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Abstract Matricellular proteins are modulators of cell-
matrix interactions and cellular functions. The group
includes thrombospondin, osteopontin, osteonectin/SPARC,
tenascin, disintegrins, galectins and CCN proteins. The
production of matricellular proteins such as osteopontin,
SPARC or tenascin is highly upregulated in melanoma and
other tumors but little is known about their functions in
tumor growth, survival, and metastasis. The distribution
pattern of CCN3 differs from most other matricellular
proteins, such that it is produced abundantly by normal
melanocytes, but is not significantly expressed in melano-
ma cells. CCN3 is known to inhibit melanocyte prolifera-
tion and stimulate adhesion to collagen type IV, the main
component of the basement membrane. CCN3 has a unique
role in securing adhesion of melanocytes to the basement
membrane distinct from other melanoma-produced matri-
cellular proteins which act as de-adhesive molecules and
antagonists of focal adhesion. Qualitative and quantitative
changes in matricellular protein expression contribute to
melanoma progression similar to the E-cadherin to N-
cadherin class switch, allowing melanoma cells to escape
from keratinocyte control.
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Introduction

During development, melanocyte precursors migrate from
the neural crest toward the epidermis, where they are arrested
upon contact with keratinocytes. Differentiated human
melanocytes are specifically localized to the basement
membrane and cannot survive within the upper epidermal
layers unless transformed, forming nevi or melanomas. In
turn, melanocyte homeostasis is strictly controlled by the
microenvironment. Dysregulation of homeostasis disturbs
the balance of the epidermal melanin unit and may trigger the
continuous proliferation of melanocytes, leading to the
development of pigmented lesions. It is likely that melanoma
cells escape from physiological control through: (1) down-
regulation of receptors important for their communication
with and adhesion to keratinocytes (e.g. E-cadherin); (2) up-
regulation of receptors and signaling molecules not found on
melanocytes but important for melanoma—melanoma, mela-
noma—fibroblast, and melanoma endeothelial cell interac-
tions [e.g. N-cadherin, melanoma cell adhesion molecule
(Mel-CAM), zonula occludens protein-1 (ZO-1)]; and (3)
loss of anchorage to the basement membrane due to altered
expression of extracellular-matrix (ECM) binding proteins

[1].
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Of ECM proteins, matricellular proteins are a sub-class
first proposed by Bornstein [2]. The term ‘matricellular’ has
been applied to a group of extracellular proteins that do not
contribute directly to the formation of structural elements in
vertebrates but serve to modulate cell-matrix interactions
and cellular functions [3]. Depending on cell type and
tissue context, matricellular proteins participate in diverse
processes, such as cell adhesion, proliferation, differentia-
tion, and survival [4, 5].

The original group of matricellular proteins was com-
posed of thrombospondin-1 (TSP1), SPARC (secreted
protein, acidic and rich in cysteine; also known as
osteonectin), and tenascin C, and was more recently
expanded by the inclusion of TSP2, osteopontin, tenascin
X, disintegrins, galectins, and CCN proteins. The produc-
tion of matricellular proteins such as osteopontin, SPARC
or tenascin is highly upregulated in melanoma and other
tumors, but little is known about their functions in tumor
growth, survival, and metastasis. Recently we reported
that CCN3 (NOV, nephroblastoma overexpressed) is up-
regulated in melanocytes after co-culture with keratino-
cytes and that it affects two fundamental features of
melanocyte physiology: it inhibits the proliferation of
melanocytes, and is required for the proper localization
of the melanocyte network on the basement membrane of
human skin [6].

This review will first focus on the putative role of CCN3
in melanocyte physiology, and why dysregulation of its
expression may play a role in the onset of melanoma. The
molecular mechanisms underlying dysregulation of CCN3
will also be discussed. In addition, recent work on other
matricellular proteins in melanoma will be summarized.
Finally, we will examine novel evidence indicating a role
for matricellular proteins as regulators of the niche in
diverse stem cell systems including tumor stem cells.

CCN3 Function in Melanocytic Cells
CCN3: Contribution to Melanocyte Physiology

In the normal human epidermis, the phenotype of mela-
nocytes is delicately regulated by the epidermal micro-
environment. Keratinocytes control the proliferation of
melanocytes in order to maintain a lifelong stable keratino-
cyte to melanocyte ratio. Epithelial keratinocytes also
regulate the expression of cell surface molecules on
melanocytes [7, 8]. Keratinocytes produce growth factors
and cytokines that act as paracrine factors in regulating the
phenotype of melanocytes, including: interleukin-1beta (IL-
1B), tumor necrosis factor-alpha (TNF-«), stem cell factor
(SCF), epidermal growth factor (EGF), and endothelin 1
[9-11].

@ Springer

In a search for molecular players involved in the
crosstalk between human melanocytes and keratinocytes,
CCN3 was found to be upregulated in melanocytes after co-
culture with keratinocytes [6]. CCN3 belongs to the CCN
protein family which consists of six members including
Cyr61 (cystein rich 61; CCN1), CTGF (connective tissue
growth factor; CCN2), NOV (nephroblastoma overex-
pressed gene; CCN3), WISP-1, 2 and 3 (Wnt-1 induced
secreted proteins; CCN4—6) [12]. CCN proteins contain
structural motifs including insulin-like growth factor bind-
ing protein-like domains, von Willebrand factor type C
repeats, thrombospondin type 1 repeats, and C-terminal
cysteine knot modules [12]. CCN proteins are involved in
the regulation of cell proliferation, migration, attachment,
and differentiation. During embryonic development, CCN3
expression has been widely observed in derivatives of all
three germ layers, specifically in skeletal muscle, smooth
muscle of vessel walls, nervous system, adrenal cortex, and
differentiating chondrocytes [13]. In human skin, CCN3 is
expressed in the basal layer of the epidermis, where
melanocytes are positioned [6]. Keratinocytes in culture
do not express CCN3, whereas melanocytes constitutively
express it at low levels. When melanocytes are co-cultured
with keratinocytes, CCN3 is strongly expressed in the
cytoplasm of melanocytes and secreted into the culture
medium. Keratinocyte-derived pro-inflammatory cytokines
such as IL-1B or TNF-« stimulate CCN3 expression and
secretion.

Abrogation of CCN3 in melanocytes leads to aberrant
phenotypes in human organotypic skin cultures, exhibiting
melanocyte hyper-proliferation and disorganization of the
three-dimensional melanocyte network on the basement
membrane. These findings support the importance of
keratinocyte—melanocyte crosstalk in the control of mela-
nocyte phenotype in human skin [1].

CCNa3 is the prototype of anti-proliferative CCN proteins
[14]. It regulates proliferation in both benign and malignant
cells including fibroblasts, glomerular cells, glioblastoma,
Ewing’s sarcoma cells, and chronic myeloid leukemia cells
[15-17]. However, the exact mechanisms responsible for
growth inhibition remain to be explored. Bleau et al. [14]
showed that production of CCN3 varies throughout the cell
cycle and it accumulates at the G2/M transition. Reportedly,
the CT module of CCN3 is sufficient to induce cell growth
inhibition. This module physically interacts with Connexin
43 (Cx43) [16, 18]. In rat glioblastoma cells, CCN3 co-
localizes with Cx43 in plaques at the plasma membrane,
suggesting that an interaction of CCN3 with the C terminus
of Cx43 could play an important role in mediating growth
control by specific gap junction proteins [16]. In human
skin, Cx43 is abundantly expressed in the suprabasal layers
[19]. During pathological changes leading to melanoma
development, in addition to the cadherin class switch,
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changes in connexin expression, in particular loss of Cx43,
results in a reduction or loss of gap junctional activity
thought to contribute to tumor progression [1]. This is
consistent with the observation that CCN3 is expressed at
the dermo-epidermal junction in human skin where mela-
nocytes and keratinocytes are in close contact [6].
Melanocytes appear to have a contingency mechanism
essential for their survival that secures continuous attach-
ment to the basement membrane of the skin. The primary
mechanism for attachment is reportedly through integrin(s)
[20], of which the laminin-binding integrin x681 is the
main candidate [21, 22]. Since expression of the «6
integrin subunit is downregulated by ultraviolet irradiation
[23], melanocytes must develop alternative mechanisms to
maintain localization at the basement membrane. Interest-
ingly, CCN3 production by melanocytes, in response to
keratinocyte contact, has important consequences for
melanocyte adhesion to basement membrane collagen IV
[6]. Upon CCN3 stimulation melanocytes increase expres-
sion of discoidin domain receptor 1 (DDR1), a receptor

Fig. 1 Proposed role of CCN3
in melanocyte adhesion. a In a
resting skin, melanocytes are
localized to the basement mem-
brane via multiple adhesion
mechanisms including integrin—
laminin binding and/or DDR1-
collagen IV binding. b Under
conditions of stress such as ultra
violet (UV) irradiation, integrin—
laminin connections are disrup-
ted. A potential mechanism by
which melanocytes maintain ad-
hesion to the basement mem-
brane involves the production
and release of IL-18 by kerati-
nocytes in resonse to stress. IL-
1B stimulates CCN3 production b
and secretion by melanocytes.
CCN3 then acts in an autocrine
manner, to enhance collagen
receptor DDR1 expression in
melanocytes, promoting adhe-
sion to collagen IV in the base-
ment membrane

tyrosine kinase and a receptor for collagen [24]. Thus
DDRI, as a collagen IV receptor, prevents melanocytes
from separating from the basement membrane, a critical
safety mechanism during inflammatory skin reactions in
preventing apoptosis (Fig. 1).

It is not clear yet how CCN3 signals to induce DDR1
upregulation. DDR1 is a direct p53 transcriptional target
[25]. Another CCN protein, CCN1 can activate the beta-
catenin/TCF4 complex, which promotes the expression of
c-myc followed by activation of p53 [26]. It is possible that
CCN3 upregulates DDR1 expression through activation of
p53 since p2l, one of downstream targets of p53, is
upregulated in CCN3-treated cells [6].

CCN3 binds to cell surface integrins and induces
intracellular signaling [5]. Neither overexpression nor
abrogation of CCN3 in melanocytes affect their adhesion
to laminin, the main ligand for «6 integrin, suggesting that
CCN3-u6 integrin binding is not essential for anchorage of
melanocytes to the basement membrane. CCN3 can bind to
avB33 [27], a multi-ligand binding integrin, however the 33
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subunit is not expressed by normal melanocytes [21, 28].
CCN3 can also bind Notch [29]; though Notch signaling is
not activated in melanocytes by CCN3 overexpression
(unpublished data). In summary, growth inhibition and
basement membrane localization conferred by CCN3 are
important, if not essential, functions for maintaining
melanocyte homeostasis in normal skin.

CCN3: Altered Expression in Melanoma

CCN3 is aberrantly overexpressed in several malignancies
and is associated with the progression of prostate cancer
[30], renal cell carcinoma [31] and Ewing's sarcoma [32],
whereas in rhabdomyosarcoma and cartilage tumors,
increased CCN3 expression correlates with tumor differen-
tiation. Extensive studies have indicated that the biological
properties of CCN3 are dependent upon the cellular context
[33]. Thus, it is not surprising that CCN3 has diverse
effects on tumorigenesis in different types of cancer. For
example, CCN3 has antiproliferative activities in human
and rat glioblastomas [34] and human chronic myeloid
leukemias [35], whereas it promotes migration and invasion
of human Ewing’s sarcoma cells [17] as well as adhesion
and migration in human glioblastoma cells [36].

CCN3 was characterized as the first member of the
matricellular protein family that is downregulated in
aggressive human melanomas [37]. The pathological
progression of melanoma can be defined in five distinct
stages [38]. The first stage is characterized by hyperplasia
of melanocytes as seen in common acquired and congenital
nevi. Dysplastic nevi with cytological and architectural
atypia define the second stage. The third stage is radial
growth phase (RGP) melanoma in which tumor cells are
present within the epidermis or individually invade into the
superficial dermis, but show little capacity to leave the
primary site. In the fourth stage, the vertical growth phase
(VGP), a population of melanoma cells invades deep into
the dermis and subcutaneous tissue as an expanding cluster,
increasing the risk for systemic dissemination. Finally,
metastasis is the most advanced stage of melanoma. Taken
together, the processes leading to the development of
melanoma can be described as a disruption of homeostatic
mechanisms in the skin. Such mechanisms control when
and how cells proliferate, differentiate and undergo apo-
ptosis in the epidermal melanin unit [39]. The disruption of
homeostatic controls can lead to the progression of
melanoma where cell-cell and cell-matrix crosstalk play
key roles.

Immunohistochemical staining of melanoma lesions
revealed that CCN3 expression is inversely correlated with
tumor thickness. In contrast, other major proteins in the
same family, such as osteopontin [40], tenascin C [41] or
SPARC [42], are strongly upregulated in human melanoma
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cells compared with normal melanocytes. These data
suggest that qualitative and quantitative shifts of matricel-
lular proteins contribute to melanoma progression similar to
the cadherin class switch. The cadherin switch is charac-
terized by the downregulation of E-cadherin in melanoma
cells when compared to melanocytes and by the upregula-
tion of N-cadherin, allowing melanoma cells to escape from
keratinocyte control [43]. The switch in matricellular
proteins suggests a potential role for CCN3 as an antagonist
to melanoma-associated matricellular proteins such as
osteopontin or tenascin C. In addition, the lack of CCN3
expression in advanced melanomas correlates well with
Breslow’s depth of invasion, one of the most important
prognostic markers in melanoma, suggesting that CCN3
expression could be a potential marker for good prognosis.

Re-expression of CCN3 in an advanced human melano-
ma cell line decreased melanoma invasion through Matrigel
by inhibiting matrix metalloproteinase (MMP) expression
[37]. Several reports suggest that MMP-2/-9 activity or
expression is regulated via the MAP kinase pathway [44—
46]. Therefore, it is possible that CCN3 downregulates
MMP-2/-9 through the inhibition of ERK. It has been
suggested that after secretion of full-length CCN3 and
cleavage of the extracellular compartment, the C-terminal
portion of the protein could re-enter the cell and be routed
to the nucleus via a nuclear localization signal [47]. Nuclear
CCN proteins may, in complex with other regulatory
proteins, act as transcriptional corepressors [47]. Therefore
it is conceivable that CCN3 might negatively regulate
MMP-2/-9 transcription. The activity of the CCN3 mole-
cule appears to occur in the basement membrane zone, a
location enriched with collagen IV which is a substrate of
MMP-2/-9. Whether CCN3 prevents invasion by inhibiting
the collagenase activity of MMP-2/-9 has yet to be
determined. The use of skin reconstruct xenografts on nude
mice might help determine whether CCN3 prevents cancer
cells from escaping the ECM and initiating tumor invasion.

These results, together with those from melanocyte
studies indicate that CCN3 has an inhibitory effect on
human melanoma progression at least in the early stages.
However, more studies are required before concluding that
CCN3 acts as a tumor suppressor gene in melanoma.
Although CCN3 suppressed the phosphorylation of ERK
and the proliferation of melanoma cells in vitro, a
significant reduction in tumor growth in a subcutaneous
xenograft model was not observed (unpublished data). This
finding contrasts with previous studies reporting an
antiproliferative role for CCN3 in vivo [17, 34]. While
CCN3 expression is decreased or lost in most lymphnode
and cutaneous melanoma metastases [37], CCN3 expres-
sion is detected in visceral metastases [48]. Vallacchi et al.
reported that induction of CCN3 in human melanoma cells
increased adhesion to collagen I, vitronectin and laminin in
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vitro as well as enhanced metastatic potential to specific
organs such as liver and adrenal cortex in vivo. Their
findings suggest that if melanoma cells spreading from the
primary tumor maintain expression of CCN3, they tend to
metastasize to visceral organs rather than lymphnodes or
skin. These differing outcomes might reflect variability in
molecular mechanisms of CCN3 signaling in different
cellular contexts. Because normal melanocyte growth and
adhesion are regulated by CCN3 [6], the biological
functions of CCN3 in melanoma may depend, in part, on
the cellular context at a given stage of tumor progression.
CCN3 induces neovascularization when expressed in rat
cornea [27], suggesting that it promotes angiogenesis.
Because there is considerable heterogeneity among vascular
endothelial cells, it is not clear whether CCN3 would also
induce angiogenesis in a malignant tumor. This remains to
be investigated.

Matricellular Protein Switch in Melanoma Progression

Cancers are known as wounds that do not heal [49, 50].
During cancer development, tumor cells often utilize
mechanisms of embryonic development and tissue repair
regulated by interactions between cancer cells, activated
stromal cells, and components of the extracellular matrix
including matricellular proteins. Matricellular proteins are
expressed primarily during development and growth, and in
response to injury. They are abundant in tissues with
continued turnover, such as bone [51, 52]. SPARC, tenascin
C and osteopontin are matricellular proteins highly
expressed in melanomas and a wide range of human
malignant neoplasms.

SPARC in Melanoma

SPARC, also known as osteonectin, is a 43-kDa ECM
glycoprotein involved in cell-ECM interactions during
wound healing, tissue remodeling, and cancer progression
[51]. Clinically, SPARC expression correlates with aggres-
siveness of melanomas and the acquisition of metastatic
phenotypes [42]. Ectopic expression of B3 integrin, a key
marker of VGP/metastatic melanoma, induces SPARC
expression in human RGP melanoma cells [53]. SPARC
has three general functions: de-adhesion, antiproliferation,
and regulation of extracellular matrix (ECM) interactions
[54]. SPARC suppresses expression of E-cadherin through
up-regulation of Snail, leading to migratory and invasive
behavior [55, 56]. Data strongly suggest that SPARC
induces epithelial-mesenchymal transition and contributes
to transformation of melanocytes. Recently a high-through-
put study using cDNA microarrays revealed that expression
of EMT-related genes including SPARC/osteonectin is

significantly associated with melanoma metastasis [57]. In
addition to downregulation of E-cadherin, SPARC over-
expressing melanoma cells showed upregulation of osteo-
pontin and increased phosphorylation of focal adhesion
kinase (FAK), suggesting that SPARC interacts with
integrin-linked kinase (ILK) at focal adhesions to modulate
cell-ECM interactions and promote an invasive melanoma
phenotype [56]. SPARC produced by human melanoma
cells also regulates inflammatory processes to inhibit
polymorphonuclear (PMN) leukocyte recruitment and anti-
tumor cytotoxic activity [58], suggesting that SPARC
contributes to the innate immune response in cancer thereby
promoting melanoma cell survival.

Since SPARC is not only expressed by tumor cells, but
also secreted by surrounding fibroblasts and endothelial
cells, it is likely that SPARC produced by tumor-
infiltrating stromal cells plays a role in tumor progression.
Prada et al. [59] reported that the growth capacity of
human melanoma cells depends on SPARC levels produced
by melanoma cells rather than stromal cell-derived SPARC.
It is not clear yet why SPARC does not act in a paracrine
manner in melanoma. It has been reported that SPARC
functions are regulated by proteolytic cleavage [60, 61].
Furthermore, SPARC is observed both in the cytoplasm and
in culture medium; thus, SPARC functions not only as an
extracellular protein but likely also functions intracellularly
[62]. Tt is conceivable that the location and concentration of
SPARC, whether it is intact or proteolyzed, and interactions
between SPARC and other molecules contribute to the
impact of SPARC on target cells [62]. Several studies have
confirmed that SPARC promotes tumor progression in glio-
ma [63], while it reduces tumor activities in breast cancer
[64]. These inconsistent observations suggest that regulation
and function of SPARC are dependent on cellular context.

Tenascin C in Melanoma

Tenascin C is a large, 220-320 kDa per monomer,
glycoprotein of the extracellular matrix secreted from cells
as a hexamer of six identical chains, termed a hexabrachion
[65]. Tenascin C has an N-terminal oligomerization motif,
and EGF-like, fibronectin type III and fibrinogen-like
domains. For most cells, tenascin C acts as an anti-adhesive
molecule. When presented as soluble protein to cells in a
strong adhesive state, Tenascin C acts by inducing a rapid
transition to an intermediate state of adhesiveness charac-
terized by loss of actin-containing stress fibers and
restructuring of the focal adhesion plaque including loss
of vinculin and alpha-actinin, but not of talin or integrin
[66]. Tenascin C inhibits fibronectin-dependent adhesion
[67]. These results indicate that tenascin C may play an
important role in cell-matrix interactions. Although tenascin
C binds multiple integrins, it is not clear whether these

@ Springer



98

M. Fukunaga-Kalabis et al.

interactions account for the many effects attributed to
tenascin C [65].

Most human melanoma cells secrete tenascin C in vitro
constitutively [41]. Transforming growth factor beta 1
(TGF-B1) increased secretion in tenascin-producing cells.
Tenascin C was present in sera of melanoma patients, with
significantly elevated levels in patients with advanced
melanomas as compared to patients with low tumor burden
or normal donors. Tenascin C expression is moderately
increased in benign and dysplastic melanocytic tumors,
greatly increased in melanomas and further increased in
metastases [68]. Expression in invasive and metastatic
melanomas is highest at the invasive fronts. The intensity
of tenascin C staining correlates with metastasis to sentinel
lymph nodes more consistently than tumor thickness [69,
70]. The main microenvironmental changes underlying
metastasis include clustered migration of cancer cells,
ECM degradation, paracrine loops of released growth
factors and/or induction of adhesion molecules in stromal
cells [71]. Adhesion regulated by tenascin C contributes to
cancer progression by facilitating cell migration and
reducing cell death from anoikis [66]. Tenascin C is also
involved in the regulation of MMPs contributing to ECM
degradation. It stimulates glioma cell invasion through
MMP-12 activation [72]. Co-stimulation of human breast
cancer cells with transforming growth factor-beta and
tenascin C enhances MMP-9 expression and cancer cell
invasion [73]. The large splice variant of Tenascin C
(320 kDa) stimulates MMP-1 expression [74]. The molec-
ular mechanisms underlying tenacin C-induced MMP
activation remain to be elucidated.

Stromal cells also produce tenascin C. Myofibroblasts
appear to be modified fibroblasts which express alpha-
smooth muscle actin, the actin isoform typical of vascular
smooth muscle cells, and they actively synthesize robust
amounts of collagen and other ECM components [75]. The
transdifferentiation of fibroblasts into myofibroblasts is
modulated by cancer cell-derived cytokines, such as TGF-
B [76]. Myofibroblasts are present at the invasive front in
cancer [77]. When isolated from colon cancer, they
stimulate invasion of colon tumor cells. Tenascin C,
secreted by myofibroblasts, is necessary for invasion driven
by hepatocyte growth factor (HGF) [78]. Alternatively
spliced tenascin C fibronectin domains have been reported
in tumors and tumor-associated stromal cells [65, 79, 80]. It
remains to be elucidated whether there is any functional
difference among tenascin C variants, or between melano-
ma- and stromal cell-derived tenascin C.

Osteopontin in Melanoma

Osteopontin is a secreted, phosphorylated acidic glycopro-
tein that is involved in different physiological and patho-
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logical events including regulation of inflammation, tissue
remodeling, and cell survival [81]. Osteopontin interacts
with receptors via arginine—glycine—aspartate (RGD)- and
non-RGD containing adhesive domains, in addition to
binding to components of the structural ECM [82]. Such
receptors include integrins and variant forms of CD44.
Osteopontin mediates cell-matrix interactions and cellular
signaling by binding with these receptors.

Osteopontin is expressed in a variety of tissues,
including vascular smooth muscle, activated macrophages,
lymphocytes, breast and prostate cancer, osteosarcoma,
glioblastoma, squamous cell carcinoma and melanoma
[83]. Elevated osteopontin levels in serum can be a
sensitive and specific marker in predicting disease progres-
sion in head and neck, renal, gastric, hepatocellular, lung,
and pancreatic cancers, and melanoma [84, 85].

Human melanoma cells acquire osteopontin expression
in the early steps of invasion [40]. Like tenascin C,
osteopontin expression is robustly increased in response to
TGF-B [86]. Additionally, osteopontin was more abundant
at both the mRNA and protein levels in tumor suppressor
phosphatase and tensin homolog (PTEN) mutants which
occur in some melanomas [87], indicating that osteopontin
acts downstream of the phosphatidylinositol 3-kinase
(PI3K) pathway.

The biological significance of osteopontin in melanoma
progression has been studied using osteopontin deficient
mice. In an experimental metastasis assay using B16 mouse
melanoma cells, the number of tumors established in bone
and lung was significantly reduced in osteopontin-deficient
mice compared with wild-type mice [88]. Because B16 cells
do not express osteopontin by themselves, the data suggests
that host-derived osteopontin promotes metastasis forma-
tion. Osteopontin upregulates the migratory activity of B16
cells in a mitogen-activated protein kinase/extracellular
signal-regulated kinase (MAPK/ERK) dependent manner
[89]. Osteopontin stimulates invasion of murine melanoma
cell lines and upregulates MMP-2 and MMP-9 via nuclear
factor (NF)-kB activation [90, 91]. Increased expression
and activity of the Src family of protein tyrosine kinases is
observed in human melanoma cell lines and in melanoma
tumors in vivo [27, 92]. Osteopontin activates c-Src in an
integrin ov-dependent manner [93]. Because Src kinase
activity is required for integrin ocvf33-mediated activation of
NF-kB in endothelial cells [94], this axis may also be
responsible for MMPs upregulation in melanoma.

Like other matricellular proteins, there are multiple
isoforms of osteopontin [95-98], suggesting it might have
diverse physiological roles depending on the structural
characteristics of each isoform. To date, it is not clear
whether melanoma-derived osteopontin has a distinctive
conformation and/or function in comparison to host-derived
osteopontin.
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Conclusions and Future Directions

We are beginning to understand the functions of CCN3
production by melanocytes. CCN3 affects two fundamental
features of melanocytic physiology—inhibiting melanocyte
proliferation and stimulating adhesion to collagen type IV,
the main component of the basement membrane. CCN3 is
expressed at low levels in melanoma in contrast to other
matricellular proteins, such as SPARC, osteopontin and
tenascin C, which are upregulated and act as de-adhesive
molecules which antagonize focal adhesion. CCN3 is the
first member of the matricellular family found to be
downregulated in advanced melanoma, and lack of CCN3
correlates with an invasive phenotype. The changes in
matricellular protein expression in melanoma are reminis-
cent of the E-cadherin to N-cadherin class switch, allowing
melanoma cells to escape keratinocyte control.

Recent findings describing novel roles for matricellular
proteins in stem cell biology may provide clues as to
their functions in tumor development. During the last
decade, abundant evidence has been presented that stem
cell-like populations exist in many types of cancer
(cancer stem cells: CSCs) [99, 100]. Although CSCs are
small subpopulations within a tumor, they are able to self-
renew and re-initiate the tumor. Melanomas also contain
CSCs that are highly tumorigenic and able to differentiate
into multiple cell lineages [101]. The concept of CSCs
could guide research in finding novel and effective
therapeutic targets. In an organism, the specific microenvi-
ronment, or niche, plays a critical role in maintenance of
stem cells [102]. It is not clear whether CSCs are dependent
upon the same niche as normal stem cells [103]. One may
hypothesize that the malignant tumor provides a specific
niche for CSCs such that they no longer require the normal
stem cell niche.

Several studies have determined that matricellular
proteins are critical elements in the stem cell niche, not
only to control the stem cell pool but to also regulate stem
cell fate [104]. For example, osteopontin contributes to
hematopoietic stem cell regulation by suppressing stem cell
proliferation, thereby limiting the number of stem cells
under homeostatic conditions. Tenascin C appears to
regulate neuronal stem cell fate by modulating stem cell
sensitivity to fibroblast growth factor 2 and bone morpho-
genetic protein 4 [105]. Considering that stem cell-like
populations exist in many types of cancer including
melanoma, the search is ongoing whether tumor-derived
matricellular proteins provide a specific niche for stem cell-
like populations in melanoma and other tumors.

In conclusion, further studies elucidating the mechanism
underlying the matricellular protein switch are likely to
reveal therapeutic targets for the prevention of melanoma
progression.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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