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Abstract A potent T cell response is an important component
of durable anti-tumor immunity. The quality of the T cell
response can, in-part, be measured by the avidity of the T cell
for its tumor antigen-expressing target. While convention
suggests that raising the avidity of the responding T cells
may make for a more potent anti-tumor immune response,
the threshold for effective tumor immunity remains unclear, as
do some of the adverse effects of an inappropriately high
avidity response. In this review, we discuss the relationship
between T cell avidity and anti-tumor immunity, considering
both experimental model systems as well as human clinical
trials.
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Introduction

Adoptive cell therapy (ACT) is a technique used to improve
cancer prognosis that relies on the transfer of anti-tumor T
cells into patients, with the aim of these T cells then directly
killing tumor cells. This technique can be performed by iso-
lating, expanding, and re-injecting tumor-infiltrating lympho-
cytes (TILs) [1]. While this can be successful, the results are
variable and the technique is not applicable to all tumor types,
as suitable, functional TILS are not always accessible. To
broaden the spectrum of tumors that can be targeted in this
way, many studies have tested the efficacy of inserting a
defined tumor antigen-specific T cell antigen receptor (TCR)

into the patient’s T cells by genetic modification. This ap-
proach allows much greater control of which antigens are
targeted but creates the need for a thorough understanding of
TCRs and their properties, as the chosen TCRmust be the best
for controlling the tumor and maintaining durable immunity
without any adverse consequences. Despite a large amount of
research, controversy still remains as to which TCR properties
lead to the best anti-tumor T cell.

One of the best studied properties of the TCR is the affinity
of the interaction between a TCR and its cognate ligand, the
peptide-MHC complex (pMHC). The affinity of this interac-
tion has a well-established effect on the subsequent activity of
a CD8+ T cell [2]. TCR signals affect the priming of naïve
CD8+ T cells, their ability to migrate into the relevant tissue
[3], and their ability to kill target cells expressing the relevant
antigen, including tumor cells [4]. As a result, the affinity of
the TCR chosen for adoptive transfer therapy is likely to have
a large impact on the anti-tumor activity of the transferred T
cells.

It remains to be established exactly which affinity level
leads to the best prognosis in ACT for cancer. Many studies
have presumed that higher affinity TCRs will be the most
effective as affinity closely matches T cell response in vitro,
and some studies on immunity to viruses support this concept
[5–7]. For example, Alexander-Miller et al. generated virus-
specific CD8+ T cell lines by stimulation with either high or
low concentrations of antigen, and from this, generated low or
high affinity CD8+ T cell lines, respectively [7]. They then
demonstrated that the higher affinity T cells were much more
efficient at viral clearance [7]. Other studies have also shown
that while very low affinity viral antigens can cause complete
T cell activation, these responses are curtailed compared to
high affinity responses [8]. Zehn et al. examined the responses
of both endogenous and TCR transgenic T cells to viruses
expressing modified forms of OVA, which contain peptides
for the TCR transgenic T cells with known and varied
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affinities [8]. The viruses expressing low affinity peptides still
activated naïve T cells, inducing them to proliferate, form
effector cells, and generate memory cells, but the contraction
phase was earlier than with the high affinity responses, and so
the strong TCR signals caused a more sustained T cell re-
sponse [8].

Despite these findings in models of viral infection, other
studies have demonstrated that high affinity TCRs are not
necessarily the best for in vivo tumor control. Approaches
using peptides of varying affinities for a particular TCR [9]
and TCRs of varying affinities for a particular peptide [10]
were examined. It was reported that intermediate affinity
TCRs appeared to lead to the best biological response and
hence the best tumor control [9–11]. However, not all studies
agree with these findings. Some studies suggest that increas-
ing TCR affinity leads to a plateaued but not reduced response
[12, 13], and limited clinical trial data show a better response
with a higher affinity TCR [14–16].

A great deal of research has attempted to address exactly
why different affinity TCR signals lead to varying outcomes.
While this seems like a fundamental question, T cell signaling
is actually very complex, and at least two models exist about
exactly how signaling is affected by affinity. One model states
that the important factor is the number of TCR-pMHC inter-
actions at equilibrium, which is a function of the affinity of
these interactions, as well as ligand density [17]. Another
model suggests that the half-life or duration of the TCR-
pMHC interaction is the important factor, where the rate of
TCR-pMHC dissociation is critical [18].

Further complicating these divergent models is the reality
that in vivo, interactions between cells are complex, and a T
cell can contact multiple APCs receiving cumulative signals,
and/or form stable, long-lasting contacts where the signaling
molecules are segregated into well-defined regions. At the
priming stage, it was shown that TCR affinity affects the type
of interaction with the APC and the strength of the intracellu-
lar signal subsequently received [19]. It was proposed that
TCR-pMHC interactions above a certain affinity threshold
permit the T cell to continue to interact with the APC long
enough for the first cell division to occur while the cells are
still interacting with the APC [20, 21]. As these sustained T
cell-APC interactions cause a high level of asymmetry in the T
cells, the two daughter CD8+ T cells tend to be different. The
daughter Tcell that develops closest to the APC, known as the
proximal daughter T cell, appears to have a greater capacity to
differentiate into a short-lived effector cell (SLEC), and
SLECs have been shown to have the best functional potential
[20, 21]. In contrast, low affinity interactions lead to symmet-
rical cell division as T cells are no longer in contact with the
APC when they divide, and hence there is a reduced produc-
tion of SLECs, and a subsequently weaker immune response
[20, 21]. Affinity is also important for tumor target recognition
and killing. While low affinity signals are able to cause

polarization of the centrosome and associated cytotoxic ma-
chinery, in the absence of high affinity signals, cytotoxic
granules may not be recruited and so the T cell cannot kill
the target cells [22].

TCR affinity is not the only factor involved in the TCR
peptide-MHC interaction, and the presence of the co-receptor
CD8 has a large effect. Some studies suggest that CD8 can
significantly enhance peptide sensitivity, by as much as a
million-fold or more [23]. The combination of TCR-pMHC
and CD8 is referred to as T cell avidity, and the relative
contribution of CD8 to the overall avidity can vary between
TCR [13].

Another feature of T cells is what has been referred to as
“functional avidity”. This is the strength of the whole interac-
tion between a T cell and its target, which depends on adhe-
sion molecules such as integrins, costimulatory molecules, as
well as the summation of the TCR-peptide-MHC interactions.
This type of avidity can change for a particular T cell as the
expression level of the various molecules will affect the over-
all interaction. This has implications for immunotherapy, as
different methods to stimulate T cells, even with the same
TCR, could lead to a different outcome of response due to
changes in the functional avidity. Some of these interactions
havemore than a simple adhesive effect; costimulatory signals
and inhibitory signals are both integrated into the signaling
event at this stage.

This review will examine several problems that face tumor
immunotherapy and how they relate to T cell avidity. These
issues include the lack of suitable TCRs for many tumor
antigens, the problem of T cell tolerance, and the possibility
of developing autoimmunity. For each problem, potential
solutions will be discussed, and areas requiring extra research
will be highlighted.

Problem: Limited TCR Repertoire

The inability of the immune system to control the growth and
metastasis of tumors is due, in part, to the low frequency and
low avidity of tumor antigen-specific T cells. Generation of
tumor-reactive Tcells is limited by the low immunogenicity of
tumors themselves. Tumor antigens are principally non-
mutated self-antigens. High avidity T cells that react to these
self-proteins are deleted in the thymus during development,
leaving predominantly low avidity T cells that recognize tu-
mor antigens. Self-reactive T cells that survive negative selec-
tion in the thymus are also regulated by peripheral tolerance,
which further reduces the anti-tumor T cell response.

Efforts to produce clinically relevant quantities of tumor
antigen-specific T cells have intensified over the last 25 years
in order to support more effective ACT protocols. ACT has
shown promising success in the treatment of metastatic mel-
anoma, and is being used as a treatment for other cancers,
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including colon cancer [24]. The ability to readily generate
tumor-reactive T cells of sufficiently high avidity is one of the
main limiting factors in moving ACT into mainstream therapy
for cancer. T cells used in ACT are either harvested directly
from tumor biopsies and cultured ex vivo, in this case they are
referred to as tumor infiltrating lymphocytes (TILs), or they
are prepared from peripheral blood T cells that are genetically
modified to express tumor-specific receptor. Genetically mod-
ified receptors can either be a traditional TCR or a chimeric
antigen receptor (see below).

Solutions

Avidity Modification of TILs

TILs isolated from resected tumors are expanded in the pres-
ence of tumor antigen and IL-2 to generate a large number of
cells.While ex vivo cultured TILs retain anti-tumor specificity
and have been shown to mediate regression of melanoma
tumors after ACT, their clinical utility is generally limited to
the treatment of melanoma. Traditional methods for generat-
ing or selecting high avidity TILs in vitro include MHC/
antigen tetramer staining and sorting, with stronger tetramer
binding indicative of higher avidity and tumor reactivity [4,
25]. Alternatively, T cells can also be expanded in vitro in the
presence of low concentrations of peptide, which selects for T
cells with higher avidity and greater tumor reactivity [26].

Cloning HighAvidity TCRs fromNaturally Occurring T Cells

Genetic modification of T cells to express high avidity anti-
tumor TCRs has created the possibility of treating other types
of cancer with ACT. High avidity anti-tumor TCR genes can
be cloned from a variety of sources including from patients
who have had good responses to ACT [27]. TCR genes are
typically sub-cloned into gene transfer vectors such as retro-
virus or transposons [28, 29]. These are used to introduce the
TCR genes into normal autologous T cells isolated from
peripheral blood, endowing them with anti-tumor specificity
[16]. This method permits the generation of clinically relevant
quantities of high-avidity anti-tumor Tcells which are suitable
for ACT [30, 31]. Genetically modified T cells have shown
measurable success in patients with a variety of malignancies
including melanoma, colorectal cancer, lymphoma, neuro-
blastoma, and synovial sarcoma [15, 24, 32–35].

Use of HLATransgenic Mice to Expand the Repertoire
of Antigens

Humanized transgenic mice have become a valuable resource
for the isolation of high affinity TCR genes for use in gene
therapy. HLA transgenic mice express human MHC

molecules and can be vaccinated with the target human tumor
antigen. TCR genes are then cloned from mouse T cells that
are specific for the target antigen. High avidity T cell re-
sponses typically occur for antigens with a difference in
sequence between mice and humans. This technique has been
used successfully to generate high avidity T cells for use in
ACT for a variety of targets including cancer testis antigens
MAGE-A3 and NY-ESO-1 as well as other antigens [24, 34,
36]. The only risk of this approach is that the murine TCR
proteins could serve as a foreign antigen, resulting in acceler-
ated rejection of the transferred T cells.

Site-Directed Mutagenesis of the CDR to Improve Avidity

Targeted efforts to increase T cell avidity via point mutations
in the complementary determining region (CDR) of the TCR
have met with mixed success. While this method does indeed
increase TCR affinity as demonstrated by in vitro screening,
therapeutic applications of such altered TCRs have resulted in
unexpected toxicity in patients [36–38].

MAGE-A3 is a cancer-testis antigen and is commonly
expressed in epithelial cancers [39]. A TCR specific for
MAGE-A3 was isolated from HLA-A2 transgenic mice that
had been vaccinated with the MAGE-A3 peptide [36]. Site-
directed mutagenesis of the CDR of the MAGE-A3-specific
TCR resulted in a variant with a higher functional avidity [36].
This variant was used in clinical treatment of melanoma
patients [37]. Patients experienced objective regression of
their tumors, however neurological toxicity was observed in
some patients and resulted in two patient deaths [37]. Some
neurons express MAGE genes, and it is thought that the
adoptively transferred high avidity MAGE-A3-specific Tcells
targeted this subset of neurons [37].

A similar method was used to generate a high affinity TCR
directed against human carcinoembryonic antigen (CEA), an
adhesion protein expressed by many epithelial cancers includ-
ing colorectal carcinoma [24]. A TCR specific for CEA was
isolated from HLA A2.1-transgenic mice vaccinated with the
appropriate peptide [24]. The affinity of the TCR was then
increased by point mutations in the CDR [24]. Three patients
suffering frommetastatic colorectal cancer received ACTof T
cells engineered to express this high affinity TCR [24]. All
patients suffered severe colitis after the treatment, but subse-
quently recovered. One patient experienced objective regres-
sion of their tumor and metastases. Other patient responses,
including decrease in serum CEA levels, were transient [24].

Directed Evolution of TCRs via Display Platform Strategies

High affinity TCRs can be generated or evolved in vitro using
display platforms [40]. Phage platforms are the most com-
monly used, but similar methods exist based on yeast or
mammalian cells for display [41, 42]. In phage platforms,
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TCRs are fused with a coat protein which is displayed on the
surface of phages. TCRs are screened for high affinity via a
panning process against the target peptide/MHC ligand. High
affinity targets are isolated by amplification and sequencing of
the phage DNA which encodes the TCR gene. Display plat-
forms require large libraries of TCR variants or targeted
mutants [38]. However, it was reported that the ultra-
high affinity TCRs generated from phage display can
demonstrate loss of specificity [43]. Phage display has
been successfully used to generate higher affinity TCRs
directed against a variety of targets, including cancer
testis antigen NY-ESO, which is commonly expressed
on a variety of tumors [44, 45].

CAR T Cells

In addition to traditional TCRs, T cells can also be engineered
to express a chimeric antigen receptor (CAR) specific for
tumor antigen. Originally referred to as “T-bodies”, CARs
are hybrid molecules that fuse single-chain antibody variable
regions to the intracellular domain of Tcell signalingmolecule
[46]. Signaling domains include CD28 and other
costimulatory receptors, the TCR zeta chain, and FcR signal-
ing motifs, or combinations therein. The extracellular domain
(antibody domain) confers specificity towards a surface anti-
gen expressed by tumor cells. Engagement of the extracellular
domain triggers intracellular signaling which results in activa-
tion of T cells [46, 47]. The success of CARs is predicated on
the fact that antibodies have higher affinity for their ligand
than TCRs. Unlike T cells transduced with TCRs, CAR-
expressing T cells recognize native cell surface proteins on
tumor cells, independent ofMHC expression. This reduces the
risk of evasion by tumors, which often silence MHC expres-
sion. Numerous CARs have been developed showing success
as anti-tumor reagents, although antigen selection and persis-
tence can also present a barrier to utility [47].

Conclusions

The use of adoptive T cell therapy for treatment of tumors is
highly desirable, but is significantly hampered by insufficient
numbers of highly reactive tumor antigen-specific T cells. As
feasible methods for generating therapeutic T cells evolve,
strict quality controls will need to be implemented to screen
for off-target effects which could result in toxicity or autoim-
mune complications. Suicide genes and similar mechanisms
provide enhanced control of adoptively transferred T cells
within the recipient. These mechanisms allow specific dele-
tion of transferred T cells in the event of a negative outcome
[48], and move ACT closer to a reality in mainstream cancer
therapy.

Problem: Tolerance

One significant obstacle for successful cancer immunotherapy
is loss of T cell function, often referred to as T cell tolerance,
which may lead to a failure to develop long-term tumor
control. Historically, high avidity CTLs have been thought
to be more effective than low avidity cells in anti-tumor
immune response [7, 49] and therefore, research has been
focused on generating high avidity T cells for adoptive immu-
notherapy. However, more recently, T cell avidity has been
correlated with induction of T cell tolerance. Yu et al. reported
that Tcell avidity is associated with the generation of natural T
regulatory (Treg) cells during thymic selection, demonstrating
that CD4+ T cells with high affinity TCR for self-antigen are
either deleted or induced to become Treg cells [50]. Similarly,
high avidity CD8+ T cells that persist in the periphery may
also have a similar outcome when they encounter their ligand
in the context of a tumor.

More recently, despite enthusiasm about generating high
avidity T cells for adoptive immunotherapy, emerging data
demonstrate that high avidity CD8+ T cells display increased
susceptibility to tolerization in the tumor microenvironment
[51, 52]. Morgan and colleagues reported that higher avidity T
cells that recognize a surrogate (and xenogeneic) tumor anti-
gen, influenza hemagglutinin, were more readily tolerized
than lower avidity T cells with identical antigenic specificity
[51]. More recently, we developed a novel model system that
takes advantage of the melanocyte differentiation antigen
Tyrosine Related Protein-2 (TRP-2), which also serves as a
melanoma tumor rejection antigen. Using two populations of
T cells that recognize TRP-2 but display different avidity, we
provided additional, direct evidence that high avidity T cells
are more susceptible to becoming tolerized in the tumor
microenvironment (TME) [52]. Despite initial tumor control,
high avidity T cells became tolerized in the TME, marked by
reduced mobilization of CD107a (Lamp1) and expression of
IFN-γ. This loss of T cell function was associated with down-
regulation of MHC-I expression by melanoma tumor cells,
which renders them less susceptible to T cells.

While we and others have reported on T cell tolerization in
several tumor models, the mechanisms by which selective
tolerization of high avidity Tcells occurs are still only partially
understood. It is known that the TME is highly complex,
including multiple factors such as anti-inflammatory and
immune-suppressive cytokines, chemokines, and enzymes
that catabolize amino acids that are critical for T cell effector
functions such as indoleamine-2,3-dioxygenase (IDO) and
arginase. Previous studies have shown that targeting these
immunosuppressive factors alone is not sufficient to prevent
T cell tolerance and maintain durable anti-tumor immunity.

A variety of distinct cell populations may contribute to
immune suppression in the TME and the success of tumor
evasion of immune responses. One of the most extensively
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studied are CD4+FoxP3+ Treg cells, which are either recruit-
ed to the tumor from the periphery or converted into suppres-
sive Tcells in the TME. They express a variety ofmarkers of T
cells activation (CD25, GITR, OX-40) but are anergic to
stimulation in vitro and promote T cell dysfunction in vivo
[53]. Among Treg cells, several sub-populations have been
reported with different functions and sites of activity.
Armstrong and colleagues reported for the first time that
cyclophosphamide-sensitive, CD25low effector/memory Treg
cells may preferentially suppress high avidity HER-2/neu-
specific T cells in the HER-2.neu transgenic mouse model of
mammary carcinoma [54]. They further demonstrated that
anti-CD25 therapy preferentially affects CD25high Treg, and
leaves CD25low effector/memory Treg unaffected, capable of
suppressing high-avidity T cells [55]. These findings are in
contrast to another report that found that Treg cells serve to
enhance the avidity of CD8+ cells that respond to Listeria
monocytogenes [56].

Unexpectedly, CD8+ T cells themselves may further ac-
quire suppressive activity in the TME. It has been reported
that in the peripheral repertoire, chronic antigen exposure of
low avidity T cells results in anergy whereas highly avidity T
cells become suppressive [57]. We also reported that tumors
are able to induce suppressive activity by CTLs which can
reduce the proliferation of naive T cells in a prostate cancer
mouse model [58]. These findings may partially explain why
high avidity T cells are more susceptible to tolerization.

Solutions

Identifying ways to prevent/reverse T cell tolerance or sup-
pression in the TME is critical for successful adoptive immu-
notherapy. As mentioned above, besides blockade of immu-
nosuppressive factors and depletion of immune suppressive
cell populations, it is also possible to reverse tolerance by
directly providing pro-inflammatory cytokines or stimuli.
Teague et al. reported tolerant high avidity CD8+ Tcells could
be rescued with exogenous IL-15 and used for adoptive im-
munotherapy of established tumors [59]. It is unclear if this
will work for multiple tumor systems.

Ligation of the negative regulatory receptors PD-1 or
CTLA-4 on T cells hinders their response to antigen. PD-1 is
expressed on activated lymphocytes and is known to regulate
the threshold for T cell activation. Its expression has been
associated with functional exhaustion of CD8+ T cells. More
recently, it was demonstrated that high expression of PD-1 by
TILs correlates with functional impairment [60, 61].
Brentville et al. reported that high avidity CTLs failed to
proliferate and expressed high level of PD-1 after “supra-
optimal” TCR stimulation, which is consistent with the hy-
pothesis that over stimulation TCR occupancy pushes high
avidity CTLs towards apoptosis or tolerance [62]. Consistent

with this observation, we reported that PD-1 blockade
prevented T cell tolerance and restored immunity by high
avidity T cells in a melanoma mouse model [52].

Many studies have also focused on low avidity Tcells since
they are presumed to be the predominant population of T cells
present in the periphery of cancer patients. Compared to high
avidity T cells, one advantage of incorporating low avidity T
cells into cancer therapies is that they are reported to be less
susceptible or possibly resistant to tolerization. However,
previous studies suggested that low avidity T cells remain
ignorant of antigen expression and therefore do not mount a
successful tumor specific response [63, 64]. Therefore, it may
be necessary to optimize the effector functions of low avidity
T cells to elicit more potent anti-tumor immune responses.
Conferring or inducing expression of genes that are present in
high avidity T cells which may endow greater anti-tumor
properties to lower avidity T cells, while preserving reduced
tolerization, may be a feasible approach to sustain high po-
tency immunity to tumors. Alternatively, others have sug-
gested that CD4+ T cell help enhances lower avidity T cell
function allowing for tumor destruction and reduction of Treg
cell-mediated suppression [65].

Problem: Autoimmunity

T cells recognize a diverse and complex array of tumor-
associated antigens (TAA’s). Only a small fraction of identi-
fied tumor antigens are either neo-antigens or mutated, self-
antigens; most TAA’s are non-mutated, self-antigens
(self/TAA’s). As a result, tumor-specific T cell recognition of
their cognate antigen expressed by the normal, non-malignant
tissue could be perceived as autoimmunity and result in de-
struction of healthy tissues. Clearly, this would be an undesir-
able outcome in many cancer types.

As the T cell repertoire evolves, a natural shaping (aka,
selection) process eliminates or controls self-reactive Tcells as
a means of preventing autoimmunity [66]. This can occur by a
multi-step process, including deletion of high avidity, self-
reactive T cells in the thymus followed by tolerization or
suppression of lower avidity T cells in the periphery [67]. As
a result, most high avidity T cells recognizing self/TAA’s are
absent from the peripheral T cell repertoire. The remaining
lower avidity T cells are generally less efficient at controlling
tumor growth. While this process of generating a restricted
repertoire prevents autoimmunity, it strongly reduces the effi-
cacy of anti-tumor immunity.

Due to the efficiency of the thymic selection process,
generating highly avid, tumor-specific T cells that recognize
unmodified self/TAA’s is a challenge. One very recent study
reported that sensitization of mice to self/TAA’s generated T
cells with a phenotype comparable to those from mice sensi-
tized to a xenogeneic, surrogate TAA [68]. However, the
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“functional” avidity of these two populations, as measured by
the production of cytokine as a function of antigenic dose, was
significantly lower for T cells from the mice sensitized to the
self/TAA compared to those sensitized to the surrogate TAA.
Not surprisingly, this lower avidity response was associated
with a weaker anti-tumor immune response. In addition, gen-
eration of high avidity T cells ex-vivo was previously reported
to be dependent on repeated stimulation by low dose, self-
antigen [26].

Despite this apparent difficulty in generating highly avid
responses to self/TAA’s, several studies have reported that
successful anti-tumor immunity can result in autoimmunity,
as well. This observation is most highly prevalent in melano-
ma, where cross-reactivity between pigmentation antigens
expressed by both melanoma tumor cells and melanocytes
can result in an autoimmune, vitiligo-like depigmentation.
For example, sensitization to the immunodominant epitope
of TRP-2, in combination with a Toll-like receptor agonist and
anti-CD40, resulted in potent immunity to the murine mela-
noma B16, along with “extensive” vitiligo [69]. Blockade of
CTLA-4, an inhibitory receptor expressed by both effector
and regulatory T cells, was also attributed to induction of
autoimmune depigmentation [70]. Likewise, triggering
GITR, also expressed on both populations of T cells, induced
potent anti-B16 immunity and autoimmune depigmentation
[71]. In contrast, simple sensitization of mice using peptide-
pulsed dendritic cells provided protective immunity to B16
without significant signs of autoimmunity [72]. Immunity to
other TAA’s may also elicit autoimmunity which is not tissue-
specific. For example, treatment of mice with telomerase-
specific T cells was reported to cause depletion of B cells in
primary and secondary lymphoid tissues [73]. Most impor-
tantly, similar observations are noted in patients undergoing
immunotherapy for melanoma, where successful therapies
were associated with depigmentation of the skin, hair, and
eyes [74, 75]. Moreover, CTLA-4 blockade for treatment of
different cancers in humans was reported to cause other more
widespread autoimmune symptoms, including hypophysitis,
as well as symptoms reminiscent of colitis [76].

Given this propensity to develop autoimmunity, it would be
a significant concern that altering avidity could increase the
risk of autoimmunity. In fact, several studies using murine
models of high and low avidity T cells recognizing the same
self/TAA have demonstrated that higher avidity T cells confer
tumor immunity but also induce autoimmunity. Not surpris-
ingly, raising the affinity of a TCR specific for the NY-ESO-1
TAA to the picomolar range led to promiscuity of the T cells
which were transduced to express this transgenic TCR [77]. In
our TRP-2 TCR model, we reported that despite slowing B16
melanoma tumor growth, mice bearing the higher avidity
TCR spontaneously develop vitiligo-like depigmentation
[52]. In addition, Johnson and colleagues reported that treat-
ment of melanoma patients with T cells transduced to express

a high avidity, gp100/Melan-A-specific TCR was capable of
slowing melanoma progression, but also resulted in loss of
pigmentation in multiple tissues [16]. More recently, Zhong
et al. studied melanoma patient-derived TCRs within the
micromolar range of affinities for gp100/HLA A2 [13].
Using a unique chimeric (human TCR/mouse host) model
system, they reported that while T cell effector function (mea-
sured by cytokine production in vitro) was more heavily
dependent on avidity, control of tumor growth was linked to
autoimmunity and “plateaued” at a more moderate avidity.
The role of the CD8 co-receptor, known to be critical for
overall T cell avidity, was suggested to affect higher avidity
TCRs more significantly. These findings imply that while
some type of avidity threshold exists, a greater understanding
of the relationship between TCR affinity, T cell avidity, and
autoimmunity is necessary. The outcome of this connection is
presumably dependent on antigen levels and other signals
which regulate T cell function.

Solution

Our current knowledge on the connection between T cell
avidity and autoimmunity indicates that as avidity increases,
the risk for developing autoimmunity, and even loss of spec-
ificity, increases. In some cases, where autoimmune destruc-
tion of the non-malignant, self/TAA-expressing tissues is per-
ceived to be less pathogenic than cancer growth, this type of
autoimmunity may be acceptable. In fact, for cancers of non-
vital tissues like prostate, mammary, ovarian, and skin,
targeting autoimmunity by increasing avidity, or removing
regulatory pathways that inhibit high avidity T cells [54],
may be appropriate. However, for cancers of vital organs like
liver, brain, kidney, and lung, autoimmunity may be unaccept-
able and targeting the lower threshold of avidity that elimi-
nates the risk of autoimmunity may be necessary.

Conclusion

The challenge of generating a potent and durable anti-tumor
immune response has remained evasive. Recent approval of a
prostate cancer vaccine and a biological that targets CTLA-4
raises enthusiasm for cancer immunotherapy. However, sig-
nificant obstacles still exist. Generating high avidity T cell-
mediated immune responses, in principle, seems logical and
effective. However, the possibility of exceeding a threshold
and losing specificity and/or inducing autoimmunity remains
a real concern. Balancing elevated avidity with targeting the
suppressive effects of the tumor microenvironment remains a
challenge but a logical opportunity to generate long-lasting
tumor immunity. Given the complexity of the tumor microen-
vironment, though, other solutions are needed. In addition, the
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possibility of increased susceptibility to apoptosis or
tolerization makes the use of higher avidity T cells more
complex. One approach would be to identify and target the
mechanisms that contribute to tolerization or apoptosis of high
avidity T cells in an effort to maintain their functionality.
Alternatively, using lower avidity T cells, which may be less
prone to inducing autoimmunity or tolerization, and improv-
ing signaling or activation deficiencies which might otherwise
reduce their efficacy, could also contribute to more durable
anti-tumor immunity. Further studies examining effects of
avidity on the function, fate, and utility of tumor-specific T
cells will undoubtedly improve current immunotherapies and
make this a more effective strategy for cancer treatment.
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