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Abstract Tumors are dynamic organs, in which active pro-
cesses of cell motility affect disease course by regulating the
composition of cells at the tumor site. While sub-populations
of tumor-promoting leukocytes are recruited inward and
endothelial cell migration stands in the basis of vascular
branching throughout the tumor, cancer cells make their
way out of the primary site towards specific metastatic sites.
This review describes the independent and cross-regulatory
roles of inflammatory chemokines and of the inflammatory
cytokine tumor necrosis factor α (TNFα) in determining cell
motility processes that eventually have profound effects on
tumor growth and metastasis. First, the effects of inflammato-
ry chemokines such as CCL2 (MCP-1), CCL5 (RANTES)
and CXCL8 (IL-8) are described, regulating the inward flow
of leukocyte sub-populations with pro-tumoral activities, such
as tumor-associated macrophages (TAM), myeloid-derived
suppressor cells (MDSC), tumor-associated neutrophils
(TAN), Th17 cells and Tregs. Then, the ability of inflamma-
tory chemokines to induce endothelial cell migration, sprout-
ing and tube formation is discussed, with its implications on
tumor angiogenesis. This part is followed by an in depth
description of the manners by which TNFα potentiates the
above activities of the inflammatory chemokines, alongside
with its ability to directly induce migratory processes in the
tumor cells thus promoting metastasis. Note worthy is the
ability of TNFα to induce in the tumor cells the important
process of epithelial-to-mesenchymal transition (EMT).
Emphasis is given to the ability of TNFα to establish an
inflammatory network with the chemokines, and in parallel

to form a cell re-modeling network together with transforming
growth factor β (TGFβ). The review concludes by discussing
the implications of such networks on disease course, and on
the future design of therapeutic measures in cancer.
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Abbreviations
CAF Cancer-Associated Fibroblasts
DCIS Ductal Carcinoma In Situ
EMT Epithelial-to-Mesenchymal Transition
IDC Invasive Ductal Carcinoma
IFNγ Interferon γ
IL-1β Interleukin 1β
IMPC Invasive Micropapillary Carcinoma
MDSC Myeloid-Derived Suppressor Cells
MMP Matrix Metalloproteinases
MSC Mesenchymal Stem Cells
TAM Tumor-Associated Macrophages
TAN Tumor-Associated Neutrophils
TGFβ Transforming Growth Factor β
TNFα Tumor Necrosis Factor α
VEGF Vascular Endothelial Growth Factor

Introduction

Studies of the last several years have put much emphasis on
the tumor microenvironment and its contribution to tumor
growth and progression. It is now known that the composi-
tion of the tumor milieu, along with genetic instability and
epigenetic modifications in the tumor cells, dictate disease
course and metastasis. Accordingly, emphasis was put

A. Ben-Baruch (*)
Department Cell Research and Immunology, George S. Wise
Faculty of Life Sciences, Tel Aviv University,
Tel Aviv 69978, Israel
e-mail: aditbb@tauex.tau.ac.il

Cancer Microenvironment (2012) 5:151–164
DOI 10.1007/s12307-011-0094-3



recently on the contribution of inflammatory components to
the microenvironmental setup of many tumor types. Inflam-
matory cells and soluble mediators were shown to have
tumor-promoting consequences in a large number of malig-
nancies, facilitating the establishment of primary tumors and
drivingmetastatic processes. Such activities of immunological
elements may very well reflect attempts of the immune system
to combat the developing tumor; however, these efforts inflict
selective pressures on the tumor cells, eventually leading to
survival of tumor cells that are able to exploit the immune
system for their own benefit [1–8].

Within the tumor site there is often persistence of soluble
inflammatory mediators, including chemokines and cyto-
kines. The tumor-supporting activities of these factors are
diverse as they affect all the steps required for tumor growth
and progression, including proliferation and motility of the
tumor cells, matrix degradation, angiogenesis and seeding
of the tumor cells at selected metastatic sites [9–24].

Between others, inflammatory chemokines and cytokines
regulate dynamic motility processes that take place at the
tumor microenvironment. The tumor is an ever-changing
organ in which active and dynamic processes of cell motility
are taking place. Sub-populations of leukocytes with tumor-
promoting roles are recruited inwards, endothelial cells are
mobilized within the tumor and form the required vascular
infrastructure, and cancer cells are migrating out of the tumor
bed, making their way to metastatic sites.

These migratory processes—into, within and out of the
tumor site—eventually contribute to “successful” processes
of malignancy. The present review describes the roles of
inflammatory mediators in governing this intensive flow of
leukocytes, stroma cells and tumor cells at the tumor micro-
environment. Specifically, this review concentrates on the axis
that is established between inflammatory chemokines and the
inflammatory cytokine Tumor Necrosis Factorα (TNFα), and
their independent and cross-regulatory roles in dictating
motile processes at tumor sites. The effects of these fac-
tors on cell migration are many, and in the limits of this
review emphasis will be given to selected aspects only. To
keep this review within reasonable limits, these aspects
will be illustrated mainly in the representative case of breast
cancer.

The theme of this review is that inflammatory mediators
control the inward migration of pro-malignancy leukocytes
to the tumor site (see Scheme 1). The inflammatory chemo-
kines also regulate migratory processes in endothelial cells
leading to formation of new blood vessels. These migratory
activities of the inflammatory chemokines are potentiated by
TNFα, a key and most powerful inducer of chemokine
release at the tumor site. In parallel, TNFα is directly
responsible for the exit of the tumor cells out of the tumor
site and facilitates metastasis formation. These activities of
TNFα reflect its being a seminal inducer of tumor cell

motility and of epithelial-to-mesenchymal transition (EMT)
in the tumor cells (references below).

The independent activity of the inflammatory chemo-
kines and of TNFα on cell migration, joined by a regulatory
axis that is established between them, may dictate the flow
of cells at the tumor site and the spread of the cancer cells to
remote organs. Eventually, such processes of cell motility
have major influence on the rate of tumor growth and
progression, and on the efficiency of tumor cell spreading.

The Flow of Leukocytes and Stroma Cells
into the Tumor Site and Within it: Direct Roles
for Inflammatory Chemokines

General Outline of Inflammatory Chemokines
and their Roles in Malignancy

Members of the chemokine superfamily have been identified
long ago as fundamental regulators of host defense and
immune homeostasis. As such, they are sub-categorized to
chemokines with major impact on inflammatory processes
and to others that mainly control leukocyte migration to
primary and secondary lymphoid organs. Although this sub-
categorization is not rigid, it does reflect the general physio-
logical consequences emerging from the activities of chemo-
kines belonging to the two different subtypes [25–27].

Acting in the inflammatory and immune context, all che-
mokines are potent chemoattractants of leukocytes; however,
each chemokine has its own flavor of preferred target cells.
The inflammatory chemokines are usually not constitutively
expressed by normal cells, but their expression is strongly
induced following exposure of tissues to inflammatory insults.
Tissue damage or infection lead through bacterial products
and inflammatory cytokines, e.g. interleukin β (IL-β) and
tumor necrosis factor α (TNFα) to increased release of in-
flammatory chemokines recruiting inflammatory/immune
cells with protective and tissue-repair properties [25–33].

In parallel to their roles in immunity, some of the inflam-
matory chemokines have been identified as regulators of
malignant processes. Chemokines that belong to the inflam-
matory subtype were described as having many different
effects on tumor growth and progression, most of which are
mediated by their chemotactic properties. In general, at the
malignancy context the inflammatory chemokines act on
many types of target cells. The target cells include primarily
leukocytes and endothelial cells, but in parallel, several of the
inflammatory chemokines can also act directly on the tumor
cells and promote their invasive properties, alongwith elevated
proliferation [9–18].

This part of the review is devoted to the impact of inflam-
matory chemokines on motility of cells into the tumor site and
within it, focusing on specific subtypes of leukocytes that
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promote malignancy, and on endothelial cells, respectively.
These aspects have been reviewed elsewhere (references pro-
vided below), and in the framework of this review they will be
briefly summarized in order to provide a general overview of
the subject.

Inflammatory Chemokines Promote the Presence
of Tumor-Supporting Leukocyte Sub-populations
at the Tumor Site

At the tumor microenvironment, the chemotactic activities of
the inflammatory chemokines have major impact on the types
and amounts of leukocytes that are present at the tumor site,
and accordingly they can dictate the way that the inflamma-
tory nature of the tumor affects the malignancy process.
Chemokines can induce the recruitment of leukocyte subsets

with beneficial properties or with devastating implications on
the cancerous process. The final leukocyte composition at the
tumor site is governed by the types of chemokines and their
levels at the tumor milieu. For example, chemokines that
belong to the CXCR3-binding subfamily of non-ELR CXC
chemokines chemoattract Th1 and NK cells to the tumor
locus, and are usually considered potential anti-tumor factors
[16–18, 34]. However, the attraction of Th1 cells by CXCR3
chemokine ligands, as well as by other inflammatory chemo-
kines that act alike (such as CCL5 [35]), can be negated by the
opposing effects of the same chemokines or other chemokines
that promote the migration of leukocyte sub-populations sup-
porting the malignancy cascade.

Typical representatives of the tumor-supporting arm of
inflammatory chemokines are the chemokines CCL2, CCL5
and CXCL8. Their pro-cancerous activities are many and

Scheme 1 The interplay between TNFα and inflammatory chemo-
kines at the tumor site, and the effects of these mediators on the
malignancy cascade. The Scheme presents the dynamic motility pro-
cesses taking place in cancer, and their regulation by inflammatory
mediators. The inflammatory chemokines—including CCL2, CCL5
and CXCL8—were shown to have active pro-cancerous effects in a
large variety of malignancies. In parallel, the inflammatory cytokine
TNFα is abundant in tumors, and was recently shown to have diverse
tumor-promoting roles in many cancer types. Also, TNFα has been
found to up-regulate the expression of the inflammatory chemokines
by tumor cells and by cells of the tumor microenvironment, agreeing
with the coordinated expression of these factors in malignancy, as shown
for example in breast cancer. In this Scheme, a suggestive model is
presented on the manners by which inflammatory chemokines, TNFα
and the interplay between themmay promote pro-malignancy activities at
the tumor site and metastasis formation. Upper Panel: Inflammatory

chemokines recruit leukocytes with pro-cancerous activities from the
blood stream into the tumor site. These may include primarily tumor-
associated macrophages (TAM), myeloid-derived suppressor cells
(MDSC) and tumor-associated neutrophils (TAN), but also Th17 cells
and Tregs. By virtue of its ability to promote the release of inflammatory
chemokines, TNFα may potentiate the leukocyte-recruiting activities of
the chemokines. Middle Panel: Many of the inflammatory chemokines
have potent angiogenic activities, promoting the motility of endothelial
cells within the tumor, sprouting and branching. By elevating the expres-
sion of these chemokines, TNFα may indirectly increase neo-
vascularization at the tumor site. Lower Panel: TNFα increases the
release of matrix metalloproteinases (MMP), and directly induces
epithelial-to-mesenchymal transition (EMT) and motility processes in
the cancer cells. These activities of TNFα, often potentiated by TGFβ,
increase tumor cell invasiveness and may thus contribute to elevated
metastasis
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diverse (reviewed for example in [12–14, 36–38], and are well
manifested by studies in animal model systems in which
inhibition of each of these chemokines has led to reduced
tumor growth and metastasis [39–45]. The chemokines
CCL2 and CCL5 act at the tumor site in similar manners to
the way they function in immune-related inflammatory pro-
cesses, where they serve as powerful chemoattractants of
monocytes [25–27]. Likewise within tumors, CCL2 and
CCL5 recruit circulating monocytes to tumor sites. Under
the influence of the tumor microenvironment and of tumor-
derived factors, the infiltrating monocytes and possibly also
resident macrophages may differentiate to tumor-associated
macrophages (TAM), with deleterious consequences ensued
due to the release by TAM of a large variety of factors that
promote tumor growth and motility, as well as angiogenesis
[46–48].

Actually, chemokines such as CCL2 and CCL5 may shift
the balance between leukocyte sub-populations at tumor sites,
favoring immune and inflammatory cells with tumor-
promoting activities. This is because in addition tomonocytes,
they may give rise to high presence of myeloid-derived sup-
pressor cells (MDSC) in tumors, and it was postulated that
they also play active roles in recruiting Tregs and inflamma-
tory Th17 cells to the tumor site [11–13, 36, 49–52].

In addition to these cell sub-populations, neutrophils re-
cently have gained increased attention with respect to their
roles in malignancy. Tumor-associated neutrophils (TAN)
produce substances that promote the inflammatory nature of
the tumor microenvironment and the invasive properties of the
tumor cells [53–56]. The migration of neutrophils to tumor
sites is expected to be induced mainly by CXCL8 (Interleukin
8), the chemokine with most powerful chemoattracting effects
on these cells [25–27]. This chemokine was recently identified
as an important pro-tumoral factor that is expressed by many
tumors, including of the breast [14, 43–45, 57–60]. Accord-
ingly, recent studies by Strell et al. have demonstrated that in
response to tumor-derived CXCL8, neutrophils migrate
towards breast tumor cells, thereafter linking the tumor cells to
endothelial cells [61, 62].

By virtue of its neutrophil-chemoattracting activities,
CXCL8 joins the inflammatory chemokines CCL2 and
CCL5 in dictating the inward flow of leukocytes, therefore
together they have considerable effects on the inflammatory
nature of the tumor surroundings.

Inflammatory Chemokines Promote Endothelial Cell
Migration and Sprouting, thus Increasing Angiogenesis

The chemotactic activities of inflammatory chemokines are
not limited to leukocytes, and many of them are known to
induce migration of endothelial cells, therefore promoting
angiogenicity. Angiogenesis, the formation of new blood
vessels from pre-existing capillaries, provides essential

blood supply to the growing tumor and is required for
metastasis. Vascular expansion can proceed by several pro-
cesses, one of which is sprouting that requires endothelial
cell migration and branching throughout the tumor. The
sprouting process is controlled by a large variety of angio-
genic and angiostatic factors, including chemokines from
the inflammatory and homeostatic branches [16, 17, 34,
63, 64].

Very much like the induction of leukocyte infiltration, the
inflammatory chemokines can have opposing effects on
angiogenicity. While ELR-expressing CXC chemokines and
some of the CC chemokines are categorized as angiogenic
chemokines, the CXCR3-binding non-ELR CXC chemokines
are characterized as potent angiogenic factors. This character-
istic of the CXCR3-binding chemokines, together with their
potentiating effects on Th1 and NK recruitment to tumors, has
led to their coining “immunoangiostatic” chemokines [16, 17].
In parenthetical clause, it should be noted that under specific
conditions these CXCR3 chemokine ligands gain tumor-
promoting functions that raise fundamental questions as to
the true nature of their activity at tumor sites, whether anti- or
pro-tumoral [16–18, 34].

One of the most potent angiogenic chemokines is the ELR-
expressing CXC chemokine CXCL8. CXCL8 acts on endo-
thelial cells to promote their migration, invasion and prolifer-
ation, eventually giving rise to formation of capillary-like
structures that can support tumor growth and metastasis [16,
17, 44, 65–67]. The CXCL8 receptor CXCR2was shown to be
critical for this activity, although contribution of CXCR1 was
also described [16, 17, 65] . By virtue of its angiogenic activ-
ities that lead to neovascularization, tumor growth and metas-
tasis, CXCL8 is categorized as a powerful tumor-promoting
factor in many malignancies.

For example in breast cancer, the expression of CXCR1 and
CXCR2was denoted on endothelial cells in breast tumors [68],
supporting a role for CXCL8 in regulating neovascularization
and tumorigenesis thereof. Indeed, breast tumor-derived
CXCL8 was shown to induce the formation of tube-like struc-
tures, endothelial cell migration through matrigel and blood
vessel formation in vivo [69, 70]. Furthermore, it was recently
shown that CXCL8 which is produced by monocytic cells that
have been exposed to breast tumor cell supernatants, is active
in microvessel formation [71]. A direct role for CXCL8 in
angiogenesis in breast cancer was provided by the targeting of
CXCL8 expression in breast tumor cells by shRNA [44]. This
measure has led to reduced angiogenicity and as a consequence
to inhibition of metastasis in mice [44]. Also, endothelial cell
proliferation induced by cancer cell-produced CXCL8 was
inhibited by neutralizing antibodies against the chemokine,
and tumors with low CXCL8 levels have shown reduced
angiogenesis [70].

CXCL8 is one of several ELR-expressing CXC chemo-
kines that positively regulate angiogenesis [16, 17]. In parallel,
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members of the CC branch also promote vascularization, as
demonstrated for CCL2 whose activities on endothelial cells
are mediated by its CCR2 receptor [17, 59, 67, 72–74]. The
angiogenic activities of CCL2 can be indirect through induc-
tion of an inflammatory microenvironment. Following CCL2-
induced recruitment of monocytes to tumors, these monocytes
differentiate to TAM that release a large variety of angiogenic
factors [17, 75–78]. For instance, the recent study by Pollard
and his team suggested that following the CCL2-induced
recruitment of inflammatory monocytes to breast tumors,
angiogenesis is promoted by vascular endothelial growth
factor (VEGF) [78]. These indirect effects of CCL2 on
neovascularization may be further potentiated by direct
signaling induced by CCL2 on endothelial cells, leading
to their migration and to sprouting and tube formation [39,
67, 72]. Such direct angiogenic activities of CCL2 may
stand in the basis of the roles found for CCL2 in elevating
metastatic lesions of breast tumor cells in mice [39].

To conclude, inflammatory chemokines acting potently
as angiogenic factors have cardinal influence on disease
course. Particularly, the chemokines CXCL8 (and other
ELR-expressing CXC chemokines) and CCL2 promote the
migration of endothelial cells within the tumor site, the
result being sprouting and tube formation. Eventually, these
events give rise to increased angiogenesis that supports not
only tumor growth, but also metastasis.

The Effects of the TNFα-Chemokine Axis on Migratory
Processes at Tumor Sites

The above discussion has illustrated the direct roles of inflam-
matory chemokines in controlling the migration of leukocytes
and endothelial cells into the tumor site and within it. Such
processes position leukocyte sub-populations with tumor-
promoting activities in proximity of the tumor cells, and they
lead to extended blood supply to the tumor cells.

The major source of the inflammatory chemokines at breast
tumor sites is in the cancer cells themselves, although expres-
sion in stroma cells and leukocytes was also denoted. In the
standard immunological setting the inflammatory chemokines
are rarely expressed by normal tissue cells, rather they are up-
regulated by the different mediators of the inflammatory set-
up, between others by inflammatory cytokines such as IL-1β
and TNFα. Accordingly, many of the inflammatory chemo-
kines including for example CCL2 and CCL5, are minimally
detected in normal breast epithelial cells; In contrast, breast
tumor cells in cancer biopsies and in culture show highly
detectable levels of these chemokines [68, 70, 76, 77,
79–106]. These observations raise the possibility that in line
with the mechanisms regulating the inflammatory chemokines
in immunity, a major mechanism leading to chemokine ex-
pression by tumor cells in situ is exposure of these cells to

inflammatory mediators that up-regulate chemokine transcrip-
tion and release.

Indeed, the surroundingmilieu of many tumors, particularly
in breast cancer is enriched with inflammatory cytokines.
IL-1β and TNFα are prevalent in breast tumors, where
they are produced by breast tumor cells and also by cells
of the tumor microenvironment, at their vicinity [90, 101,
107–117]. Along the years, these two cytokines were shown
to up-regulate the release of CCL2, CCL5 and CXCL8 by
breast tumor cells, as well as by adjacent stroma cells and
leukocytes [85, 86, 90, 117–125]. Therefore, indirectly by
promoting the inflammatory chemokines, IL-1β and TNFα
may potentiate the tumor-promoting activities of the inflam-
matory chemokines at the tumor setting.

In line with the above, it was shown that CCL2 and CCL5
are co-expressed with IL-1β and TNFα in breast tumors, and
furthermore that the expression of the four factors is coordi-
nated along different stages of breast cancer progression [65,
67, 76, 90, 117]. The expression of all four factors was
minimally detected in normal breast epithelial cells, but was
predominantly elevated in the tumor cells, starting from the
Ductal Carcinoma In Situ (DCIS) stage on towards Invasive
Ductal Carcinoma (IDC). The incidence of CCL2, CCL5,
IL-1β and TNFα expression was beyond 50% in IDC
patients, with or without disease recurrence [90].

The coordinated expression of the inflammatory chemo-
kines CCL2 and CCL5 with the inflammatory cytokines IL-
1β and TNFα along disease course in breast cancer supports
the existence of an inflammatory network between chemo-
kines and cytokines in breast tumors. Importantly, the inci-
dence of IL-1β and TNFα expression was further elevated
in patients who relapsed [90]. Disease relapse was charac-
terized by return of local disease or appearance of new
metastases, processes that involve EMT in the tumor cells
[126–131]. The exacerbated expression of IL-1β and TNFα
in patients with relapse suggested that these two cytokines
not only induce the expression of inflammatory chemokines
at the tumor site, but have additional levels of activity
whereby they act directly on the tumor cells to induce
EMT, tumor cell migration and invasion.

Taken together, the above findings suggest that IL-1β
and TNFα have two complementary effects at breast
tumor sites: (1) They potentiate the expression of inflam-
matory chemokines at the tumor locus, by that promoting
indirectly the inward flux of tumor-supporting leukocytes
and endothelial cell migration within the tumor. (2) They
induce EMT and tumor cell invasiveness, thus facilitating
the outward flow of the tumor cells towards metastatic
sites.

Studies of the last several years indicate that of the two
inflammatory cytokines, it is mainly TNFα that exerts both
these two functions. Below, this review summarizes some of
the observations related to TNFα effects as a potent inducer
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of inflammatory chemokines, and as a powerful cell re-
modeling cytokine that leads to EMT in breast tumor cells.

General Outline of TNFα and its Roles in Malignancy

TNFα is a pleiotropic cytokine whose activities are funda-
mental to immune protection and homeostasis. Its naming
“tumor necrosis factor” reflects early reports on its tumor-
inhibiting capabilities, showing that high doses of locally-
administrated TNFα caused destruction of blood vessels and
promoted anti-tumor effects. However, emerging studies have
provided evidence to opposite regulatory roles for TNFα,
suggesting that its chronic expression at relatively low
amounts may have pro-cancerous effects. Indeed, based on
extensive research, TNFα is known to be expressed by many
types of tumor cells and by cells of the tumor microenviron-
ment, and to exert a large variety of pro-tumoral activities
[19–22, 132].

The regulation of malignancy by TNFα is complex and has
been discussed in depth in several reviews (e.g. [19–22, 132]).
Breast cancer is one of the malignancies in which TNFα was
found to have a large variety of pro-cancerous roles (see
below); however, in the limits of this review emphasis will
be given to the regulation of cell motility by this cytokine, and
its roles in dictating indirectly or directly the flow of cells at
the tumor site.

mRNA and protein analyses of TNFα, including of biop-
sies of breast cancer patients, detected the expression of this
cytokine in breast tumor cells, in macrophages and in endo-
thelial cells [90, 101, 111–117, 133, 134]. Some of these
studies have analyzed the correlation between TNFα expres-
sion, disease stage and/or clinicopathological parameters. The
analyses differed considerably in the parameters they were
using, therefore no concrete conclusions could be made [90,
111, 114, 116, 133]. However, a general tendency was found
for correlation between increased levels of TNFα expression,
either in incidence or intensity, and more advanced/progressed
stages of disease [90, 111, 114, 116]. Between others, the
study by Cui et al. has shown that TNFα expression was
significantly higher in the aggressive form of invasive micro-
papillary carcinoma (IMPC) than in IDC, and it was correlated
with the rate of tumor cell proliferation, histological grade,
lymph node metastasis and angiogenesis [116].

In parallel to the expression of TNFα, its receptors
were also detected in breast tumors, where they were
found to be expressed by the tumor cells, by endothelial/
stroma cells, as well as by leukocytes, primarily macro-
phages [111, 112, 114, 116]. Of the two receptors, it was
TNFRII that was correlated with TNFα expression, with
increased proliferation of the tumor cells and with the
histological grade of disease [114, 116]. Together, these
results suggest that TNFα may act by autocrine as well as

paracrine manners, leading to detrimental consequences on
the malignant process.

The pro-tumoral roles of TNFα in breast cancer are sup-
ported by studies showing direct roles for the cytokine in breast
malignancy, as well as indicating that it is correlated with a
more aggressive malignant phenotype [135–142]. Animal sys-
tems of the neu/erbB2 model have shown that tumorigenesis
was increased in TNF+/+ mice compared to TNF-/- mice, and
that bone marrow transplantation from TNFα knockout mice
intoNeuT recipients significantly impaired tumor growth [140,
141]. Furthermore, reduced tumor growth and metastasis for-
mation were obtained by inhibiting TNFα with neutralizing
antibodies, particularly by infliximab [140–142], the chimeric
antibody that is used in the clinic for TNFα inhibition in
inflammatory diseases (such as rheumatoid arthritis).

Overall, emerging studies on TNFα and its roles in breast
cancer strongly suggest that under experimental conditions
this cytokine is skewed to a pro-tumoral phenotype, and
evidence supporting its connection to the malignancy process
in breast cancer patients is increasing. Accordingly, it was
shown that TNFα contributes to malignant processes in breast
cancer and in other types of tumors by many different man-
ners. Two of these pathways that are related to the regulation
of cell flow at the tumor microenvironment, are discussed
below.

The Indirect Effects of TNFα on the Flow of Leukocytes
and Endothelial Cells at the Tumor Site

In the immune context, TNFα is a prototype inducer of
many of the inflammatory chemokines mainly via NF-κB
and AP-1 activation, leading to increased chemokine tran-
scription and release thereof [25–30]. Similarly, much evi-
dence was provided to the powerful chemokine-inducing
abilities of TNFα in malignancy. By promoting the levels
of inflammatory chemokines such as CCL2, CCL5 and
CXCL8 at the tumor microenvironment, TNFαmay amplify
their tumor-supporting activities. Thus, TNFα may indirect-
ly shift the balance in cell flow, facilitating the inward
migration of detrimental leukocytes to the tumor site, and
migratory processes of endothelial cells.

In the representative case of breast cancer, TNFα is a
strong inducer of inflammatory chemokines in the tumor
cells and in adjacent cells at the tumor milieu. The receptors
for TNFα are abundantly expressed by many cell types,
accordingly increased release of CCL2 was denoted upon
TNFα exposure in the tumor cells as well as in endothelial
cells and leukocytes [85, 86, 90, 117–120]. Such effects
could be obtained by TNFα which was produced by the
tumor cells or by cells of the microenvironment. For example,
it was shown that monocyte-derived TNFα stimulated the
release of CCL2 in breast tumor cells, and that the resulting
CCL2 in turn up-regulated the secretion of TNFα from
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monocytic cells [86]. If such a mechanism takes place in situ,
it may lead to a positive feedback loop, whereby the tumor
cells and the monocytic cells at tumor site promote each
other’s ability to express and secrete pro-malignancy factors.

Inducing effects were observed for TNFα also on CCL5
and CXLC8, driving forward the release of these two chemo-
kines by breast tumor cells, endothelial cells and mesenchy-
mal stem cells (MSC) [90, 117, 118, 120–125]. Comparison
between breast tumor cell lines has shown that those cells that
had a higher metastatic phenotype responded better to TNFα
and produced higher levels of CXCL8 [124].

In line with the chemokine-promoting activities of TNFα,
its expression was highly correlated with the inflammatory
chemokines in analyses performed on biopsies of breast cancer
patients [65, 67, 76, 90, 117]. These results strongly support
the existence of an inflammatory network in which inflamma-
tory cytokines regulate inflammatory chemokines and are thus
coordinated with them. Supporting such a possibility are studies
showing that measures inhibiting the tumorigenic potential of
breast tumor cells have led to reduced levels of TNFα, which
were accompanied with lower expression of inflammatory
chemokines [136, 139]. The implications of such an inflamma-
tory network is that the activities of TNFα may lead indirectly,
through elevated production of inflammatory and pro-
malignancy chemokines, to high presence of detrimental leu-
kocytes at the tumor site (e.g. viaCCL2 andCCL5), and to high
angiogenic processes (by CXCL8 and CCL2).

Moreover, it was recently found that the activities of TNFα
are not limited to the chemokines, because it also up-regulated
chemokine receptors that are expressed by leukocytes and
endothelial cells [73, 118, 143]. The study of Weber et al.
has shown that TNFα up-regulated in endothelial cells the
expression of CCR2, the receptor through which CCL2 exerts
its angiogenic activities [73]. Even more so, TNFαwas found
to reduce the expression of the scavenger chemokine receptor
CCX-CKR [144]. This receptor is known to be of a protective
nature because it removes pro-malignancy chemokines from
the tumor milieu, thus negating their potential tumor-promoting
activities [25].

Therefore, TNFα can shift the balance between chemokine
receptors, elevating those that are tumor-promoting and reduc-
ing those that are protective. This activity of TNFα comple-
ments its powerful effects on the release of the inflammatory
chemokines, by that possibly further potentiating the pro-
cancerous activities of chemokines and their receptors.

The Direct Impact of TNFα on Cancer Cell Motility
and EMT, Possibly Leading to Outward Flow of Tumor
Cells Towards Metastatic Organs

The expression of TNFα in tumors deviates from the normal
patterns of its expression in normal tissues that are not
exposed to pathogenic or inflammatory threat. In those

malignant diseases where chronic presence of TNFα is tumor-
supporting, the cytokine acquires diverse pro-malignancy
activities that extend far beyond those that fit best its roles
in inflammation, such as the above-discussed induction of
inflammatory chemokines [19–22, 132]. An important man-
ifestation of such unique TNFα activities is its ability to
push forward, indirectly or directly, processes of motility and
invasion in tumor cells.

When acting in the inflammatory context of immune activ-
ities, TNFα prepares the tissue for leukocyte motility by pro-
moting the expression of matrix metalloproteinases (MMP)
(e.g. [145, 146]). Based on the above, it came as no surprise
that TNFα induced the expression of MMP in macrophages
also at the tumor setting [147]. As a consequence of a cross-
talk existing between the tumor cells and the macrophages,
TNFα activities have led to the release ofMMP by the macro-
phages, than promoting the invasive properties of the tumor
cells [147]. The activities of TNFα on MMP production are
extended to the tumor cells [85, 86, 119, 120, 123]. Also,
tumor-derived TNFα elevated the expression of MMP9 in
fibroblasts, and the level of induction correlated with the
metastatic potential of the tumor cells [147].

Here, it is important to realize that the source of TNFαmay
vary, and the cytokine may be produced by the tumor cells as
well as by other cells that are located at their vicinity. Condi-
tioned medium of macrophages could induce the migration of
breast tumor cells in a TNFα-mediated manner [148]. More-
over, macrophage inflammatory products, such as the daintain
peptide, were found to increase the release of TNFα by breast
tumor cells, followed by elevated migratory properties of the
cancer cells [149]. It was also shown that IL-2-stimulated
lymphocytes released TNFα, and their conditioned medium
induced tumor cell migration [150]. The regulatory roles of
TNFα viaMMP on tumor cell migration was found to involve
another interesting host cell sub-population, of bone marrow
(BM)-derived MSC. BM-MSC are precursors for cancer-
associated fibroblasts (CAF), whose tumor-promoting roles
have been realized recently [151–153]. The study by Shin and
colleagues has shown that TNFα induced the expression of
the inflammatory CXCR3 ligands CXCL9, CXCL10 and
CXCL11 by MSC, and those chemokines have promoted the
migration of the tumor cells, probably partly viaMMP9 [118].

While induction of MMP by TNFα facilitates tumor cell
migration, questions were raised on the ability of the cytokine
to act directly on the tumor cells and regulate intracellular
mechanisms that promote their adhesion, motility and inva-
sion. Here, a major breakthrough was made by studies on
novel roles for TNFα as a direct inducer of EMT in the tumor
cells, with breast cancer being one of the systems in which
such effects were strongly reinforced.

EMT is a process in which the tumor cell fate changes
from an epithelial type to a mesenchymal phenotype that
supports tumor cell motility and metastasis. Cells that
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undergo this process show reduced levels of epithelial markers
and adhesion molecules responsible for cell-to-cell contacts,
enabling them to more easily detach from one another and
spread to remote organs. In parallel, mesenchymal markers are
increased in the tumor cells undergoing EMT, the cells devel-
op adhesive and invasive protrusions and eventually acquire a
high motility and invasive phenotype. As such, tumor cells
that have undergone EMTcanmore easily complete the multi-
stage process of metastasis, where their migratory and metas-
tasizing capabilities come into effect [126–131].

The process of EMT is known to be induced by several
mediators, one of which is Transforming Growth Factor β
(TGFβ) [154–156], however studies of the last several years
indicate that TNFα is also a prominent inducer of this
essential step of cellular remodeling. To date, a number of
studies have already shown that TNFα acts directly on
breast tumor cells to promote typical characteristics of
EMT [90, 157–160]. It was found that stimulation by TNFα
has led to loss of epithelial markers and transition of the
tumor cells to a mesenchymal phenotype. The transition was
manifested by reduced expression of E-cadherin and lower
surface expression of β-catenin; elevated expression of
mesenchymal markers including vimentin; acquisition of
cellular protrusions and actin re-organization [90, 157–159].

As expected, the prime result of tumor cells that have
undergone TNFα-induced EMT was improved migratory
and invasive properties [90, 148, 157, 161, 162], whose
consequence may be increased local recurrence and metas-
tasis. Indeed, a recent study has shown that high persistence
of TNFα in breast tumors was significantly more prevalent
in patients diagnosed with local recurrence and appearance
of new metastasis than in patients with less progressed
stages of disease (DCIS) [90]. These findings support the
possibility that TNFα has an important role in promoting
disease relapse by promoting EMT processes in situ, within
the tumor.

The active roles taken by TNFα in inducing EMT empha-
size the need to identify the mechanisms through which this
cytokine acts in this manner. This research direction is only in
its beginning, however it is already known that the NF-κB
signaling pathway is involved in EMT and migratory effects
induced by TNFα [148, 157, 162–164]. As with TGFβ, also
in the case of TNFα-induced EMT, the process was correlated
with snail, slug and Zeb1 regulation [148, 157, 158], intracel-
lular factors known for their ability to repress E-cadherin
expression and to induce EMT.

The similarities between TGFβ and TNFα in terms of
EMT induction are of interest, suggesting that different arms
of the microenvironment cooperate in elevating metastasiz-
ing properties in the tumor cells. For example, the combined
stimulation of mouse mammary carcinoma cells by both
these cytokines together has induced prominent EMT phe-
notypes in the cells, leading to increased migration and

invasion. In addition, the stimulated cells formed tumors
with as low as 100 cells, compared to their non-stimulated
ancestors that could only form tumors at higher cell
numbers. This observation may have been accounted
for by the fact that the combined stimulation by TGFβ
and TNFα has led to generation of cells with a stable
CD44+/CD24-/low stem cell phenotype. Cells expressing
this phenotype were suggested to have self-renewal prop-
erties, being in line with the high tumorigenicity yield
and resistance to chemotherapy obtained for the TGFβ +
TNFα-stimulated cells [165]. Moreover, gene expression
analyses found that the TGFβ + TNFα-derived breast tumor
stem cells showed a shift to the claudin-lowmolecular subtype
[165], a new breast cancer subtype exhibiting a mesenchymal
and stem cell phenotype which is correlated with poor
prognosis.

The EMT-inducing properties of TNFα are general, and
are not limited to breast cancer. Similar effects of TNFα
were described in pancreatic carcinoma cells, colon cancer,
alveolar epithelial cells and models of airway wound repair
and others, where usually TNFα potentiated the effects of
TGFβ on EMT [166–172]. The mechanisms involved in the
cooperative effects of TGFβ and TNFα have not been
addressed in depth, and much is still to be learnt on the
manners by which TNFα complements the well-established
EMT-inducing properties of TGFβ.

Discussion and Concluding Remarks

During the last decade extensive information was provided
about the contribution of the inflammatory microenviron-
ment to development of tumors, and to the ability of tumor
cells to spread and reach remote organs. The composition of
the tumor milieu varies between tumors, and at different
stages of tumor progression certain elements may dominate,
while other factors may dictate the interactions between the
tumor and its surroundings at other phases of the process.
The inflammatory composition of the tumor obeys similar
guidelines, and its components may differ depending on the
type and stage of disease. At a certain setup, an inflammatory
network may exist in the tumor microenvironment, affecting
the type and amount of leukocytes and stroma cells that
participate in the process, thus dictating the malignant poten-
tial of the tumor cells themselves.

The importance of the inflammatory network can be well
demonstrated in breast cancer, where many inflammatory
elements act together to regulate disease course. This review
has focused on the contribution of inflammatory chemokines
and of the inflammatory cytokine TNFα to the flow of cells
into and within the tumor microenvironment and to the out-
ward flux of cancer cells from the tumor, and has emphasized
their detrimental implications.
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The inflammatory chemokines can regulate the inward
migration of leukocytes of many different types to the tumor
site, some may even be of the anti-tumor type. However, in
the limits of this review, the discussion has addressed the
ability of specific inflammatory chemokines to induce the
much more prevalent events in which leukocytes with
tumor-enhancing activities are recruited to the tumor site,
such as monocytes, MDSC, TAN, Th17 cells and Tregs.
These tumor-infiltrating cells would eventually elevate the
ability of the tumor cells to successfully establish the primary
tumor and later on to metastasize.

In parallel, representative examples were given to the
roles of inflammatory chemokines in promoting migration
of endothelial cells within the tumor, thus serving as key
angiogenic factors. These chemokines can act alongside
with other inflammatory chemokines that are angiostatic in
their nature, mainly of the non-ELR CXC subgroup. While
the latter chemokines are mostly regulated by interferon γ
(IFNγ), many of the inflammatory chemokines that belong
to the ELR-expressing CXC and CC subtypes, including
those that are angiogenic, are powerfully induced by the
inflammatory cytokines IL-β and TNFα. By means of tight
regulation, IL-β and TNFα can promote the release of pro-
cancerous inflammatory & angiogenic chemokines, therefore
indirectly amplifying their tumor-supporting activities and
their ability to induce an inward flow of damaging host cells
and endothelial cell motility. Along these lines, it has been
found that the expression of the inflammatory chemokines and
the inflammatory cytokines is coordinated in breast cancer,
strongly supporting the existence of an inflammatory network
in this disease.

In parallel, of the two inflammatory cytokines it is mainly
TNFα that can act directly on the tumor cells to promote their
migratory and invasive capabilities. Through increased pro-
duction of MMP by the tumor cells and by cells of the tumor
milieu, together with EMT induction in the tumor cells, the
activities of TNFα provide the tumor cells with much im-
proved metastasizing capabilities. These effects of TNFα can
amplify the impact of the powerful EMT-promoting cytokine
TGFβ, thus establishing another network that is characterized
by cell-remodeling properties. The cooperative activities of
the two cytokines on EMT were found to expand to many
systems, suggesting that TNFα is not a mere bystander at the
tumor site. Therefore, in addition to potentiating the activities
of inflammatory chemokines, TNFα has cell-remodeling
properties. These characteristics of TNFα position it as a
cancer-regulating cytokine that may stand in the focal
point of inflammatory networks and cell-remodeling net-
works existing at the tumor site.

Taking these findings into account, the complex nature of
the tumor microenvironment tells us that it might be difficult
to establish concrete rules regarding the manners by which
the inflammatory and cell-remodeling networks indeed

dictate the fate of the tumor. TNFα provides a good example
in this respect. Its roles in malignancy are debated, because
it was shown to be a strong anti-tumor agent under specific
conditions. However, in other circumstances, TNFα acts as
a powerful tumor-promoting factor. It is possible that tumor
cells that have resisted the pressures endowed by the cytotoxic
activities of TNFα have undergone selection which enabled
them to use the cytokine for their own benefit. Those TNFα-
resistant cells can now respond at many different levels to the
signals transmitted by the cytokine, release pro-tumor inflam-
matory chemokines and MMPs, and undergo EMT processes
that enable them to invade remote organs, as was indeed
suggested by several recent studies [158, 159, 161].

Overall, the above findings suggest that care should be
taken when targets for therapy are chosen. Different factors
of the tumor microenvironment can form networks in which
cytokines of many kinds cross-regulate each other’s activities.
The inhibition of one tumor-promoting factor may not neces-
sarily have dramatic effects on the malignant process because
other factors can compensate for its lack, and establish substi-
tute networks of different kinds. The networks established
between different pro-malignancy factors stand in the basis
of the multifactorial nature of malignant diseases, and they
reflect the flexible nature of the tumor microenvironment.
Based on the above, combination therapies are now used in
the treatment of many malignant diseases, using therapeutic
modalities that target simultaneously a variety of tumor-
promoting factors.

The same applies for novel approaches that aim at targeting
inflammatory mediators at the tumor site. For example,
although TNFα is a powerful promoter of malignancy, affect-
ing many cells that are present in vicinity of the tumor cells
and the cancer cells themselves, it certainly does not act alone
and in its absence other inflammatory mediators may take
over and drive the tumor milieu into the devastating phases
of tumor-promotion.

Along these lines, therapeutic measures targeting TNFα
are making their initial stages to the clinic for the treatment
of malignant diseases. While these modalities have been
proven to be safe, it is not yet clear whether they can impact
disease course [173–175]. The existence of inflammatory
and cell-remodeling networks at the tumor site suggest that
modalities targeting TNFα should be combined with other
measures that inhibit additional factors acting side by side
with this cytokine, including chemokines and TGFβ. Such a
clinical approach needs to be based on further research, in
which the regulatory networks acting at the tumor microen-
vironment will be better identified, so that we will know
which network is acting at each stage of disease, to what
extent and whether other networks act in parallel.
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