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Abstract Cervical cancer is caused by Human papilloma-
virus (HPV) in virtually all cases. These HPV-induced
cancers express the viral oncogenes E6 and E7 and are
therefore potentially recognized by the immune system.
Despite the abundant presence of these foreign antigens, the
immune system is unable to cope with the tumor. Due to
the constant immunological pressure, cervical cancers can
evolve different immune evasion strategies, which will be
described in the current review. Several approaches for
immunotherapy of cervical cancer are currently under
development, which aim at inducing strong HPV-specific
immunity. Besides the reinforcement of potent anti-tumor
immune responses, immunotherapy could also enhance
HPV-specific T regulatory cells. Supplementary strategies
that neutralize an immunosuppressive milieu may have
great potential. These strategies are discussed as well.
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Abbreviations
HPV Human papilloma virus
LSIL Low-grade squamous intraepithelial lesion
HSIL High-grade squamous intraepithelial lesion
IFNγ Interferon γ
IL-5 Interleukin 5
CxCa Cervical cancer
CTL Cytotoxic T lymphocyte
NK cell Natural killer cell

cFLIP FLICE-inhibitory protein
IDO Indoleamine 2,3-dioxygenase
VEGF Vascuar endotheial growth factor
TGFβ Tumor growth factor β
Tregs Regulatory T cells
IRF Interferon regulatory factor
TAM Tumor-associated macrophage
DC Dedritic cell
MDSC Myeloid derived suppressor cells
PD1 Programmed death 1
APC Antigen presenting cell

Cervical Cancer and Human Papilloma Viruses

Cervical cancer is caused by HPV in virtually all cases and
is the second most common cancer in women worldwide
[1–3]. The most prevalent type is high-risk type HPV16,
which accounts worldwide for over 50% of the cases of
cervical cancer. The second most prevalent type in the
Caucasian population is HPV18, which accounts for more
than 15%. Other high-risk types of HPV, of which over 15
have been identified, contribute substantially to cervical
cancer cases as well [4].

HPV is a small double stranded DNA virus (7–8 kb),
which can infect the basal layers of the epidermis and
mucosal epithelium. The viral life cycle is tightly regulated
to the cycle of the host cell. In the basal layers the
proliferation-inducing early genes (including E6 and E7)
are expressed, resulting in lateral expansion of the infected
cells. After entry into the suprabasal layers the viral genes
responsible for viral replication, structural proteins and viral
assembly are expressed. Subsequently, infectious particles
are released (Reviewed in [5, 6] (Fig. 1).
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The properties of both E6 and E7 are essential for
HPV-induced malignant transformation and are therefore
known as viral oncogenes [7]. Both proteins interact with
multiple host proteins to promote cell proliferation and
inhibition of apoptosis. E6 is well known for its ability to
promote p53 and BAK degradation, thereby inhibiting
apoptosis [8, 9]. Additionally, E6 can also promote the
activation of telomerase [10]. E7 on the other hand is able
to interact with the retinoblastoma family members and
thereby it enhances cell proliferation [11]. Moreover, E7
stimulates cyclin A and E as well, promoting G0/G1
progression [12].

The progression of HPV infection to cervical cancer is a
slow process and can be divided in 4 stages (Fig. 1). The
first stage comprises of infection with HPV, in most
infected individuals the virus is cleared within 2 years.
However, in approximately 10% of the infections the virus
persists. The virus can persist for several years and is

strongly linked to a higher risk for the diagnosis of low-
grade squamous intraepithelial lesion (LSIL) (the second
stage). This stage is characterized by mild dysplasia due to
progression of persistently infected cells to precancer. This
lesion can further progress into high-grade squamous
intraepithelial lesion (HSIL), which is characterized by
moderate dysplasia to in situ carcinoma (third stage). The
HSIL can progress further into the last stage, invasive
carcinoma (reviewed in [13]). During the first 2 stages,
spontaneous regression and/or clearance are common. It has
been estimated that less than 1% of the infected women
develop cervical cancer [14, 15]. Little is known on the
progression versus spontaneous regression rates in HSIL
since surgical intervention therapies are used to treat HSIL.
However, the general acceptance is that HSIL do not
regress spontaneously [16]. Additionally, early studies
suggested that less than 30% of HSIL progress further into
invasive carcinoma within 10 years [17].
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Fig. 1 Human papilloma virus (HPV)-induced malignant progression.
Infection with HPV likely occurs in the basal layer of the cervical
epithelium, which is exposed in a microlesion. During the productive
lifecycle the early genes (E1, E2, E4, E5, E6 and E7) are expressed
and viral DNA is replicated from episomal DNA. Hereafter, in the
upper layers the late genes L1 and L2 are expressed and viral particles
are assembled. Subsequently the virions are shed and new infection
can be commenced. Low-grade squamous intraepithelial lesion (LSIL)
support the production of viral particles. In a minority of infected

women the lesion progresses into high-grade squamous intraepithelial
lesion (HSIL). Progression towards microinvasive and invasive
carcinoma is associated with the integration of the viral genome into
host DNA and is frequently accompanied by loss of part of the viral
genome, including disruption of the E2 gene. As a result, expression
of the viral oncoproteins E6 and E7 are upregulated. LCR, long
control region. Adapted by permission from Macmillan Publishers
Ltd: [Nature Reviews Cancer] (Woodman et al. [130]), copyright
(2007)
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During malignant transformation, the DNA of HPV is
able to integrate into the host genome at random positions
[18, 19]. The integration of the viral DNA is associated
with the transition into invasive carcinoma [20]. During
insertion into the host DNA, the integrated DNA is either
complete or there is partial loss of the viral genes. Loss of
E1, E2, E4, E5 and L2 occurs frequently, increasing the
immortalization potential of E6 and E7 [5, 21]. Moreover,
E6 and E7 are essential in maintaining the malignant
phenotype of the tumor cells and are therefore expressed in
every tumor cell [22]. Consequently, HPV E6 and E7
represent potential good targets for the immune system.

Immune Responses in Cervical Cancer Patients

The role of the immune system in controlling HPV-
infections is illustrated by the observation that strong
proliferative HPV16 E2- and E6-specific T-cell memory
responses are frequently detected in HPV-negative healthy
women as witness of previous infection. These responses
are accompanied by IFNγ and IL-5 production and low
levels of IL-10 [23–25]. Similar findings have been
described for HPV18 [26]. Occasional responses against
E7 are observed as well [24, 27]. T-helper responses against
the C-terminal domain of HPV16E2 frequently occur at the
time of virus clearance [28]. A recent prospective study
showed that presence of HPV16 E2 specific T-cell
responses were correlated with the absence of progression
in LSIL patients, indicating a protective effect of E2-
specific immunity [29].

In contrast, in cervical cancer patients HPV-specific T-
cell responses are detected only in half of the Cervical
Cancer (CxCa) and HSIL patients. In these patients a weak
proliferative response was observed. This response was not
associated with production of the proinflammatory cyto-
kines IL-5 and IFNγ, but the anti-inflammatory cytokine
IL-10 was still detected in CxCa patients [25, 30]. Similar
results were found for HPV18 as well [26]. Consistent with
these results other studies report that HPV16-specific
proliferative responses are occasionally observed whereas
Th1 type responses, as defined by IL-2 production, are low
or lacking in cervical cancer patients [31–34]. The presence
of HPV16 E6-specific responses in CxCa patients are
associated with invasion depth and are associated with
disease free survival [35]. HPV16-specific CTL can only
rarely be detected in the peripheral blood of HSIL and
CxCa patients [36–39], whereas such responses are fre-
quently detected in healthy donors [40, 41]. Since CD4 T
cells are essential in the induction and maintenance of CD8
cytotoxic T-lymphocyte (CTL) immunity [42], the defective
Th1 response in CxCa patients may explain the low levels
of HPV-specific CTL. Furthermore, the CD4 T-cell

response is accompanied by IL-10 production, indicating
a role for active suppression.

HPV-specific T cells have been reported to infiltrate
cervical neoplastic tissues and metastatic lymph nodes as
well [43–47]. These infiltrating T cells are not specific for
preferential regions within the E6 and E7 proteins.
Remarkably, most of the CD4 restricted T-cell responses
were restricted by HLA-DP [43]. This might be specific for
HPV-induced tumors, but warrants further investigation.
Within a single patient the HPV-specific T-cell response is
broad as is indicated by the recognition of multiple E6 and
E7 epitopes and multiple T-cell receptor Vβ usage [48].

On the other hand, Natural Killer (NK) cells seem to
play only a limited role in the immune surveillance of the
primary tumor in cervical cancer patients, as only low
numbers of CD57+CD3- cells, encompassing a subpopu-
lation of NK cells, are infiltrating tumor tissue [49, 50].
Despite their absence at the tumor site they are present in
vast numbers in the peripheral blood and in the lymph
system, where they may kill metastasizing cells.

Despite the abundant presence of HPV-specific T cells in
neoplastic tissue, the immune system is unable to eradicate
the tumor. This suggests the existence of an immunosup-
pressive microenvironment in cervical cancer patients.

Immune Evasion Strategies Employed by Cervical
Tumors

During malignant transformation, a continuous struggle
exists between the tumor cells and the immune system.
Because of continuous immunological pressure, the tumor
develops several mechanisms to escape immunosurveil-
lance. As the tumor persists it may accumulate such
mechanisms, thereby evading control by the immune
system. This is a slow process that can take years or even
decades and is known as cancer immunoediting [51]. In
many tumors the transformed cells have acquired several
mechanisms to protect them from immune cell mediated
killing. These mechanisms include (A) MHC class I
downregulation and impaired antigen processing to prevent
antigen presentation, (B) resistance to immune-mediated
apoptosis, (C) the expression of immunosuppressive factors
and (D) the attraction of immune cells that are able to
inhibit the immune response (Fig. 2). The different
mechanisms described in the literature and their role in
cervical cancer will be discussed below.

Direct Evasion of the Anti-Tumor Response

The occurrence of antigen loss has been well demonstrated
in an immunogenic tumor mouse model [52, 53]. These
studies collectively show that tumor cells are able to lose
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the expression of antigens as a result of immunological
pressure. Occurrence of antigen loss has also been
illustrated in melanoma patients. Antigens normally
expressed by melanocytes are frequently lacking in tumor
cell lines and tumor tissue from melanoma patients
(reviewed in [54]). However, antigen loss is almost absent
in cervical cancer patients, as HPV DNA can be detected in
virtually all tumors and E6 and E7 RNA is present
throughout malignant transformation in all cases [1, 55,
56]. The E6 and E7 proteins are essential in maintaining the
malignant phenotype of the tumor cells, which may explain
the absence of antigen loss in HPV-induced cervical cancer.

The two major pathways used by lymphocytes to induce
apoptosis in target cells are the granule exocytosis pathway
and the FAS/FASL pathway [57]. For these apoptotic
pathways, tumor-escape variants have been described
(reviewed in [58]). Examples of such escape-mechanisms
are overexpression of the anti-apoptotic gene BCL-2 [59],
expression of the FASL-inhibitors FLICE-inhibitory protein
(cFLIP) [60, 61] and expression of the Granzyme B
inhibitor PI-9 [62] in mouse models. cFLIP has been
shown to be overexpressed in cervical tumor tissue
compared to healthy cervix, but the impact on survival is
still unclear [63]. Recently, SerpinA1 and SerpinA3 have
been shown to be overexpressed in tumors of a subpopu-
lation of cervical cancer patients. In this study over-
expression of these proteins correlated with a poorer

survival [64]. Since SerpinA1 and SerpinA3 both have
been implicated in inhibition of apoptosis [65, 66], over-
expression of these proteins may render the tumor cells
insensitive for immune mediated apoptosis.

Many tumors downregulate MHC-class I to evade
recognition by the immune system. Downregulation of the
HLA class I genes can originate from multiple mechanisms
(Reviewed in [67]). Mutations of the individual HLA
alleles together with the deletion of the common β2
microglobulin genes are commonly observed in many types
of cancer. A different immune escape mechanism employed
by a number of tumors is defects in the antigen processing
machinery. Defective antigen processing leads to impaired
antigen presentation of tumor antigens, as a result viral and
tumor associated antigens normally produced by the
proteasome and transported through TAP cannot be
presented on MHC class I [54]. Defects in the antigen
machinery include decreased expression of proteasome
subunits (eg. LMP2 and LMP7) and transporter subunits
(TAP1 and TAP2). The frequencies of these defects differ
between tumor types [68]. Since antigen presentation of the
HPV16E6 protein depends on TAP and the proteasome
[69], defects in these proteins result in decreased recogni-
tion of tumor cells by HPV-specific T cells. E7 of the low-
risk HPV11 has been implicated in TAP inhibition in
laryngeal papillomatosis [70, 71], but this effect has not
been reported for other HPV types. On the other hand, E7
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of HPV6, -16 and −18 has been shown to reduce the
expression of MHC class I heavy chain, LMP2 and/or
TAP1 [72]. HPV16 E5 has been shown to downregulate
HLA-A and -B cell surface expression, but no decrease was
found in total HLA class I expression [73]. However, the
exact mechanism by which HPV16 E5 modulates Class I
surface expression is not known.

Despite direct interactions of HPV proteins with TAP,
MHC class I is rarely completely lost in LSIL or HSIL
lesions [74]. Moreover, interference with TAP is detected in
a subpopulation of the cervical cancer patients, indicating
that the observed downregulation in the MHC class I
pathway is not directly caused by HPV [75, 76]. Interfer-
ence of HPV proteins with MHC class I presentation
machinery is therefore not likely to have a dominant role in
cervical cancer patients. Alternatively, MHC class I defects
may develop during malignant transformation, due to
immunological pressure on the tumor. In cervical cancer
patients abnormalities in the MHC class I presentation
machinery has been well documented [49, 74–82].
Alterations in MHC-class I presentation pathway has been
observed in approximately 90% of the patients with
cervical cancer [79]. However, in this study total loss of
MHC class I has been observed in only 10% of the
patients, indicating that 90% of the cervical cancer patients
could benefit from T-cell mediated immunotherapy.

Indirect Evasion of T-Cell Mediated Killing

Many tumors express inhibitory coreceptors [83]. The
inhibitory B7 family member B7-H1 (PD-L1) is expressed
on a wide variety of tumors [84]. This molecule can interact
with PD-1 and CD80 on T cells, thereby inducing
apoptosis, anergy or exhaustion of effector T cells [85,
86]. In a variety of tumors, expression of PD-L1 is
associated with poorer survival [87–94]. Unexpectedly,
expression of cell-surface PD-L1 in cervical cancer patients
was associated with improved survival [95]. This phenom-
enon could be explained by incapacitation of infiltrating
PD1+ regulatory T cells (Tregs) through PD1:PD-L1
interactions. The recently identified B7-H3 and B7x have
been found to be expressed on tumors and B7-H3
expression has been shown to be correlated to decreased
survival in renal cell carcimoma [96, 97], but their role in
cervical cancer is unknown.

Immunosuppressive factors produced by tumor cells can
also contribute to the immunosuppressive microenviron-
ment. These factors include indoleamine 2,3-dioxygenase
(IDO), vascuar endotheial growth factor (VEGF), tumor
growth factor β (TGFβ) and IL-10. The IDO pathway has
also been implicated in indirect immune escape by tumors.
The immune tolerant effect of IDO functions through the
depletion of tryptophan and the generation of kynurenine

metabolites, resulting in affected T-cell proliferation and
survival [98]. A few studies showed that IDO is expressed
by the tumor and the level of expression is an independent
prognostic factor in colorectal cancer [99, 100]. IDO has
been implicated to interfere with the initial immune
response to tumor antigens, the cytolytic capacity of CTL
and enhanced suppressive capacity of Tregs in several
tumor types (reviewed in [101]). IDO has been shown to be
present in HSIL and CxCa, but the functional consequence
of IDO was not addressed [102]. Therefore, the exact role
of IDO in cervical cancer remains unclear. VEGF, which is
normally involved in vessel formation, also contributes to
the immune suppressive environment by the attraction of
immature dendritc cells (DCs) and macrophages, which
will be discussed below [103]. TGFβ is expressed in many
tumors and is known to inhibit immune responses at
multiple levels [104, 105]. In cervical tumors, TGFβ
mRNA is frequently detected but does not correlate with
survival [106]. However, PAI-1 and αvβ6 integrin expres-
sion, which reflect the presence of active TGFβ, has a
negative influence on survival [106, 107]. Next to immune
regulation, TGFβ also modulates other processes, which
include cell invasion and metastatic colonization. The
impact of TGFβ on immune escape is therefore difficult
to determine in cancer patients [104]. However, an inverse
relation exists between TGFβ expression in tumors and
tumor infiltrating lymphocytes, indicating that TGFβ
may hamper the infiltration of lymphocytes in cervical
cancer [108]. HPV has also been implicated to induce the
production of immunosuppressive factors. The E6 and E7
proteins have been reported to inhibit Interferon regulatory
factor (IRF3 and IRF1 respectively), which are transcrip-
tion factors involved in immune pathways [109, 110].
Interference with these proteins results in an impaired
IFN-pathway and thereby NFκB-stimulated genes. This
results in lower levels of pro-inflammatory cytokines,
which may be a direct mechanism by which HPV creates
an immunosuppressive microenvironment [111].

Attraction of Innate Immune Cells
with Immunosuppressive Properties

A third mechanism of immune evasion by tumors is the
attraction of immune cells with immunosuppressive prop-
erties. These include both members from the innate and the
adaptive immune system that are able to suppress anti-
tumor responses. Macrophages are recruited by many types
of tumors in high numbers, in these tumors they differen-
tiate predominantly into a M2 phenotype [112, 113]. These
tumor-associated macrophages (TAMs) have direct effects
on tumor growth, vascularization and modulation of the
tumor stroma. Moreover, TAMs also produce a wide array
of cytokines and chemokines, resulting in immune evasion
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at multiple levels. These evasive mechanisms include
alteration of DC phenotype and modulation of T-cell
responses [113]. Tumor infiltrating CD68+ macrophages
have been found to infiltrate cervical tumors and metastatic
lymph nodes [80, 114, 115]. The TAMs reach numbers
similar to infiltrating T cells in cervical tumors [80].
However, the type of macrophage and their impact on the
immune system have not been addressed in these studies.

Dendritic cells (DCs) are the key players in orchestration
and initiation of the immune response. DCs have been
shown to infiltrate human tumors. However, they usually
have an immature phenotype as they lack costimulatory
molecules (Reviewed in [116]). These improperly polarized
DCs induce rather T-cell deletion and anergy as opposed to
induction of effector T cells which are able to eradicate the
tumor [117]. In cervical cancer, similar numbers of
immature DCs were found in tumor tissue as compared to
healthy cervix [50, 115]. The number of mature DCs was
increased in tumor tissue, which may indicate that DCs may
become activated in the tumor, but have decreased capacity
to migrate out of the tumor. Alternatively, the observed
number of DCs reflects a snap-shot of a population of DCs,
which are preparing to migrate out of the tumor. In tumor
draining lymph nodes of cervical cancer patients, IDO
expressing DCs have been found [102], indicating that they
may play a role in immune escape.

Myeloid derived suppressor cells (MDSCs) represent a
heterogeneous population of incompletely differentiated
myeloid cells [83]. Their characterization is difficult due
to the complicated phenotype. They are generally charac-
terized as CD11b+CD14-, CD33+HLA-DR- or CD14+
HLA-DR- [118, 119]. They are elevated in the peripheral
blood of cancer patients (reviewed in [118]). Even though
MDSCs in tumors has not been studied extensively, these
cells have been shown to infiltrate hepatocellular- and head
and neck carcinoma [120, 121]. MDSCs are able to directly
inhibit T-cell responses via ROS and iNOS [122], and in
mice these cells promote tumor progression [123]. Their
impact on tumor progression in cervical cancer patients is,
however, still unclear.

Even though the DC, TAM and MDSC populations are
described as separate entities above, they all are of myeloid
origin and therefore derived from the same precursors. As a
result, there may be a spectrum between these populations
in which single cells may have characteristics from multiple
cell populations.

T Regulatory Cells in Cervical Cancer Patients

CD4+ Tregs have emerged as an arm of the adaptive
immune response involved in counteracting the anti-tumor

immune response. Early studies showed increased numbers
of Treg, based on CD25 and CD152 expression in proximal
tumor draining lymph nodes and these cells contained
suppressive capacity [124]. Although Tregs can only be
identified based on suppressive function, the transcription
factor FOXP3 is currently the most widely used marker for
Tregs [125]. The infiltration of tumors with FOXP3+ Tregs
is unfavorable for patient survival in many types of cancer
(reviewed in [126]). In cervical cancer patients the effect of
FOXP3+ Treg was more pronounced when the ratio
between infiltrating CD8+ T cells and FOXP3+ Tregs was
calculated [49, 50]. The balance between infiltrating CD8+
T cells and Tregs was found to be an independent
prognostic factor for patient survival [49]. Metastatic tumor
cells in tumor draning lymph nodes were found to correlate
with increased numbers of Treg in the respective lymph
node [127].

As HPV-induced tumors express the viral antigens E6
and E7, the infiltrating Tregs potentially encompass HPV-
specific Tregs. Indeed, Tregs specific for the E6 and E7
antigens have been detected in tumor- and HSIL infiltrating
lymphocytes as well as tumor draining lymph nodes [30,
128]. Interestingly, these Tregs included both FOXP3+ and
FOXP3- cells [126, 128]. This observation indicates that
enumeration of Tregs on the basis of FOXP3 expression
likely underestimates the total number of infiltrating Tregs
in cervical tumors.

It is difficult to determine the true origin and role of
HPV-specific Tregs during disease progression in cervical
cancer patients. Possibly, Tregs are induced as part of the
normal immune response against HPV, as acute infections
such as influenza can mount virus-specific Tregs as well
[129]. Generally, HPV infections are cleared quite slowly
(median of 6 months) [130], while acute viral infections
such as influenza are cleared within weeks. Therefore, the
immune system seems to be inefficient in clearing HPV
infections. This may be caused by early interactions of the
host with the virus at multiple levels. Firstly, Langerhans
cells, which are the professional antigen presenting cells in
initiating mucosal immune responses, are improperly
activated upon encounter of L2-containing virus like
particles [131]. Secondly, HPV also interferes with the
IFN pathway in infected keratinocytes, caused by the
oncogenes E6 and E7 (Reviewed in [132]). This results in
a stronger immunosuppressive microenvironment and may
thereby promote the induction and expansion of HPV-
specific Tregs. One or combinations of these interactions
may result in enhanced induction of HPV-specific Tregs
and as such induce a more immunosuppressive virus-
specific immune response compared to acute viral infec-
tions. However, these observations do not explain why
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most people are able to clear persistent HPV infections,
whereas a minority of the infected women are not able to
cope with the virus and as a result develop cervical cancer.
Both genetic and environmental factors have been impli-
cated in HPV oncogenesis, however a clear picture is still
missing [133].

Accumulating numbers of circulating Tregs (defined as
CD4+CD25+) have been detected in the peripheral blood
of HSIL patients as witness of an immunosuppressive
milieu in these patients [134, 135]. In line with these
findings, a substantial number of infiltrating FOXP3+ Treg
have been detected in HSIL patients [136, 137], but no
significant differences were observed between HSIL and
LSIL [137]. Moreover, HPV-specific Tregs were detected
among cervical infiltrating lymphocytes in a patient with
HSIL [30]. This is indicative of an immunosuppressive
HPV-specific response in this patient. The immunosuppres-
sive microenvironment in HSIL patients may subsequently
favour the progression towards invasive carcinoma by
evading immunosurveillance.

Additionally, HPV-induced tumor cells overexpress
different self-antigens as well, including hTERT and p16
[138–141]. For this reason it is likely that Tregs specific for
these antigens also infiltrate cervical tumors and contribute
to the establishment of an immunosuppressive microenvi-
ronment in the tumor.

Immunotherapy of HPV-Induced Malignacies

Many different strategies have been developed for the
immunotherapy of cancer [142]. Strategies against HPV-
induced malignancies include synthetic long peptide vac-
cines, targeting the E6 and E7 proteins (reviewed in [42]).
Although these therapeutic vaccines are designed to
enhance CD4+ and CD8+ T-cell effector immunity, they
may also activate pre-existing tumor antigen-specific
FOXP3+CD4+ Tregs present in the lymph nodes and
tumors of both cervical cancer and melanoma patients [143,
144]. In mice, boosting of Tregs after therapeutic vaccina-
tion was associated with subsequent failure of the anti-
tumor immune response [145]. A recent study in vulvar
intraepithelial neoplasia patients showed both clinical and
immunological responses after vaccination against HPV16
E6 and E7 [146]. In this study patients who did not display
a complete clinical response, mounted both HPV-specific
effector T cells and HPV-specific FOXP3+ Tregs following
vaccination. In contrast, patients who displayed a complete
clinical response mounted predominantly HPV16-specific T
effector cells [147]. These data indicate that those patients
in whom the current HPV-specific therapeutic approach is

unsuccessful could benefit from an alternative therapy that
includes the neutralization of Tregs (Fig. 3).

Intervention Strategies to Bypass Vaccination-Induced
Treg Expansion

Depletion of Treg Based on CD25 Expression

In several mouse models, treatment with an anti-CD25
depleting antibody enhanced the anti-tumor immune re-
sponse (reviewed in [148]). For translation to the clinic a
hybrid molecule has been used (ONTAK). This molecule
contains full-length IL-2 for binding to CD25 and the
translocation and toxic domains of diphtheria toxin to
induce apoptosis [149]. In mice this molecule was able to
deplete FOXP3+ Tregs in different compartments and was
able to enhance vaccination-induced T-cell responses [150].
In combination with vaccination, ONTAK is able to deplete
Tregs and thereby boosting the tumor-specific immune
response in renal cell carcinoma, CEA-positive and
melanoma patients [151–153]. In contrast, in one study
ONTAK was unsuccessful in depleting Tregs in metastatic
melanoma patients [154]. Together, these studies show that
ONTAK as supplementary therapy in vaccination trials may
be promising, however caution is needed as this therapy is
not always successful.

LMB-2 is another immunotoxin, which targets CD25.
LMB-2 is a hybrid molecule consisting of pseudomonas
exotoxin A and the Fv chain of anti-CD25 [155]. In a small
human trial, LMB-2 was able to partially deplete Tregs, but
no effect was seen on vaccine-induced responses in patients
with metastatic melanoma [156]. Further studies are
required to determine a potential additive effect of LMB-2
treatment and HPV vaccination strategies.

Depletion of Tregs Based on Cytotoxic Chemotherapy

Low-dose cyclophosphamide, which is a cytotoxic
alkylating compound, reduces both the number of Tregs
as well as their function in mice [157]. A recent study
showed enhanced Treg depletion in the tumor when
cyclophosphamide was used in combination with an
agonistic anti-OX40 antibody. This regime induced hyper-
activation and cell death in the Treg compartment [158]. In
animal models, low-dose cyclophosphamide was able to
enhance vaccine-induced anti-tumor responses [159, 160].
In humans, cyclophosphamide used as a single agent was
shown to inhibit the Treg compartment, while the effector
compartment was not negatively influenced [161, 162]. In
cervical cancer patients Treg numbers were decreased after
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preoperative low-dose chemoradiation therapy [127, 163].
Combinational therapy has not been studied in cervical
cancer patients, but may prove to be an effective approach
to enhance anti-tumor vaccination strategies.

CTLA-4 Blockade to Improve Anti-Tumor Immunity

CTLA-4 is an inhibitory co-receptor that is expressed both
on activated T cells and constitutively on thymus derived
Tregs. In mouse models, it has been shown that combina-
tion therapy of CTLA-4 blockade, especially together with
CD25 depletion or GM-CSF secreting vaccine improves
immunotherapy against established tumors [164–166].
CTLA-4 blockade both on the effector population as well
as on the Treg compartment is important in the enhance-
ment of anti-tumor responses [167]. Two monoclonal
blocking antibodies (ipilimumab and tremelimumab) are
currently being tested in clinical trials [168]. Since these
antibodies affect all T cells regardless of specificity, side
effects of these antibodies include mild to severe autoim-
munity [168, 169]. Early promising clinical trials show
enhanced anti-tumor T-cell responses upon treatment with
anti-CTLA4 antibodies [170–172]. A recent phase III trial
showed increased survival in melanoma patients after
ipilimumab treatment [173]. However, in this study

treatment was not improved by gp100 specific vaccination.
These monoclonal antibodies may provide a window in
which CTLA-4 blockade combined with vaccination
against HPV16 E6 and E7 may improve the treatment of
cervical cancer patients.

Blockade of the PD-L1-PD1 Axis

Blockade of PD1 or PD-L1 improves anti tumor-responses
in several mouse models (Reviewed in [174]). A human-
ized blocking antibody to PD-1 has been tested in a phase I
trial in patients with hematological malignancies and was
found to be well tolerated in these patients [175]. As PDL-1
expression in cervical cancer affects patient survival
differently compared to other types of cancer, treatment
with PD-L1 blocking antibodies may have unexpected
results in cervical cancer patients.

Modulating Antigen Presenting Cells

Different subsets of APC have the capacity to induce Tregs
[118, 176, 177]. As these cell types are not affected using
the strategies described above, depletion of Tregs does not
exclude de novo induction of HPV-specific Tregs upon
tumor-specific vaccination. Therefore, strategies to modu-

PD-L1

PD-L1

PD-1:PD-L1
blockade

Treg-targeting
therapy

DC maturation:
TLR ligands

CD40 ligation
Inflammasome stim

Modulation TAM
phenotype:

IKKβ inhibitor?

CTLA-4
blockade

depletion of
Treg cells

Induction
MDSC apoptosis

Fig. 3 Strategies that could
bypass vaccination-induced
Treg expansion. Depletion of
Treg before or during treatment
with CD25-targeting
compounds or with low dose
cyclophosphamide decreases the
initial numbers of Treg.
Blockade of CTLA-4 signaling
both dampens Treg as well as
releases the brakes on effector
cells. Blockade of PD-1:PD-L1
interaction results in enhance-
ment of effector responses, but
also can enhance Treg function.
Several agents can be used to
skew the antigen presenting
compartment to an immunogen-
ic phenotype. These approaches
include maturation of DC,
modulation of macrophage
phenotype and targeting
myeloid suppressor cells
(MDSC)
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late these cells as well may prove to be a valuable
supplementary therapy to enhance tumor-specific immune
responses.

Several approaches have been proposed to skew the
phenotype of DCs in cancer patients from a tolerogenic into
a pro-inflammatory phenotype (reviewed in [117]). These
approaches include activation of DCs by anti-CD40 anti-
bodies, Toll-like receptor ligands, activation of the inflam-
masome and immunogenic cell death by chemotherapy and
radiation therapy [178–180]. In cervical cancer patients,
these properly activated DCs may in turn shift the balance
from a Treg dominated response into a Th1/CTL dominated
HPV-specific response, which is subsequently able to
mount a full-blown attack against the tumor.

Tumor associated macrophages promote the immuno-
suppressive microenvironment. Targeting these cells may
therefore augment vaccination protocols. Two recent
studies described that skewing of the phenotype towards a
proinflammatory M1 phenotype by inhibition of IKKβ
results in improved tumoricidal activity [181, 182]. The M1
macrophages in turn may promote anti-tumor immune
responses. Even though subversion of the phenotype of
macrophages represents a promosing approach for anti-
cancer therapy, agents are not yet available to promote M1
macrophage differentiation in the clinic. However, a recent
study in a mouse model of HPV-induced tumors showed
that depletion of TAM by clodronate-containing liposomes
impaired tumor growth in mice [183]. These strategies are
still in preclinical models, but hold potential to improve
therapeutic HPV vaccination.

Several agents are currently tested in preclinical models
to inhibit expansion and function of MDSCs (Reviewed in
[118]). These cells are implicated in the expansion of Tregs
and are present in the peripheral blood of cancer patients in
relatively high numbers. Therefore, depletion of MDSCs
may result in abrogation of the immunosuppressive milieu,
enabling effective vaccination against HPV E6 and E7
without vigorous expansion of Tregs.

Final Remarks

The local presence of an immunosuppressive microenvi-
ronment provides a plausible explanation for the inability of
the immune system of cervical cancer patients to cope with
the tumor. Moreover, HPV-specific Tregs are boosted upon
vaccination with HPV16 synthetic long peptides and
negatively correlate with clinical outcome. Therefore,
elimination/reduction of the Treg compartment either before
or during vaccination, will likely shift the balance from a
Treg dominated response to an effector T-cell dominated
response. This will result in improved vaccination efficacy.
Strategies that elicit potent anti-tumor immune responses

may also lead to the induction of different escape
mechanisms. These mechanisms could include antigen loss,
loss of MHC-class I molecules and impaired antigen
processing. These escape variants can subsequently be
targeted by alternative approaches, such as vaccination
against epitopes that are associated with impaired antigen
processing [184].

Finally, the tumor microenvironment observed in cervi-
cal cancer patients has similar characteristics to other types
of cancer. Knowledge gathered on inducing a potent anti-
tumor immune therapy in these patients may therefore be
translated to other types of cancer as well.
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