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Abstract Colorectal cancer is the second leading cause of
cancer-related mortality in the United States. Therapeutic
developments in the past decade have extended life
expectancy in patients with metastatic disease. However,
metastatic colorectal cancers remain incurable. Numerous
agents that were demonstrated to have significant antitumor
activity in experimental models translated into disappoint-
ing results in extending patient survival. This has resulted
in more attention being focused on the contribution of
tumor microenvironment to the progression of a number of
solid tumors including colorectal cancer. A more complete
understanding of interactions between tumor epithelial cells
and their stromal elements will enhance therapeutic options
and improve clinical outcome. Here we will review the role
of various stromal components in colorectal carcinogenesis
and discuss the potential of targeting these components for
the development of future therapeutic agents.
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Introduction

Colorectal cancer (CRC) is the second or third leading cause
of cancer-related mortality in United States [1]. In the past
decade, therapeutic development has improved survival rates
for patients with metastatic CRC, and many more treatment
options exist for advanced disease. Many of these treatment
options for advanced disease now include a combination of
chemotherapy with targeted therapy. However, the fact that
metastatic CRC remains incurable prompts investigators to
explore a deeper understanding of the factors underlying
cancer progression. The limited success achieved by only
targeting tumor cells highlights the importance of under-
standing the role of the tumor microenvironment and its
precise contribution to carcinogenesis.

A major contributor to the tumor microenvironment is
inflammation and inflammatory mediators. The recognition
of chronic inflammation as the seventh trait acquired by
tumor cells necessary for survival, growth, and metastasis
[2–4] has intensified studies on the role of intratumoral
inflammatory cells and proinflammatory cytokines in
cancer progression. Chronic inflammation is now recog-
nized as both a tumor initiator and promoter, and it has long
been studied in relation to proinflammatory prostaglandins
in colon cancer [5, 6]. Clinical studies have shown that
long-term use of nonsteroidal anti-inflammatory drugs
(NSAIDS) reduces the risk of CRC by 40–50% [7], in
part, by targeting cyclooxygenase-2 (COX-2), an enzyme
required for prostanoid synthesis. COX-2 is overexpressed
in the majority of CRCs [8, 9], and COX-2-derived
prostaglandin E2 (PGE2) mediates various tumor-
promoting effects [6, 10, 11]. PGE2 is the most abundant
PG found in CRC tissue, and it has well demonstrated
proneoplastic effects [12–14]. PGE2 promotes tumor
growth by inducing tumor cell proliferation, survival,
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migration/invasion [15–18] and by enhancing the develop-
ment of a supportive tumor microenvironment.

In CRC, the multistep process from normal colonic
epithelium to an adenomatous polyp and ultimately to an
invasive colon carcinoma is associated with or supported by
the tumor microenvironment. The tumor microenvironment
essentially consists of tumor-infiltrating cells, vasculature,
extracellular matrix (ECM), and other matrix-associated
molecules. Transformed epithelial cells modulate the
functions of stromal cells with the overall purpose of
facilitating their own growth, survival, invasion, and
metastasis. This dependence or “addiction” of the cancer
cells to the stromal components opens novel avenues for
the development of potential therapeutic agents.

In this review we will discuss the interactions of tumor
epithelial cells, stromal cells, and noncellular components
of stroma in promoting colorectal carcinogenesis. The role
of stroma in metastasis will not be covered in this review as
it has been discussed in other recent reviews [19].

Tumor-Infiltrating Cells

Local inflammation at the site of a solid malignancy results
in the accumulation of a variety of cells, and it is now
generally accepted that these cells are intimately linked to
the promotion of tumor growth. Colon carcinomas, similar
to most other solid tumors, are infiltrated by different cells
such as tumor-associated macrophages (TAMs), myeloid-
derived suppressor cells (MDSCs), mast cells, cancer-
associated fibroblasts (CAFs), monocytes, neutrophils,
CD8 and CD4 T-cells, dendritic cells (DCs), natural
killer (NK) cells, endothelial cells, endothelial progenitor
cells (EPCs), platelets, and mesenchymal stem cells
(MSCs) [20] (Fig. 1). Two important factors for this
infiltration are inflammation and soluble chemoattractants
secreted by both tumor cells and stromal cells [21–25].
Inflamed stroma has been shown in mouse models to
promote the progression of colonic adenomas to adeno-
carcinomas [26]. The initial role of these stromal cells is
not necessarily tumor promotion, in fact data exists to
support the notion that these cells may have some
antitumor properties [27]. With time, the dynamic inter-
action between stromal and tumor cells changes in favor
of tumor progression as it influences and exploits stromal
cells to promote tumor cell proliferation, survival, and
metastasis [27]. As a more complex architecture evolves,
the function of the stromal cells changes spatially and
temporally in the tumor. Some of these are reversible
changes while others are irreversible, such as genetic
alteration in stromal cells, including loss of heterozygosity
(LOH) and microsatellite instability (MSI) as seen in
colorectal cancer [28].

Tumor-Associated Macrophages

TAMs are derived from blood monocytes that are recruited
to the tumor by growth factors, chemokines, and angio-
genic factors such as colony-stimulating factor-1 (CSF-1),
CCL2, CCL3, CCL4, CCL5, vascular endothelial growth
factor (VEGF), and angiopoietin-2 [29–31]. The presence
of low interleukin (IL)-12 and high IL-10 levels in the
tumor microenvironment induce the differentiation of
monocytes into TAMs [32].

Macrophages are highly plastic and can be activated to
either M1 (anti-tumor) or M2 (pro-tumor) polarization states
depending on the microenvironment stimuli [33–36]. The
classic activation state (M1 polarization) happens in
response to microbial products (e.g., lipopolysaccharide)
or interferon-γ (IFN-γ), following which the M1 macro-
phages produce high levels of IL-12, IL-23, nitric oxide
(NO) and oxygen intermediates (ROIs), as well as develops
a high capacity to present antigens. The M1 macrophages
are part of the Th1 response and are potent effectors against
intracellular pathogens and tumor cells.

Alternatively, signals such as IL-4, IL-13, IL-10, immuno-
globulin complexes, Toll-like receptor (TLR) ligands, and M-
CSF induce a M2 polarization state [37–40]. The M2
macrophages express high levels of scavenger receptor-A
(CD163) [41, 42] and mannose receptors (CD206) [43, 44]
and have low IL-12 and high IL-10, IL-1 decoyR, and IL-
1RA and CCL17 and CCL22 chemokines. The M2 macro-
phages, as part of the Th2 response, are involved in
scavenging debris [45], promoting angiogenesis, tissue
remodeling and repair [35]. M2 macrophages are also known
to induce the differentiation of regulatory T-cells [46].

TAMs with M2 polarization are a major tumor-
infiltrating cell population [3, 47] and are a vital component
of inflammation-associated carcinogenesis. High TAM
density in tumors is now recognized as a poor prognostic
sign in various tumors, including CRC [29, 48, 49]. TAMs
promote tumor growth and metastasis through inducing
angiogenesis and enhancing tumor cell migration/invasion
and ECM breakdown (Fig. 2) [50–54]. Macrophage deple-
tion, either by pharmacological treatment with clodronate
liposomes or by genetic manipulation, such as in Csf1op/op

mice lacking CSF-1, leads to decreases in tumor
macrophage infiltration, angiogenesis, tumor growth, and
metastasis [55–58].

The influence of signaling molecules on TAMs has been
well studied. One in vitro study demonstrated that activated
macrophage-conditioned medium containing tumor necro-
sis factor (TNF)-α, IL-1β, and IL-6 induced human colon
cancer cell proliferation and migration [23]. Colon tumor
cells also stimulate macrophages to produce IL-6, which in
turn induces STAT3-mediated IL-10 production in tumor
cells [59]. It has been established that elevated IL-10 levels
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[60] are associated with a poor prognosis. The uptake of
surface sulfoglycolipids—sulfatide SM4s-coated apoptotic
cancer cells—by macrophages results in enhanced macro-
phage secretion of IL-6, transforming growth factor
(TGF)-β1 and expression of P-selectin [61], which con-
tributes to the development of M2 TAMs. Clinically, it has
been shown that the presence of surface SM4s on colon
carcinoma cells is associated with a poor prognosis,
possibly due to low immunoreactivity of the tumor. TAMs
in the stroma also strongly express COX-2, and the
relationship between COX-2 and colonic adenoma forma-
tion [62] is well established.

TAM and Angiogenesis

Colon carcinoma cells induce TAMs to secrete VEGF, which
promotes angiogenesis as well as metastasis [53, 63, 64].
TAMs also express many other pro-angiogenic factors, such
as basic fibroblast growth factor (bFGF), TNF-α, IL-1β,
IL-8 (CXCL8), COX-2, platelet derived growth factor-β
(PDGF-β), hepatocyte growth factor (HGF), matrix metal-

loprotease (MMP)-7, and MMP12 [50–53, 65, 66]. The
angiogenic factors secreted by both tumor and the stroma
cells interact with respective receptors on endothelial cells,
activating tumor-associated angiogenesis [67, 68]. Recent
in vivo parabiosis experiments demonstrated that CD31,
F4/80-positive monocyte/macrophages are recruited to the
site of tissue injury and incorporated into newly formed
vessels, directly contributing to angiogenesis [69].

TAMs, Epithelial-to-Mesenchymal Transition, and Invasion

Colon carcinoma cells are known to produce CSF-1 [24,
70], which recruits macrophages to the tumor periphery
where they secrete promotility and angiogenic factors that
facilitate tumor cell invasion and metastasis [21]. TAMs
contribute to the epithelial-to-mesenchymal transition
(EMT), which is an initial event for cancer metastasis [71,
72]. In colon carcinoma spheroids, TGF-β1–induced EMT
is accelerated dramatically in the presence of TNF-α-
producing macrophages [73, 74]. TGF-β, which is pro-
duced by both colon cancers [75, 76] and macrophages

Tumor growth and metastasis

Malignancy

Intraepithelial neoplasia

Fig. 1 The models of a cross talk between transformed epithelial cells
and stromal cells in promoting cancer progression. Following the
initiation of epithelial tumors, reciprocal interactions between trans-
formed epithelial and stromal cells play a key role in switching a
microenvironment from normal to one that supports tumor growth and
spread. The tumor microenvironment, which is associated with
massive infiltration of dysregulated immune cells as well as changes
of their functionality, can promote tumor growth, angiogenesis, and

metastasis. Tumor-infiltrating cells predominantly include tumor-
associated macrophages (TAMs), myeloid-derived suppressor cells
(MDSCs), CD4 T-cells, CD8 T-cells, CD4 regulatory T-cells (Tregs),
mesenchymal stem cells (MSCs), cancer-associated fibroblasts
(CAFs), endothelial progenitor cells (EPs), mast cells (MCs), and
platelets (PLTs). These cells are able to maintain tumor associated
inflammation, angiogenesis, and immunesuppression, which in turn
promotes tumor growth and metastasis
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[77], plays a significant role in the process of EMT and
involves the activation of Smad2 and Smad3 [78, 79].
Essentially, the TGF-β/Smad pathway induces high mobility
group A2 (HMGA2) gene expression, resulting in the
regulation of SNAIL1 gene expression, which then leads to
EMT [80, 81]. In addition, cancer cells can induce stromal
cells (including macrophages) to secrete MMPs (MMP2
and MMP9) [24, 82, 83], cysteine cathepsins [84–86], and
serine proteases [87–90] that aid in cell invasion and
intravasation by cleaving cell-adhesion molecules such as
E-cadherin and the ECM.

TAM and Immunosuppression

CRC is associated with a cytokine phenotype that is
immunosuppressive [91]. Suppressive mediators—such as
proinflammatory PGs, IL-10, TGF-β, and indoleamine
dioxigenase—produced by TAMs can suppress T-cell
activation and proliferation [77]. The TAMs are also known

to be poor antigen-presenting cells (APCs). In addition, M2
macrophages can directly induce T-regulatory (Treg) cells
by cell–cell contact via membrane-bound TGF-β1
expressed on the Treg cells [46, 92], resulting in suppres-
sion of antitumor T-cells and other inflammatory cells such
as monocytes [93, 94]. A low ratio of T effector to Treg
cells in CRC tissue is known to predict a shortened disease-
free survival [95].

Myeloid-Derived Suppressor Cells

MDSCs [96] are a heterogeneous population of immature
myeloid cells that have suppressive affect on adaptive immune
responses [97]. In pathological conditions, such as cancer
and some autoimmune diseases, there is a partial block in the
differentiation of immature myeloid cells (iMCs) resulting in
expansion of MDSCs characterized by up-regulation of
arginase-I and inducible nitric oxide synthase (iNOS).
Numbers of MDSCs are increased in the blood of mice

TAM
M2

Growth Factors
• PGE-2
• IL-6
• VEGF
• bFGF
• HGF
• EGF
• PDGF

Angiogenesis

• VEGF
• bFGF
• IL-8, IL-1β
• COX-2
• PDGF-β
• MMP-2, MMP-9

EMT / Invasion/ 
Metastasis

• TNF-α
• TGF-β
• MMP-2, MMP-9

ECM & MAM

• MMP-2, MMP-9
• Cysteine Cathepsins
• Serine proteases

Inflammation

• IL-6
• IL-10
• PGE-2
• TNF-α
• NO,ROI

Immuno
Suppression

• IL-10
• PGE-2
• TGF-β
• IDO
• Prostaglandins

Fig. 2 Multiple functions of
tumor-associated macrophages
(TAMs). TAMs are one of the
most important components of
tumor stroma. M2 cells, differ-
entiated TAMs, facilitate tumor
growth by contributing to tumor
inflammation, angiogenesis, the
epithelial-to-mesenchymal tran-
sition (EMT), tumor cell inva-
sion, intravasation, extracellular
matrix and matrix-associated
molecule formation (ECM and
MAM) as well as immunosup-
pression. They accomplish this
by either direct contact with
other cells or producing various
growth factors, chemokines, and
angiogenic factors such as inte-
leukin (IL)-10, IL-8, IL-6,
IL-1β, prostaglandin E2 (PGE2),
tumor necrosis factor-α (TNF-
α), transforming growth
factor-β (TGF-β), indoleamine
dioxigenase (IDO), nitric oxide
(NO), reactive oxygen inter-
mediates (ROI), matrix metal-
loprotease (MMP)-2, MMP),
epidermal growth factor (EGF),
basic fibroblast growth factors
(bFGF), vascular endothelial
growth factor (VEGF), and
platelet-derived growth factor-β
(PDGF-β)
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and patients with cancer, including CRC [98], by up to 10-
fold [99–102].

Murine MDSCs express the following markers:
CD11b+CD14+/− Gr1+MHCIIlow CD124+ [102], while hu-
man MDSCs are Lin− HLA-DR− CD33+ or CD11b+CD14−

CD33+CD86− [103]. The ability to suppress the function of
T-cell and NK cells provides the most effective way of
identifying MDSCs [96]. The expansion of MDSCs is
influenced by pro-myelopoetic factors produced by colorec-
tal carcinoma cells [104], such as stem cell factor (SCF), M-
CSF, PGs, IL-6, GM-CSF, and VEGF[105], while the
activation factors produced by MDSCs are produced by
both activated T-cells and stromal cells and include IFN-γ,
TLR ligands, IL-4, IL-13, and TGF-β. The suppressive
effect of MDSCs has been associated with the metabolism of
L-arginine, a substrate for the two key enzymes, arginase-1
and iNOS (which generates NO). Arginase-1 depletes
arginine in the microenvironment, which affects T-cell
proliferation. The generation of reactive oxygen species
(ROS) and NO by MDSCs leads to the production of
peroxynitrite, which results in nitrosilation of T-cell receptors
and immunosuppression [106]. There is also evidence
indicating that MDSCs promote the development of Foxp3-
positive Treg cells [107]. MDSCs isolated from murine
tumors also express high levels of MMPs compared with
MDSCs from normal mice [108]. Being immature cells, they
are also more plastic, expressing endothelial markers such as
CD31 and VEGFR2 [108], and thus have the potential to
incorporate themselves into the tumor endothelium. Some
MDSCs also differentiate into mature TAMs [102, 109].

MDSCs are also known to express PGE2 receptors such
as EP2, and PGE2 partially mediates MDSC induction via
activation of EP2 receptors [110, 111]. In a mouse model of
4T1 mammary carcinoma, PGE2 induced the differentiation
of MDSCs from bone marrow stem cells, whereas PGE2

receptor antagonists blocked this differentiation. Although
there are high levels of PGE2 in the colonic tumor
microenvironment, the role of PGE2 in MDSCs has not
been well studied [13, 15, 98].

Mast Cells

Mast cells are key effector cells in allergic diseases, but it has
become apparent that they also contribute to other patholo-
gies, including autoimmune diseases and cancer. In the
majority of human tumors, higher mast cell infiltration is
associated with increased vascularity, enhanced tumor growth,
invasion, and poor clinical outcome [112–114]. Recent CRC
studies revealed that a lower number of mast cells was
associated with hypovascularity and better survival in CRC
patients [115, 116]. Stem cell factor (SCF) produced by
tumor cells in vivo has been implicated in the accumulation
of mast cells in the periphery of growing tumors [117].

Activated mast cells release many proangiogenic and
growth stimulatory factors such as VEGF [114, 118, 119],
bFGF [119, 120], heparin [121, 122], histamine [123, 124],
TNF-α [125, 126], angiopietin-1 [127], and proteases [128,
129]. Mast cell infiltration into tumor tissue can trigger the
angiogenic switch and induce angiogenesis. Then, as the
tumors grow bigger, tumor cells take control of angiogen-
esis and become mast cell independent [130].

A recent study by Gounaris et al. demonstrated that colonic
polyps in APC mutant mice are infiltrated with proinflamma-
tory mast cells and their precursors. Depletion of mast cells
through either pharmacological treatment or the generation of
chimeric mice programmed to have genetic lesions in mast
cell development leads to a profound regression of existing
polyps, suggesting that mast cells are an essential component
for preneoplastic polyp development [131]. The number of
mast cells is markedly higher in primary CRCs than in
adjacent healthy tissues [132]. Additionally, there are many
more mast cells in poorly differentiated tumors than in well-
differentiated tumors [133].

Mast cell-produced proteases such as mMCP-4 (chymse)
and mMCP-6 (tryptase) are involved in ECM remodeling
[130], which is subverted in the tumor microenvironment,
resulting in tumor growth and metastasis. Human tryptase-
positive mast cells are abundant in the invasive front of
colonic adenocarcinomas, and tryptase has been suggested to
be the agonist for protease-activated receptor-2 (PAR-2).
Yoshii et al. demonstrated that tryptase activated PAR-2 in a
human colon carcinoma cell line, which in turn led to the
production of PGE2 and the induction of cell proliferation
[134]. Interestingly PGE2 has also been found to induce the
production of VEGF-A in mast cells.

Mast cells can also modulate immune responses by
dampening immune rejection or directing immune cell
recruitment, depending on local stimuli [135]. They are
known to activate T-cells via release of TNF-α or cell–cell
contact via OX40L, and they also express B7 and CD28
costimulatory molecules [136]. The mast cell-derived cyto-
kine IL-5 promotes eosinophil recruitment and survival
around tumors and is thought to modulate their ability to
kill tumor cells [137]. Additionally, in skin, TNF-α released
from mast cells and histamine [138] activates local keratino-
cytes to produce PGE2, which triggers the release of IL-10
by DCs, and this plays an immunosuppressive role [139].

There is still debate about pro- vs. antitumor effects of
mast cells in tumors. A mouse model deficient in mast cells
developed 50% more adenomas than littermate controls as
well as 33% larger tumors. There was no increase in tumor
cell proliferation, but apoptosis was significantly lower
[140]. The difficulty in interpreting the significance of the
presence of mast cells in malignant neoplasms is partly due
to differences between mast cells in mice and humans [135,
141, 142] as well as coexpression of cell-surface markers
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that are shared by other immature myeloid cells [131].
iMCs in the tumor express CD34, CCR1, MMP2, and
MMP9 [143], which are also expressed by mast cells
during development [144–147]. Additionally mast cells
express CD45, c-kit, sca-1, and low levels of CD11b,
which are expressed by other infiltrating myeloid cells
[148, 149].

Cancer-Associated Fibroblasts

CAFs are the main cellular constituents of reactive stroma in
primary and metastatic cancer and play a key role in CRC
development [150, 151] (Fig. 3). CAFs are still poorly
understood and are mostly defined on the basis of the
expression of α-smooth muscle actin (α-SMA) [152],
fibroblast-activated protein (FAP), fibroblast-specific
protein-1 (FSP1/S100A4), neuron-glial antigen-2 (NG2),
and PDGF β-receptor [151]. Studies have shown that patients
whose colon tumors have high levels of stromal FAP are
more likely to have aggressive disease progression and have
a higher potential to develop metastases or recurrence [153].
Microarray expression analysis of CAF and normal skin

fibroblasts showed that CAFs from metastatic CRC clustered
tightly into one group that included genes for growth factors,
COX-2, and TGF-β2, whereas genes from normal skin
fibroblasts clustered into another group [154].

Local tissue fibroblasts and fibroblast precursors stimulated
by PDGF and TGF-β are generally considered to be the
source of CAF. An analysis of CAF from CRC metastasis
suggested that the majority of CAF in liver originates from
resident liver fibroblasts [155]. In addition, mouse experi-
ments have demonstrated that bone marrow-derived precur-
sors such as MSCs also contribute to CAF population [156].

CAFs are a source of growth factors—such as EGF,
TGF-β, and HGF—that promote tumor growth and
metastasis [150]. Besides classical growth factors, CAFs
express chemokines, insulin-like growth factor (IGF)-1,
IGF-2, PDGF, secreted frizzled related protein, cell-surface
molecules like integrin-α11 or syndecan-1, and proteases
such as MMP2 and ECM constituents like osteopontin that
stimulate tumor cell proliferation, survival, and migration/
invasion [157–160]. In an in vitro colon cancer cell
coculture system, CAFs was shown to enhance tumor cell
proliferation [154]. CAF-derived chemokines such as

CAF

Angiogenesis
• VEGF
• FGF
• SDF-1
• PGE-2

ECM & MAM
• Syndecan-1
• MMP-2
• OPN

Invasion/Metastasis
• MMP-2
• CCL5

Growth Factors
• EGF
• TGF-b
• HGF
• IGF-1, IGF-2
• SFRP1
• PGE-2
• PDGF

Fig. 3 Roles of cancer-
associated fibroblasts (CAFs)
in colon carcinogenesis. CAFs
are the chief constituent of
tumor stroma. They facilitate
tumor growth by secreting
growth factors; promoting an-
giogenesis, tumor invasion, and
metastasis; and are involved in
the production of extracellular
matrix (ECM) and matrix-
associated molecules (MAMs).
The figure depicts the contribu-
tions of various CAF-derived
molecules. They include prosta-
glandin E2 (PGE2), transforming
growth factor-β (TGF-β), ma-
trix metalloprotease-2 (MMP2),
epidermal growth factor (EGF),
hepatocyte growth factor (HGF),
basic fibroblast growth factors
(bFGF), vascular endothelial
growth factor (VEGF), platelet-
derived growth factor-β (PDGF-
β), secreted frizzled related
protein (SFRP1), chemokine
ligand 5 (CC5), osteopontin
(OPN), and stromal cell-derived
factor-1 (SDF-1), which is also
called CXCL12
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CXCL12 [161] or CXCL14 [151] recruit bone marrow-
derived cells, macrophages, and other immune cells into the
growing tumor, which also contributes to tumor growth.

The release of VEGF, FGF, and CXCL12 by CAF
plays a central role in the promotion of tumor growth
and angiogenesis. CAF-derived CXCL12 not only stim-
ulates tumor cell growth directly through the CXCR4
receptor but also serves to recruit endothelial progenitor
cells (EPCs) into tumors, thereby furthering neoangio-
genesis [162]. Stromal myofibroblasts surrounding colon
adenocarcinomas are also an important source of COX-2
[163], suggesting that myofibroblasts could be important
target cells for NSAIDs and selective COX-2 inhibitors in
the chemoprevention of CRC [62] [164].

A majority of sporadic CRC cases are initiated by
constitutive Wnt activation, due to mutations in either the
APC tumor suppressor gene or β-catenin [165, 166]. The
tumor microenvironment is thought to play a central role in
the transformation of epithelial cells by locally modifying
Wnt/β-catenin signaling activity [166, 167]. In CRC, the
CAF-derived Wnt ligands PDGF and PGE2 can activate Wnt
signaling and contribute to EMT as well as maintenance of
the cancer stem cell phenotype [168–171]. The relationship
between COX-2/PGE2 and β-catenin activation with regards
to tumor progression and metastasis has been well summa-
rized in a recent review [11].

Also in human CRC, CAFs and pericytes of the tumor
vasculature usually express high levels of PDGF-R, while
cancer cells express PDGF-A and -B but not PDGF-R. The
expression of PDGF-Rβ in the stroma is associated with
advanced stage of disease and an increased metastatic
potential [172, 173]. The blockade of PDGF-R signaling
pathways in tumor-associated stromal cells using drugs such
as imatinib [172] inhibits the progressive growth and
metastasis of colon cancer cells [173]. Interestingly PDGF-
C up-regulation in CAF is associated with increased
resistance to anti-VEGF therapy in animal models [174, 175].

TIE-2-Expressing Monocytes (TEMs)

TIE-2, an angiopoietin receptor thought previously to be
restricted mainly to endothelial cells and hematopoietic
stem cells [176], is expressed by a subset of monocytes that
are distinct from classical inflammatory monocytes [177].
In cancer patients these TIE-2-expressing monocytes
(TEMs) are observed in blood and the tumor microenvi-
ronment, where they represent the main monocyte popula-
tion and are distinct from TAMs. Interestingly, TEMs are
hardly ever detected in nonneoplastic tissues [177]. While
only 1% to 2% of total leukocytes are TIE-2+, a substantial
fraction (20%) of circulating monocytes express TIE-2 in
mice and humans harboring tumors [177, 178]. In mice,
circulating TIE-2+CD45+ hematopoietic cells are mostly

CD11b+Gr-1low/neg, whereas in humans they express CD14,
CD16, and CD11c [176, 179].

TEMs have been found in many tumors, including
colon, kidney, and lung tumors [177, 180]. TEMs promote
tumor angiogenesis and growth [20, 176, 181]. Studies
have shown that monocyte chemokines such as CCL3,
CCL5, and CCL8 but not CCL2 play a role in TEM
recruitment. Importantly, the TIE-2 ligand angiopoietin-2
(Ang-2) expressed by hypoxic tumor cells and tumor
endothelial cells is the dominant factor in this recruitment
[177–179]. Inhibition of Ang-2 expression has been shown
in murine colon cancer models to decrease angiogenesis
and tumor growth [182].

Neutrophils

Neutrophil infiltration has been observed in both acute
and chronic inflammatory states. Interestingly, increased
levels of neutrophils are found in patients with different
cancers including gastric and colon cancer [183, 184].
Neutrophils are an important component of oxidative stress-
associated pathogenesis of chronic inflammatory bowel
disease (IBD)-related CRC [185]. CXCL1 and CXCL8 are
neutrophil chemokines involved in the recruitment of
neutrophils in various tumors, including gastric and colon
carcinomas [183, 186].

Recent data has suggested that neutrophils significantly
affect tumor angiogenesis [187]. Factors such as oncostatin
M released by neutrophils can stimulate tumor cells to
produce VEGF [188]. In CRC patients, neutrophil-derived
MMP-9 releases biologically active VEGF (165) from the
ECM by the cleavage of heparan sulfates [189]. Stimulation
of neutrophils by TNF-α, GM-CSF, platelet activating
factor, and CXCL8 induces degranulation and the release
of proangiogenic factors such as VEGF, CXCL8, and
CXCL1 from intracellular stores [190–192].

Data suggests that neutrophil-derived factors can pro-
mote genetic mutations leading to malignant transformation
[187]. The genotoxic capacity of neutrophils, which is a
crucial etiological factor in carcinogenesis, is mediated by
the induction of oxidative DNA damage through the release
of ROS and myeloperoxidase-related metabolic activation
of chemical carcinogens [193]. Activated human neutro-
phils are able to synthesize carcinogenic N-nitrosamines
that also contribute to colon carcinogenesis during chronic
inflammation [194]. These N-nitrosamines promote human
colon carcinoma cell adhesion to the microvascular endo-
thelial wall by production of ROS [195]. Neutrophils also
play a crucial role in postoperative adhesion and the
growth of spilled tumor cells after surgical peritoneal
trauma. Prevention of peritoneal neutrophil influx has
been shown to reduce local tumor recurrence in at least
one study [196].
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Neutrophils are also known to have antitumor properties.
Factors secreted by neutrophils such as ROS, proteases, and
cytokines such as TNF-α and IL-1β can kill tumor cells
directly [197, 198]. Recent data from animal models of
cancer have indicated that TGF-β promotes tumor-
associated neutrophils (TANs) to acquire a protumor
phenotype in the tumor microenvironment (called N2-
TAN). By contrast, TGF-β blockade leads to the acquisi-
tion of an antitumor N1-TAN phenotype (similar to M1
TAMs) by the infiltrating neutrophils. The N1-TANs are
hypersegmented and more cytotoxic to tumor cells, and
they express higher levels of proinflammatory cytokines
(IL-12, TNF-α, GM-CSF, and VEGF) and promote CD8+

recruitment as well as activation by producing T-cell-
attracting chemokines (e.g., CCL3, CXCL9, and CXCL10)
[199]. They can also activate DCs via cell–cell contact and
through secretion of TNF-α [200]. By contrast, N2
neutrophils do not produce high levels of such proinflam-
matory agents but do produce large amounts of arginase,
which inactivates T cell effector functions in the same way
that has been proposed for M2 TAMs [200]. Thus, TANs
are capable of being pro- or antitumorigenic, depending on
the tumor microenvironment [201].

Lymphocytes and Dendritic Cells

Tumors without signs of early metastatic invasion have been
shown to contain increased immune cell infiltrates andmarkers
of T-cell migration, activation, and differentiation [202]. In a
study of colon cancer tissues, the type, density, and location
of T-cells within the tumor samples were found to be a better
predictor of patient survival than were histopathological
results currently used to stage CRC [203, 204]. Although
some tumor-infiltrating CD8 T-cells are reactive to tumor
antigens, they are largely ineffective in arresting tumor
growth due to the immune inhibitory microenvironment and
unfavorable cytokine milieu for the activation of T-cells and
maturation of antigen-presenting DCs [205].

CD4+CD25+FOXP3+ Tregs are also expanded in tumors
and are capable of suppressing the proliferation of other T-
cells by direct contact or IL-10 and TGF-β production. Treg
cells that expand in colonic polyps produce IL-17, which
promotes mastocytosis and a tumor-promoting inflammatory
response [206, 207]. Tregs also express COX-2 and produce
PGE2, which suppresses effector T cells. NSAID treatment
increases MHC II protein (HLA-DP, -DQ, -DR) levels and
infiltration of CD4+ T-helper cells and CD8+ cytotoxic T
cells into both tumor stroma and epithelium, along with a
decrease in molecules associated with immunosuppressive
Treg cells, such as FOXP3 and IL-10 [208, 209]. In mouse
models of CRC, Tregs also inhibit the ability of tumor-
infiltrating DCs to mediate TNF-related apoptosis-inducing
ligand (TRAIL)-induced tumor cell death [210].

The role of B-cells in human CRCs is not well character-
ized, but B-cell-deficient mice exhibit spontaneous regression
of MC38 colon carcinoma cells. Studies involving BCR-
transgenic mice indicated that B-cells may inhibit antitumor T-
cell responses by antigen-nonspecific mechanisms [211].

NK cells mediate an innate immune response and
represent the first line of defense against pathogens [212].
They are rich in perforins and granzyme-containing
granules and can mediate potent antitumor cytotoxicity in
vitro. NK cells also mediate immune surveillance by
promoting apoptosis in colon cancer cells by increasing
the production of TRAIL [213]. The paucity of NK cells in
the tumor milieu is a well-known mode of tumor immune
evasion [214]. Additionally, serum from patients with CRC
has been shown to contain elevated levels of soluble MHC
class I chain-related molecules, which are responsible for
down-modulation of the receptor NKG2D on NK cells.
Only NKG2D+ NK cells have been found to be tumoricidal
in vitro and in vivo [215].

Colon carcinoma cells also evade immune surveillance by
increased expression of Fas ligand (FasL), which binds to its
receptor on immune cells to trigger apoptosis. Reduced FasL
expression by tumor cells is associated with increased
lymphocyte infiltration [216]. Interestingly, the PGE2/EP2
signaling plays a role in the up-regulation of FasL
expression in colon cancer cells and immune escape [217].

DCs, both myeloid DCs (MDCs) and plasmacytoid DCs
(PDCs), are professional APCs and are capable of inducing
primary and secondary T- and B-cell responses as well as
immune tolerance [218]. MDCs originate from immature
DCs (iDCs) in bone marrow and lack the mature DC
markers CD1A, CD83, CD40, and CD86 but express
CD11c, CD33, and HLA-DR. Tumor-derived factors such
as VEGF, β-defensin, CXCL12, HGF, CXCL8, and PGE2

[219] recruit iDCs into the tumor but inhibit their
maturation [220], resulting in few mature MDCs in tumors
but abundant iDCs. The iDCs promote tumor angiogenesis
by secreting proangiogenic cytokines and functioning as a
source of endothelial progenitors [221]. However, mature
DCs pulsed with tumor cell lysate can induce tumor-
specific cytotoxic T lymphocyte (CTL) activity against
colon tumor growth both in vitro and in vivo [222].

Platelets

Platelets are normally associated with hemostasis. However,
they also play a vital role in tissue repair and the maintenance
of endothelial function. Studies have suggested that increas-
ing platelet counts may be linked to tumor progression [223].
Other evidence points to a role of platelets in tumor
metastasis and angiogenesis [224, 225]. In cancer patients,
platelets are generally activated by thrombin [225], which
also stimulates tumor cell growth. Additionally they can be
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activated by ADP or by direct contact with molecules on
the surface of tumor cell membranes [226]. Platelet
activation results in the generation of thromboxane A2 and
the release of the storage contents from both alpha granules
and dense granules that include proangiogenic factors such
as VEGF, PDGF, and CXCL12 [227, 228]. Platelets also
contribute to colon cancer metastatic spread by accumulat-
ing on embolic tumor cells, thus protecting them from
clearance by the immune system [229] and by facilitating
circulating tumor cell arrest and adhesion to the endothe-
lium [230, 231].

Mesenchymal Stem Cells

Colon tumors contain numerous multipotent cells, includ-
ing MSCs, EPCs, and pericyte progenitor cells in addition
to cancer stem cells [232] that can be enriched using
CD133 and CD44 markers [233]. Chief among these are
the MSCs, which are multipotent nonhemopoietic cells that
reside in the bone marrow and can differentiate into
different types of mesenchymal cells. They are character-
ized by the expression of a large number of adhesion
molecules and stromal cell markers such as CD73, CD105,
CD44, CD29, and CD90 and the absence of hematopoietic
markers (CD34, CD45, and CD14) or endothelial markers
(CD34, CD31, and vWF) [234–236]. MSCs produce a large
number of cytokines and growth factors, and they express
growth factor receptors and ECM proteins (fibronectin,
vimentin, and laminin) [236]. In bone marrow, MSCs and
MSC-derived stromal fibroblasts support hematopoiesis.
However, in primary tumors, they are present in large
numbers and contribute to the formation of tumor-
associated stroma [237]. They also promote tumor growth
and metastasis [238], in part by their immunosuppressive
effects [239, 240] and proangiogenic properties [241].
MSC-derived fibroblasts produce growth factors and
proangiogenic factors such as PDGF, FGF, and CXCL12.
MSCs can also be differentiated into endothelial and
pericyte-like cells, which promote tumor growth [241]. In
addition, MSCs have been postulated to play a role in
promoting the survival of the cancer stem cells [242].

Tumor Vasculature

The induction of angiogenesis is an important early event in
the development of most cancers and is an integral part of
tumor growth and survival [243]. The microvascular
density of a tumor has prognostic significance and predicts
survival in patients with CRC [244]. Tumor hypoxia is a
dominant player in this process, which leads to the
activation of hypoxia inducible factor-1 and subsequent
expression of angiogenic factors such as VEGF, bFGF, and

PDGF by the tumor cells [245]. PGE2 directly induces
colon cancer cells to produce VEGF [246, 247] and thus is a
target for therapeutic intervention. Stromal cells—including
TAMs, mast cells, CAFs, TEMs, neutrophils, MSCs, and
others—also contribute proangiogenic factors and promote
angiogenesis, as was discussed earlier in this review.
Lymphangiogenesis also follows a path similar to angiogen-
esis during colon carcinogenesis [248]. VEGF-C, VEGF-D,
and angiopoietin-1 are potent lymphangiogenic factors
produced by tumor and stromal cells [249–251]. VEGF-C
expression is also associated with lymphatic spread of
colorectal carcinomas [252].

Extracellular Matrix and Matrix-Associated Molecules

The ECM is a highly organized three-dimensional structure
with many physiological and pathological roles. In addition
to maintaining tissue integrity, the ECM not only regulates
cell migration, cellular differentiation, and proliferation but
also provides a reservoir of cytokines and growth factors.
Alterations to the ECM composition during tumor devel-
opment are critical for tumor initiation and progression. The
ECM is composed of five classes of macromolecules,
including collagen, laminins, fibronectin, proteoglycans,
and hyaluronans. Depending on the tissue and the micro-
environment, they exist in various isoforms. The ECM can
be divided into two main groups: basement membrane
(BM) and interstitial or stromal matrix. BM is thin sheets of
specialized ECM that surround epithelial or endothelial
cells, nerves, and muscle cells and then separate these cells
from the interstitial stroma [253]. BM can act as a
mechanical barrier and organizer of tissue structure, as well
as regulate cell growth, differentiation, polarity, and gene
expression [254]. The BM is composed of a dense network
of collagen type IV and laminin. Invasive growth of
epithelial cancers is a complex multistep process that
involves dissolution of the BM. The stromal matrix is
composed of the polysaccharide gels, proteoglycans, and
various fibrous proteins, while the matrix-associated mol-
ecules include intestinal receptors, proteases, phosphopro-
teins, mucins, lectins, and others.

Laminin

Laminins are major proteins in the BM, composed of an α-
chain, a β-chain. and a γ-chain that are involved in cell
differentiation, migration, and adhesion. In CRC, the α4β4
integrins promote tumor cell migration on laminin-1 as it
stabilizes actin-containing motility structures [255].
Laminin-332 (formerly laminin-5), composed of 3 subunits
(α3β3γ3), interacts with at least two integrin receptors
expressed by epithelial cells and plays a crucial role in
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signaling, adhesion, and migration. Laminin-332 is com-
monly lost in carcinomas but is expressed in premalignant
tumors. In human colon and pancreatic tumor cells, Smad4
functions as a positive transcriptional regulator of all three
genes encoding laminin-332 [256]. Inactivation of tumor
suppressor Smad4, which is a genetically late event that
occurs upon transition from premalignant stages to invasive
and metastatic spread of cancer cells, can therefore lead to a
loss of laminin-332. Abnormal expression of laminin-332
and its integrin receptors is also a hallmark of certain tumor
types and is believed to promote invasion of colon, breast,
and skin cancer cells [257].

Collagens

Fibrillary collagen type I is the most abundant protein in
the human body and is essential for the integrity of soft
tissues. Collagen type III is present in the wall of blood
vessels and most organs and copolymerizes with collagen
type I. Type I collagen down-regulates E-cadherin and β-
catenin at cell-cell junctions. Furthermore, type I colla-
gen inhibits differentiation, increases clonogenicity, and
promotes expression of stem cell markers CD133 and
Bmi1. Type I collagen promotes expression of a stem
cell-like phenotype in human CRC cells through α2β1
integrin [258].

Fibronectins

Fibronectins are abundant high-molecular-weight adhe-
sive glycoproteins present in the ECM (insoluble form)
and in body fluids (soluble form). Fibronectin has the
ability to bind other ECM proteins (collagen), cell-
surface receptors (integrins), blood components (fibrin),
and glycosaminoglycans and is important for cell
migration. Fibronectin can promote invasion of Colo320
cells via focal adhesion kinase (FAK) [259]. FAK is
overexpressed in a variety of cancers, including breast,
colon, prostate, ovary, and lung cancer [259].

Proteoglycans

Colorectal carcinomas have been found to have altered
expression of many proteoglycans [260, 261]. Syndecan-1,
a transmembrane heparan sulfate proteoglycan, plays an
important role in cell-cell and cell-ECM adhesion and
functions as a growth factor coreceptor. Syndecan-1 is highly
expressed by normal epithelial cells. The Syndecan-1
expression is down-regulated in human colon carcinomas,
and this has been correlated with the transformed phenotype,
EMT, TNM stage, and metastasis to local lymph nodes
[260]. In contrast, versican and decorin are significantly
increased in CRC.

Hyaluronan

Hyaluronan is a multifunctional anionic polysaccharide that
has a structural role in many connective tissues. Hyaluronan
is associated with the pericellular matrix surrounding
proliferating and motile cells in normal and pathological
systems, where it has both structural and signaling functions
[262, 263]. Hyaluronan enhances colorectal tumor cell
proliferation and motility in vitro and in vivo [264, 265].
Inhibition of hyaluronan production in SW620 colon
carcinoma cells blocks matrigel invasion [266]. Interaction
of hyaluronan with its receptor CD44 stimulates ERBB2
activation [267] in HCT116 colon carcinoma cells, leading
to increased cell survival [268] as well as cell proliferation,
adhesion, and invasion [265]. Moreover, the interaction
between constitutive hyaluronan and CD44 mediates an
ErbB2-PI3K/AKT-β-catenin signaling axis which induces
COX-2 expression in colon carcinoma cells [269]. COX-2
inhibition reduces the ability of colon cancer cells to adhere
to and migrate on ECM [270].

Integrins

Integrins are the largest family of cellular receptors for
molecules in the ECM such as fibronectin, laminin, and
collagen [271]. The binding of integrins to the ECM
influences such cellular functions as adhesion, migration,
and the sequestration of growth factors. In colon cancer
cells, activation of integrins with collagen causes an
increase in COX-2 promoter activity and expression via a
PKC-α-Ras-NF-κB signaling cascade [272]. Increased
expression of the COX-2 protein by integrin is responsible
for an elevated generation of ROS and increased cell
migration [272]. Poorly differentiated colon cancers are
characterized by increased integrin-mediated ECM inter-
actions, whereas disruption of this integrin-mediated adhe-
sion leads to apoptosis and involves reduced PI3K activity
[273].

Metalloproteases

The ECM turnover depends on various types of protei-
nases, of which MMPs are the principal ECM degrading
enzymes [274]. These enzymes play an important role in
cancer growth, invasion, and metastasis. The expression of
MMP1, -2, -3, -7, -9, -13, and MT1-MMP is elevated in
human CRC. The expression levels of some MMPs are
correlated with stage of disease and/or prognosis [275]. For
example, the increased expression of MMP3 in CRC
correlates with low levels of microsatellite instability and
a poor prognosis [275]. In contrast to other MMPs,
overexpression of MMP12 is associated with increased
survival in CRC, presumably as a result of an inhibitory
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effect on angiogenesis [275]. Colon tumor cells can induce
the secretion of MMP2 and MMP9 by stromal cells via
direct contact or paracrine regulation [82, 276]. Increased
levels of neutrophil-derived MMP9 have been observed in
the transition from colon adenoma to adenocarcinoma.
MMP9 releases biologically active VEGF [165] from the
ECM of CRC by the cleavage of heparan sulfates [189].

Tissue inhibitors of metalloproteinases (TIMPs) also
regulate ECM remodeling through the inhibition of
MMPs. Interestingly, TIMP-1-expressing cells are more
resistant to chemotherapy than are TIMP-1 gene-deficient
cells [277]. In CRC patients, high levels of TIMP-1 in tumor
tissue and plasma are strongly associated with shorter
survival time [278].

Mucins

Mucins are heavily glycosylated proteins that have been
suggested to play a critical role in tumor malignancy.
MUC1 and MUC15 expression is up-regulated in CRC
[279]. Increased MUC1 expression at the invasive front in
CRC correlates with poor prognosis [280]. Overexpression
of MUC15 enhances cell proliferation, cell-ECM adhesion,
colony-forming ability and invasion in HCT116 cells [281].

Osteopontin

Osteopontin is a glycophosphoprotein that is expressed
and secreted by numerous human cancers. Osteopontin
interacts with a number of integrin receptors and has
pivotal role in tumor cell adhesion, chemotaxis, apoptosis,
invasion, migration, and anchorage-independent growth
[282]. The elevated expression of osteopontin has been
observed in a variety of cancers and linked to tumor
metastasis and a poor prognosis for patients [283].
Osteopontin appears to regulate colon cancer cell motility
though its interaction with CD44 [284]. Osteopontin
expression also reduces intercellular adhesion, an important
characteristic of metastatic cancer cells. Overexpression of
osteopontin in a poorly tumorigenic human colon cancer
cell lines resulted in enhanced tumorigenicity in vivo with
increased proliferation and angiogenesis [285]. Interestingly,
COX-2 inhibitors down-regulate osteopontin expression by
repressing two components of the osteopontin regulatory
network: the orphan nuclear receptor NR4A2 and Wnt/β-
catenin signaling [286].

Galectin

Galectin-3 is an endogenous lectin that binds glycan
epitopes of cell membrane and some extracellular glyco-
proteins such as integrins and laminin, and its expression is
elevated in CRC patients [287]. Galectin-3 is involved in

several biological activities, including regulation of tumor
progression via modulation of the cell cycle, adhesion, and
metastasis [287]. Galectin-3 has been implicated in a Wnt/
β-catenin signaling pathway essential for colon carcino-
genesis [288]. Galectin-3 levels have been shown to be
correlated with β-catenin levels in a variety of colon cancer
cell lines [288]. In contrast, galectin-9 suppresses tumor
metastasis by inhibiting the binding of ligands on vascular
endothelium and ECM to adhesive molecules on tumor cell
membranes [289]. It also suppresses the binding of
hyaluronic acid to CD44 on Colon26 cells [289].

Other Extracellular Matrix Proteins

Periostin is a unique ECM protein, the deposition of
which is enhanced by mechanical stress and the tissue
repair process. Periostin is secreted by pericryptal and
CAFs in the colon [290]. Betaig-h3/TGFβI (transforming
growth factor, beta-induced gene) is an ECM protein
secreted by colon cancer cells, and its expression is
associated with high-grade human CRC. Ectopic expres-
sion of the betaig-h3 protein enhances the aggressiveness
and alters the metastatic properties of colon cancer cells
in vivo. Mechanistically, betaig-h3 appears to promote
extravasation, a critical step in the metastatic dissemina-
tion of cancer cells, by inducing the dissociation of VE-
cadherin junctions between endothelial cells via the
activation of a αvβ5-Src signaling pathway [291]. In
contrast, inhibition of betaig-h3 expression dramatically
reduces metastasis [291].

Summary

A complex stromal system promotes the growth and
survival of CRC cells. The tumor microenvironment is
quite distinct from the normal tissue microenvironment
and is composed of a particular phenotype of stromal
cells—such as M2-TAMs, N2 neutrophils, and CAFs—
that are adept in supporting tumor cell growth, survival,
and metastasis. Therapeutic targeting of stromal cellular
components, including inflammatory cells such as TAMs,
MDSCs, CAFs, MCs, and neutrophils, vasculature, ECM,
and matrix-associated molecules, must be considered in
the future. Some currently used therapeutic agents, such
as selective COX-2 inhibitors and NSAIDS, already
target the stromal production of PGE2 in addition to
targeting the colon cancer cells, while bevacizumab and
other anti-VEGF agents target the tumor vasculature.
Application of agents targeting various stromal compo-
nents in a synergistic manner along with targeting the
tumor cells would potentially lead to the development of
more effective treatments for CRC.
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