. CD304
(neurophilin), CD123 (IL-3R)) and monocytes related (e.g.
CD+16 monocyte, CD16 negative and inflammatory DC)
[112]. These are mainly involved in antigen presenting and
processing of antigen. These cells are also found in the TME
but are not sufficient to stimulate an immune response due to
their disturbed function by hypoxia and inflammation in TME
[113].

Aqueous extract of Artemisia iwayomogi (AIP1) (a mem-
ber of the Compositae family) inhibited the differentiation and
maturation of bone marrow-derived dendritic cells that conse-
quences the suppression of immunological responses.
Proteomic analysis and RT-PCR profiling revealed that AIP1
treatment downregulated the expression of various proteins
like PKM2, TRAF 5-like protein, coactosin-like protein 1,
and allogeneic stimulation ability of T cell by dendritic cell
(CLP1) in BALB/c mice [114]. Thus, this drug can have the
potential in reversing the aerobic glycolysis by targeting
PKM2. SRSF3 is a Splicing factor encoded by SFRS3 gene
was found to aberrantly overexpress in various cancers like
ovarian cancer, triple-negative breast cancer and malignancy
of mammary epithelial cells [115]. Treatment with trichostatin
A, a broad range of histone deacetylase possesses immuno-
modulatory and protective function by upregulating the ex-
pression of SRSF3-PKM2-dependent glycolytic pathway in
DC2.4 cells. Silencing of PKM2 by shRNA effects the cyto-
kines expression and lactate production but trichostatin re-
treatment restores partially the DC cell function [116]. This
shows that PKM2 is involved in the immune response and the
proper functioning of DC during antigen processing.
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Myeloid-Derived Suppressor Cells (MDSCs)

Myeloid-derived suppressor cell is a myeloid originated
type of cell and are considered to be a potent suppres-
sor of the various function of T-cell as well as macro-
phages. These are the population of immune cells which
are classified under the inhibitory immune cells
influencing the development of T regulatory cell and
inhibit CD8+ T-cell activation by controlling nitric oxide
synthase in arginase dependent manner [117].

Wei-R et al., studied the non-canonical role of PKM2 in
MDSCs in hepatocellular carcinoma in which PKM2
upregulates the recruitment of Gr-1+CD11b+ granulocytic
MDSCs, F4/80+CD11b+ macrophages, and Ly6C+CD11b+

monocyticMDSCs in the TME. High levels ofMDSC in bone
marrow, peripheral blood and spleen have a role in the forma-
tion of a pre-metastatic niche in pulmonary foci. [118]. This
shows that PKM2 has a role in designing the metastatic niche.
Concanavalin-A induced immune-dependent liver injury in-
volving TNF and IL-6 pathways triggering liver proliferation
[119]. A similar study demonstrated the role of PKM2 in
immune-mediated liver injury induced by Concanavalin A
in mice. There was a significant correlation with increased
plasma levels of PKM2, ALT, IL-1β, and IL-6 and hepatic
myeloid cell infiltration and necrosis which was reversed by
TEPP-46 [120]. This further gives an additional role to dimer-
ic PKM2 in inducing liver injury.

NK Cells

NK cell is a type of lymphocytes derived from a common
progenitor cell as B and T cells. NK cells are part of the innate
immune system which spontaneously responded to cytolytic
effect toward cancer and virus-infected cells. Activation of
NK cell results in the release of various cytokines (IFN-γ,
TNF-α, GM-CSF) and chemokines (CCL1-5 and CXCL8)
[121]. In Humans, NK cells functionally categories according
to the expression of CD56 and CD16 marker. CD56lowCD16+

NK cell type kill by means of produce cytokines by specific
manners of recognition of target cells while CD56hiCD16−

NK cells type (major NK cell subtype of peripheral lymphoid
organs) produce a large number of cytokines (IFN-γ), TNF
and granulocyte–macrophage colony-stimulating factor (GM-
CSF) stimulation by pro-inflammatory cytokines and attain
cytotoxicity for a sustained period [122]. Innate cytotoxic
lymphocytes or natural killer cells also infiltrate towards
TME.

NK cell functionally exists as licensed and unlicensed NK
cells based on the presence ofMHC-1 molecule. Licensed NK
cell in which cell-specific Ly49 receptor interaction exists
with self MHC-1 while unlicensed NK cell lacks Ly49 recep-
tor and show impairment in MHC-1 cell recognition [123].
PKM2 is a crucial enzyme which gets upregulated during the

differentiation of licensed NK cells and cross-links with KIR
(killer cell immunoglobulin-like receptor) increasing the ex-
pression of phosphorylated metabolic modulators like p38-α
and AMPKα. Moreover, licensed NK cell showed high met-
abolic reprogramming in glycolysis and OXPHOS dependent
glutaminolysis while the unlicensed NK cells are exclusively
reliant on OXPHOS for cytolytic function [124].
Evolutionary, HMGB1 protein was conserved as a regulator
for cell death and survival process. It is a nuclear chromatin
protein [125] derived from the NK cells was found to be an
allosteric inhibitor of tetramer PKM2 by competing with its
FBP binding sites thus blocking the Warburg effect in cancer
cells. But, by amassing the glycolysis through dimer PKM2
and glutaminolysis, tumor cells can acquire resistance to
HMGB1 induced metabolic cell death [126].

Fibroblasts

Cancer-associated fibroblasts (CAFs) in tumor environment
has a very well familiar role in tumorigenesis which includes
tumor initiation and progression, metastasis, stimulate angio-
genesis, and chemotherapy resistance [127]. These include
matrix components (collagen I-II, fibronectin, tenascin C
and periostin), enzymes (MMP, LOX, and TIMPs), cytokines,
growth factor receptors (GFβ, VEGF, PGE2, CTGF, SDF-1),
and cytoplasmic proteins (desmin, vimentin, α-SMA).
Recently, a new phenotypic marker of CAF like caveolin-1
(Cav-1) and MCT4 were documented [128, 129]. Normally,
myofibroblasts get activated in the wound healing process.
But, in TME, residential fibroblasts gets differentiated to
myofibroblasts known as CAFs by direct or indirect signaling
crosstalk between fibroblast and cancerous cells using para-
crine signals. Signaling molecules that involved in activation
of fibroblast include various cytokines like TGFβ, IL-1β
[130]. Activated myofibroblasts show deregulated MMPs
and increased the level of ROS that increases high chances
of organs fibrosis and development of tumorigenesis and ma-
lignancy [131].

Primary culture of MCKH (mammary carcinoma from
KH) cells shows the similar properties of CAFs like EMT,
cancer stem cell-like features and also displayed many upreg-
ulated glycolytic enzyme genes including GAPDH, LDH,
PGAM1, HIF1-α, and PKM2. This enrichment of CAF fea-
tures suggested to occur via the dependence of FGF signaling
[132]. US28 signaling activates HIF-1α/PKM2 axis, in turn
promoting proliferation, angiogenesis, and energy
reprogramming in cancer cells. It upregulated the expression
of many proteins including VEGF, HIF1α and many glyco-
lytic enzymes like GAPDH, PKM2 in fibroblasts and glio-
blastoma cells [133]. FGFR1 expression also has a positive
correlation with the p-PKM2 and p-LDHAwhich are having
the most suitable diagnostic potential in thyroid malignancies
in thyroglobulin negative thyroid cancer [134]. A
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contradictory study displayed that PKM1 expression in fibro-
blasts induced inflammation and increase lactate production
(~1.5) fold higher than PKM2 containing fibroblast when co-
injected with MDA-MB-231 in a xenograft model. PKM2
expressed fibroblasts triggered pseudo-starvation in stromal
cells with NF-kB dependent upregulation of Beclin-1 and
Cathepsin-B. They also found the loss of Cav-1 expression,
which is a marker of autophagy and stromal glycolysis [135].
Dysregulated expression of caveolin-1 was reported to be as-
sociated with various cancers due to the aberrant activation of
JAK/STAT, JNK, estrogen and src signalings in pancreatic
cancer [136]. It is even reported that acute loss of caveolin-1
results in mitochondrial dysfunction, increased ROS, and
stimulation of aerobic glycolysis. Oxidative stress in fibro-
blasts is capable of genetic instability and creates an
oncogenic/mutagenic effect to reprograming fibroblast.
Treatment of fibroblasts with anti-oxidants likes N-acetyl-
cysteine and quercetin) or NO inhibitors (L-NAME) reversed
the aggressive behavior of CAFs inMCF-7 breast cancer cells
[137].

A study found that cancer-associated fibroblasts have the
ability to transfer high quantity proteins (PKM2, SOD2,
thio0redoxin, malate dehydrogenase, and galectin-1) and
lipids to human prostate cancer cells (DU145) through
ectosome mediated delivery. But, a reverse transfer from can-
cer cell to fibroblast is negligible or absent and even the rate of
protein transfer depends upon the donor cell and recipient cell
line co-culture ratio [138]. miR-21 is a single-stranded micro-
RNA (miRNAs) in human encode byMIR21 gene present on
chromosome number 17q23.2. Various experimental data
show that overexpression of miR-21 is a feature of patholog-
ical cell growth or cell stress which target various survival
signaling pathway like STAT3, MAPK, AKT, and AP-1
[139]. miR-21 mediated remodeling of CAFs metabolic
changes was also reported in the pancreatic cancer cell. CAF
showed high expressions of LHDA, PKM2, and miR-21 dur-
ing the co-culture of CAFs with human pancreatic cancer cells
(BxPc-3). Treatment (miR-21 inhibitor) of CAFs and co-
culture showed a significant reduction in the expressions of
PKM2, LDHA, and MCT [140]. Similarly, a study report
suggested miR-21 regulation of PTBP1 in the fibroblasts of
pulmonary arterial walls. Knockdown of PTBP1, treatment
with PKM2 activator (TEPP-46) and histone deacetylase in-
hibitors reversed glycolytic phenotypes and decrease cell pro-
liferation [141]. An additional study is needed to explore the
role of PTBP1 knockdown to target PKM2 during angiogen-
esis. Another miRNA named miR-205 regulates develop-
ment, apoptosis, and cancer. It is found that miR-205 has the
ability to suppress EMT by directly targeting VEGF-A and
ErbB3 in breast cancer [142]. CAFs upregulate PKM2 and
allows its nuclear accumulation of PKM2 that form complex
with HIF1α that recruits transcriptional Chondrocytes-1
(DEC1). Chondrocytes-1 (DEC1) that downregulate the

expression of miR205. Treatment with metformin and
DASA-58 decreased the metastatic potential of the prostate
cancer cell in SCID mice [143]. These all findings suggest
the role of PKM2 in promoting glycolysis, proliferation, and
remodeling of CAFs.

Endothelial Cells

Endothelial cells are specialized types of cells that form the
inner lining of blood vessels and play a crucial role in many
physiological processes including to regulate vasomotor tone,
blood cells, and WBCs trafficking, to uphold blood fluidity,
angiogenesis, and both innate and adaptive immunity [144].
Vascular endothelial cells are the main key players in cellular
homeostasis, normal tracking of leukocytes and in tumor de-
velopment. In normal and cancer cells, soluble factors like
chemokines, platelets derived factor, vascular endothelial fac-
tor (VEGF), EGF, and HIF1-α are important to provoke the
endothelial proliferation, differentiation into neovascularisa-
tion process [145, 146].

Hypoxia-induced PKM2 expression in tumor results in the
activation of HIF1-α and NF-kB signaling subsequently trigger-
ing the secretion of VEGF-A factor. Deletion of PKM2 impaired
tumor proliferation, induced apoptosis and decrease blood vessel
formation in in-vitro (pancreatic cancer cell lines) and in-vivo
(tumor xenograft on chicken chorioallantoic membranes) [147].
Even the circulating PKM2 stimulates angiogenesis, prolifera-
tion, migration and cell-ECM junctions in endothelial cells of
colon xenograft cells (SW620) [146]. A positive correlation
was observed with PKM2 upregulation and aberrant expression
of VEGF-C in breast cancer. The study confirmed that knock-
down of PKM2 downregulates the expression of VEGF-C and
inhibit proliferation, metastasis and lymphovascular invasion
[148]. Further, analysis of 65 patients with lung adenocarcinoma
found a significant relationship between PKM2 expression and
proliferation, invasion and metastasis. siRNA mediated knock-
down of PKM2 result in decreased glucose uptake (25%), ATP
formation (20%), synthesis of fatty acids and down-regulated
MMP-2 and VEGF expressions in A549 cell lines and patient
specimens [149]. PKM2/HIF-1/vGPCR signaling pathway pro-
motes the angiogenesis and tumor growth in Kaposi’s sarcoma-
associated herpesvirus (KSHV/HHV8). PKM2 controls the para-
crine angiogenesis (VEGR dependent) and proliferation through
vGPCR in KSHV infection of an endothelial cell. Upregulation
of HIF-1 results in increased expression of angiogenic promoting
factors like VEGF, PDGF, TGFα, TGFβ, ANGPT2, and
ANGPTL4 [150].

A study found that TCM treated with lymphatic endothelial
cells (LEC) promotes the growth of tumor in-vitro and in-vivo
by releasing the excessive amount of EGF and PDGF-BB.
PDGF-BB, in turn, stimulates the pericyte infiltration and an-
giogenesis in breast cancer [151]. Even the accumulation of
the end product of glycolysis, i.e. lactate, due to the low
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enzyme activity of PKM2 contributes to the formation of
neovessels by the inhibition of prolyl hydroxylase 2, activa-
tion of HIF-1-NF-kB signaling pathway and stimulation of
interleukin (IL-8/CXCL8) synthesis which enhances the en-
dothelial proliferation and maturation of mature blood vessels
[146]. miR-143, a short non-coding mRNA regulates various
genes and has a role in various cancers like oesophageal squa-
mous cell carcinoma, gastric cancer, and gall bladder and acts
as a tumor suppressor [152]. Its overexpression results in a
significant decrease of glycolytic enzymes like PKM2,
LDHA, and HK2 in atherosclerotic plaque forming endothe-
lial cell lines [153]. Similarly, miRNA-124 was found to be a
tumor suppressor by acting through diverse mechanisms in
various cancers like breast, bone and colorectal cancer [154].
It was examined that, there exists a positive correlation be-
tween miRNA-124 and a splicing factor, polypyrimidine-
tract-binding protein (PTBP1) which is a PKM2 alternative
splicing factor. They found that overexpression of miRNA-
124 silences the PTBP1 expression resulting in the restoration
of dysregulated glycolysis and mitochondrial respiration
[155]. These suggest that PKM2 is involved with the prolif-
eration and metastasis of endothelial cells.

Adipocytes

Adipocytes are mainly involved in storing the energy as fats
and triglycerides in lipid droplets. In mammals, two types of
Adipocytes are present i.e. brown adipocytes which have a
large number of mitochondria and involved in maintaining
the body temperature while white adipocytes have large lipid
droplets and are mainly involved in the storage of fats. A
proper balance between brown and white fat is required for
maintaining the energy homeostasis [156]. Adipocytes play a
role in the development of some cancers like intra-abdominal
tumors by means of providing homing to cancer cells, by
releasing adipokines which includes interleukins-8 (IL-8)
and provide direct transfer of fatty acids to cancer cells.
Obesity is considered as one of the risk factors for breast
cancer development by chronic low-grade inflammation, mac-
rophages recruitment and upregulation of several signaling
pathways like AMPK, p53 and HIF, etc. [157].

Proteomic data by 8-plexi TRAQ-2DLC-MS/MS analysis
shows the involvement of 549 proteins in adipogenesis.
Among them, PKM2, C/EBPβ, and PIN1 are found to have
a link with the PI3K/AKT pathway. But, knockdown of C/
EBPβ downregulated the PKM2 expression at RNA and pro-
tein level displaying the role of PKM2 in adipogenesis [158].
Leptin promotes the EMT of breast cancer cells by targeting
the PI3K/AKT pathway via PKM2 over-expression. But,
leptin-induced PKM2 expression andmetastasis markers were
abolished by PI3K/AKT inhibitor LY294002 and PKM2
knockdown in-vitro and in-vivo [159]. Overexpression of
PTP1B, a member of protein tyrosine phosphatase (PTP)

family was observed in 70% of TNBC cases [160]. Reports
suggest that PKM2 acts as a novel substrate for PTP1B, and
downregulated PTP1B expression increased Tyr105 phos-
phorylation of PKM2 in in-vivo and cultured adipocytes
[161]. All these findings strengthen the role of PKM2 in
adipogenesis.

Therapeutics Targeting PKM2

In recent years, apart from other glycolytic enzymes (LDH,
hexokinase, and enolase), PKM2 comes out as an emerging
and potential target for anticancer therapy. In fact cancer cells
utilize more amounts of glucose and due to the existence of
dimeric PKM2, it accumulates the upstream substrates of gly-
colysis, activating one carbonmetabolism a feature that assists
the cancer progression [162]. As discussed earlier, even the
nuclear PKM2 controls and modulates various signaling path-
way mediators (STAT3, histone H3, and HIF-1α) in various
diseases like cancer, inflammatory disease, and diabetes. Still,
a study lacked the evidence in displaying the protein kinase
activity of PKM2 [163]. mTOR is a central factor in the war-
burg effect in inducing PKM2 expression [164]. Further, ac-
tivation of PKM2 with the small molecules induced serine
auxotrophy by allowing the cells not to get adapt with the
nutrient stress [165]. So, PKM2 targeting shows a synergistic
effect in cancer treatment by means of suppressing PKM2
dependent cancer proliferation and metastasis as well as in
decreasing the macromolecules synthesis and lactate produc-
tion. While some contradictory studies reported that PKM2
deletion accelerated mammary tumors formation in Brca1-
drive model of breast cancer by disrupting PKM1 expression
[166]. Even knockdown of PKM2 resulted in modest inhibi-
tion of tumor growth [167], developed hepatic cancer, meta-
bolic stress [168] and soft tissue sarcoma [169] whereas the
nuclear PKM2 induced the cell death in a caspase-
independent manner [170] indicating PKM2 is not needed
primarily for cancer proliferation [171]. Besides, its require-
ment is not needed in APC lost colon cancer model [172].
Based on all these studies, various drugs have been developed
and recognized in stabilizing or promoting the PKM2 in its
tetramer form as well as to inhibit the PKM2 activity directly.
But, the drugs inhibiting PKM2 expression directly may have
limitations, particularly the functional consequences associat-
ed with kinase inhibition and may even give other possible
drawbacks. Firstly, there will be a suppressed immune re-
sponse in the TME, as the immune cells (T-cell, B-cell) needs
PKM2 for their activation and proliferation. Secondly, it in-
fluences the glycolytic pathway globally which may hamper
the processes in which PKM2 plays a major role. So, it is
desired to develop PKM2 activators rather than its inhibitors
to limit these drawbacks. Some of the reported drugs targeting
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PKM2 at preclinical and clinical setup are discussed in
Table 1.

It is clear from Table 1 that several molecules having an
activator or inhibitory action on PKM2 have been reported.
Some of them being more drug like and promising have
moved to clinical phases while several others could not be
taken further either because of poor drug likeness or lack of
in vivo efficacies. Somemetal based (2, Table 1), phenolics (4,
5, 7, 1, Table 1), and heterocyclics (6, 8-15, Table 1) are
known to cause PKM2 inhibition and in terminating tumor
progression. Some of the molecules like 8 and 13 which are
heterocyclics have more likelihood to cross the valley of death
because of better drug like features and it will be interesting to
find them in the list of clinical candidates in near future. The
clinical candidates have been successful in several ways and
their future promise to lessen the burden of cancer is yet to be
elucidated [187, 188].

Concluding Remarks

In diverse cancers, PKM2 is known to act as a gatekeeper in
regulating the tumor metabolism, proliferation, and its niche
maintenance. Till date, the clear cut role of PKM2 involve-
ment in the TME cells is not established appropriately. So, a
comprehensive discussion on the role of PKM2 in the TME
cells was clarified in this review. As this enzyme is a key
metabolic conduit in the metabolism and proliferation of var-
ious body cells including immune cells, aiming it creates a
major challenge. In this context, targeting PKM2 with activa-
tors rather than its inhibitors may provide a therapeutic effect
with limited resistance, lesser immune suppression by conse-
quently avoiding the functional consequences associated with
kinase inhibitors. Further, these activators can be used in com-
bination with the existed anti-cancer agents to achieve a syn-
ergistic effect inhibiting the tumor growth and proliferation. In
addition, its involvement with the inflammatory cells was
discussed in this report which may provide a new application
for the PKM2 activators in drug repurposing. The upcoming
approaches and investigations should be to improve the mo-
lecular studies on PKM2with respect to its role in tumor niche
cells and to understand the effect of therapeutics against
PKM2 in developing resistance and immune suppression.
For all these whys and wherefores, PKM2 signifies as a po-
tential target in metabolic reprogramming of tumor.
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