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ABSTRACT: Landslide susceptibility mapping (LSM) is a critical tool for mitigating the damages caused by geologic disasters. The
selection of map units and mathematical models greatly affects the efficiency of LSM. To obtain the most appropriate combination of
map units and mathematical models, four scales of catchment map units (CMUs) were analyzed and random forest (RF) and mul-
tivariate adaptive regression spline (MARSpline) models were applied in Gero City, Japan. The percentage of correctly identified land-
slides and the areas under the relative operating characteristic (ROC) curve were used to evaluate the model performances. The results
indicate that the RF model had higher prediction accuracy than the MARSpline model, especially when the size of the CMU was 0.09
km2. A relatively high percentage of landslides fell into the high and very high landslide susceptibility classes (73%) and the lowest per-
centage of landslides fell into the very low landslide susceptibility classes (0.82%). The prediction-area (P-A) plots indicated that the
prediction rates were higher for the RF model than the MARSpline model. The results of this study also suggest that the model accu-
racy can be increased if the appropriate CMU size is used. Therefore, the potential benefits of using the RF model in combination with
the appropriate CMU size should be further explored using additional landslide-conditioning factors and other models. 
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1. INTRODUCTION

Landslides are one of the worst natural disasters, capable of
causing massive amounts of human casualties and economic
losses (Nefeslioglu et al., 2008). A tool for mapping and tracking
landslides could help local governments to mitigate the associated
losses. Landslide susceptibility mapping (LSM) technology has
been widely applied for the identification of areas susceptible to
landslides because of its accessibility and visualization capabilities
in a geographic information system (GIS) (Scaioni, 2013; Shahabi

and Hashim, 2015). Various quantitative and statistical methods
have been used in landslide susceptibility studies. These include
the frequency ratio (FR) (Yalcin et al., 2011; Ozdemir and Altural,
2015; Youssef et al., 2015), logistic regression (LR) (Bai et al., 2010;
Wang et al., 2013; Althuwaynee et al., 2014; Shahabi et al., 2014),
and bivariate statistical (BS) analysis (Nandi and Shakoor, 2010;
Xu et al., 2012). Due to improvements in data mining methods,
state-of-the-art techniques such as artificial neural networks
(ANN) (Bui et al., 2012; Zaren et al., 2012; Conforti et al., 2014),
weights of evidence (WOE) (Regmi et al., 2010a, b), fuzzy logic
(Lee, 2007; Kanungo et al., 2008; Muthu et al., 2008; Pradhan et
al., 2010), neuro-fuzzy systems (Oh and Pradhan, 2011; Sezer et
al., 2011; Pradhan et al., 2014), support vector machines (SVM)
(Yao et al., 2008; Yilmaz, 2010; Tanner, 2014; Su et al., 2015), and
decision trees (DT) (Saito et al., 2009; Yeon et al., 2010; Wang et al.,
2016) have been used increasingly to map landslide susceptibility
(Su et al., 2015). 

In recent studies, researchers have compared different
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quantitative methods of LSM. Four different statistical methods,
including LR, BS, ANN, and SVM with three different kernel
functions were compared for LSM for the landslide caused by
the 2008 Wenchuan earthquake in China (Xu et al., 2012). Also,
a comparative study of the FR, LR, and WOE models was presented
by Ozdemir and Altural (2013) for a landslide susceptibility
analysis in a mountainous area. Zoglu et al. (2014) compared
multi-criteria decision analyses and SVM with LR and found
that these approaches generally outperformed the conventional
LR method for mapping shallow landslides. Youssef et al. (2015)
proposed an ensemble method of FR and LR and compared
these approaches to the original LR and FR methods, whereas
Chen et al. (2015) compared the FR with a statistical index and
an index of entropy models. All these studies were based on the
concept that future landslides are likely to occur under the same
geologic, geomorphologic, and hydrologic conditions that triggered
a landslide event in the past. However, these studies were focused
on grid-based (or cell-based) calculations for LSM. The main
shortcoming of grid-based calculations is the lack of considering
the heterogeneity of the geological and land use factors. The
grid-based methods partition the polygon units of the geological
and land use factors into raster cells for further calculations. 

Although some research on catchment-based (or polygon-
based) LSM has been reported in the literature (Guzzetti et al.,
2005; Galli et al., 2008; Saito et al., 2009), these studies did not
consider the different sizes of the catchment-based (polygon-
based) map units (CMUs). The selection of the mapping unit is
crucial because it determines how landslides are sampled to obtain
the training and prediction (validation) subsets for susceptibility
modeling (Hussin et al., 2016) and it affects the accuracy of LSM
at the regional scale. 

In this study, we used four sizes of CMUs and analyzed the
data using a random forest (RF) algorithm for LSM. The RF
method has rarely been used in the assessment of landslide
susceptibility and has not been compared to the multivariate
adaptive regression spline (MARSpline) method in previous
studies. The RF and MARSpline models were used to create
landslide susceptibility maps in Gero City, Gifu Prefecture, Japan
and their performances were compared. The specific objectives
were to (1) select the appropriate scale of the CMUs for LSM by
considering the heterogeneity of the geological and land use
parameters and (2) map the spatial distribution of the landslide
susceptibility index using the RF and MARSpline models.

2. MATERIALS AND METHOD

2.1. Study Area

The study area was chosen due to the lack of sufficient landslide-

conditioning factors and field observation data of landslides.
The study area covers approximately 851 km2 and is located in
the eastern part of Gifu Prefecture, Japan (Fig. 1). The elevation
ranges from 220 m to 3052 m. The landforms are hilly with an
average slope angle of 24.5°. The lithology in the study area
consists primarily of sedimentary and volcanic rocks. The most
common land use/land cover classes are plantations and
secondary forest. Local government records indicated that the
main causes of landslides were prolonged rainfall or snowmelt. 

2.2. Datasets

2.2.1. Landslide inventory
A landslide inventory map from 2008 was acquired from the

National Research Institute for Earth Science and Disaster
Prevention (NIED) (http://www.bosai.go.jp/) to understand the
spatial distributions of the landslides in the study area. According
to the definition by Varnes (1978), a landslide is defined as mass
movements including soil slides, debris slides, rock slides, and
debris flows (Fig. 1).

The size of the landslides ranges from 2.5 × 10–3 km2 to 0.9 km2.
The landslide area percentage (LAP), which is defined as the
percentage of the area affected by landslide activity, is 5.48%.
The landslide number density (LND) is 0.74 landslides/km2,
which is the number of landslides per sq km.

Different shapes of landslides were chosen to represent the
locations where mass movements occurred. Vahidnia et al.
(2010) and Yeon et al. (2010) used partial landslide points (grid
cells) to define the training dataset and used some of these
points to test the dataset. Sterlacchini et al. (2010) and Yalcin et
al. (2011) used polygons for the training and test datasets for the
landslide areas. Although some researchers prefer to use points
to represent landslide locations, others have used polygons to
determine the locations of landslides on a regional scale. In this
study, the CMUs were derived from an area using appropriately
defined terrain mapping units (TMUs) that combined information
on the geology and land use/cover. Four different scales of
CMUs were used to represent the presence of landslides. It was
also necessary to obtain sampling data from areas without
landslides for the RF model. For this purpose, four groups of
datasets, including the training and testing CMU datasets are
used in this study.

2.2.2. Spatial database development
Topographic, hydrologic, lithologic, and land cover datasets

were obtained for the study area. The landslide-conditioning
factors were extracted from the datasets and stored in a spatial
database using a spatial analysis tool (ArcGIS10.1 software
package).
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Topographic indices: The Advanced Space-borne Thermal
Emission and Reflection Radiometer Global Digital Elevation
Model Version 2 (ASTER GDEM V2) (http://glcfapp.glcf.umd.edu/
data/aster/) was used to determine the topographic characteristics
of Gero City in 2013. The spatial resolution of the GDEM is 20 m.
We also applied airborne LiDAR data, which were acquired in
2011 to calibrate the ASTER GDEM and to obtain higher
resolution DEM data.

The topographic indices of altitude (Fig. 2a), percent slope
(Fig. 2b), and relief (Fig. 2c) were derived using the ArcGIS 10.1
software package.
Water-related index: The topographic wetness index (TWI)
was derived from the DEM (Fig. 2d); it is used to estimate soil
moisture and the erosive power of water flow (Regmi et al.,

2010a, b).

TWI = loge(A/btan ), (1)

where A (m2) is the upstream area, b (m) is the resolution of
the DEM, and α is the slope gradient.
Land use/Land cover: A land use/land cover map is important for
predicting landslide occurrences. This data layer (from 2013) was
acquired from the Biodiversity Center of Japan (http://
www.biodic.go.jp) (Fig. 2e).
Geological parameters: The geological map representing the
features of the slope materials was provided by the Geological
Survey of Japan, AIST (https://www.gsj.jp/). The lithology map
was created in 1992 and was digitized using ArcGIS 10.1 (Fig.
2f). Note that the geology of our study area is very complex and

Fig. 1. Geographical location and distri-
bution of landslide bodies in Gero City, 
Gifu Prefecture, Japan.
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Fig. 2. Landslide conditioning factors: (a) altitude, (b) slope percent, (c) relief, (d) TWI, (e) land use/land cover, and (f ) lithology.

Table 1. Lithologic components of the study area

Code Lithology Geological age
Hfn Fan deposits Late Pleistocene to Holocene
Hsr Marine and non-marine sediments Late Pleistocene to Holocene
J1-2as Sandstone of accretionary complex Early to Middle Jurassic
J2-3ac Chert block of J2-3 accretionary complex Triassic to Middle Jurassic
J2-3as Sandstone of J2-3 accretionary complex Middle to Late Jurassic
J2-3ax Melange matrix of J2-3 accretionary complex Middle to Late Jurassic
K2sn Non-marine sediments Late Cretaceous
K2vf Non-alkaline felsic volcanic rocks Late Cretaceous
K2vi Non-alkaline felsic volcanic intrusive rocks Late Cretaceous
N3vb Non-alkaline mafic volcanic rocks Late Miocene to Pliocene
N3vf Non-alkaline felsic volcanic rocks Late Miocene to Pliocene
PG1vi Non-alkaline felsic volcanic intrusive rocks Paleocene to Early Eocene
Q2vb Non-alkaline mafic volcanic rocks Middle Pleistocene
Q3tl Lower terrace Late Pleistocene 
Q3vb Non-alkaline mafic volcanic rocks Late Pleistocene
Q3vf non-alkaline felsic volcanic rocks Late Pleistocene
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the lithological units comprise several formations. The formations
were therefore classified into sixteen categories with respect to
landslide susceptibility. The descriptions of the geological units
are provided in Table 1.

The landslide density defined as “previous knowledge” or
“expert knowledge” was used to transform the categorical data
into numerical data (Bui et al., 2010). The landslide density
(LD) is defined by the following formula:

, (2)

where Di is the area of a landslide of the i-th category, Ai is the
area of the i-th category for a certain parameter, and N is the
number of the parameter. The lithology and land use types
are converted to numerical variables (Table 2).

2.2.3. Descriptive statistics of CMUs and condition-
ing factors

To select the appropriate CMUs, the study area was divided
into four different map unit scales, including 0.01 km2 (5 cells ×
5 cells), 0.02 km2 (7 cells × 7 cells), 0.04 km2 (10 cells × 10 cells),
and 0.09 km2 (15 cells × 15 cells). The numbers of CMUs for
these scales are 27234, 16163, 7835, and 3147, respectively. Six
landslide-conditioning factors, including altitude, slope angle,
relief, TWI, land cover, and geological type, are used in the LSM.
The standard deviation (STD), maximum (Ma), minimum (Mi),
and average (Av) of the altitude, slope angle, relief, and TWI of
the grid cells in each CMU were calculated using spatial analysis
tools (Table 3).

2.2.4. Training and test datasets
The manner in which a training dataset is chosen can affect

the LSM results. Nandi and Shakoor (2010) divided a landslide
inventory into two subsets: landslides in the left portion of the
study area were used as the training dataset and those in the
right portion were used as the testing dataset. Vahidnia et al. (2010)
used partial landslide points for the training dataset and used a
subset of these points for the test dataset. Pradhan (2013) used
50% of the landslide grid cells for training and the other 50% for
testing using random sampling. In this study, if the landslides
fell entirely within the map units, those units were defined as an
occurrence of a landslide. Subsequently, the numbers of landslide
map units were 6932, 4913, 3140, and 1774 for the four different
map unit sizes of 0.01 km2, 0.02 km2, 0.04 km2, and 0.09 km2.
Seventy percent of the map units were used for training and the
other 30% were used for model testing; the sampling was conducted
randomly.

2.3. Model Development

2.3.1. RF model
The RF model is a relatively new, tree-based model that has been

developed to optimize the predictive performance by combining
a large number of simple DTs into a powerful model rather than
using a single-tree model based on traditional classification and
regression trees (Breiman, 2001; Skurichina and Duin, 2001;
Yang et al., 2016).

LD Di/Ai

Di/Ai
N
i

--------------------=

Table 2. Landslide density values of lithologic components and land
use/land cover

Lithologic 
type

Landslide 
density

Land cover/use
type

Landslide 
density

Hfn 0.055 Bareland 0.068
Hsr 0.042 Developed land 0.102

J1-2as 0.180 Farmland 0.070
J2-3ac 0.045 Grassland 0.119
J2-3as 0.053 Natural forest 0.059
J2-3ax 0.040 Plantation 0.187
K2sn 0.099 Secondry forestry 0.188
K2vf 0.079 Shrub 0.135
K2vi 0.076 Urban district 0.072
N3vb 0.086
N3vf 0.000

PG1vi 0.131
Q2vb 0.002
Q3tl 0.062
Q3vb 0.010
Q3vf 0.040

Table 3. CMU characteristics and definitions

Characteristics Definitions
LS-yes Landslides Occurred
LS-no No occurred
Geo Geological data Landslide density of Geologic
LC Landcover/landuse Landslide density of landcover
Elema Altitude Maximum height (m)
Elemi Minimum height (m)
Eleav Average height (m)
Elestd Standard deviation (m)
Slopema Slope angle Maximum (degree)
Slopemi Minimum (degree)
Slopeav Average (degree)
Slopestd Standard deviation (degree)
Reliefma Relief Maximum (m)
Reliefmi Minimum (m)
Reliefav Average (m)
Reliefstd Standard deviation (m)
TWIma TWI Maximum
TWImi Minimum
TWIav Average
TWIstd Standard deviation
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To run the RF model, three a priori parameters are defined,
including the number of variables used to grow each tree (mtry),
the number of trees in the forest (ntree), and the minimum
number of terminal nodes (nodesize). Breiman (2001) and Liaw
and Wiener (2002) stated that even one variable/factor (mtry = 1)
could generate a good level of accuracy, whereas Gromping
(2009) proved the need to include at least two variables/factors
(i.e., mtry = 2, 3, 4, ……, m) in order to avoid using the weaker
regressors as splitters (Breiman, 2001; Liaw and Wiener, 2002;
Gromping, 2009; Rahmati et al., 2016). During the training
procedure, each tree is generated by bootstrap samples, leaving
approximately one-third of the overall sample for validation and
using the out-of-bag (OOB) error (Gromping, 2009). Detailed
information of the RF model can be found in Breiman (2001)
and Liaw and Wiener (2002). 

The aim of the RF model is to analyze the relationship between
the independent variables and a dependent variable to determine
the weighted value for each factor. To fit an RF model, the default
values for mtry (one-third of the total number of predictors),
nodesize (5) and ntree (1000) were used.

2.3.2. Multivariate adaptive regression spline (MAR-
Spline)

Multivariate adaptive regression spline (MARSpline) is a
technique that combines classical linear regression, mathematical
construction of splines, and binary recursive partitioning to
produce a local model where the relationships between the response
and the predictors are either linear or non-linear (Felicisimo et al.,
2013). The MARSpline model is defined as the sum of weighted
basis functions:

, (3)

where fi(x) is the basis function, n is the number of basis
functions in the model, and f0(x) is the constant basis function, the
coefficient of which is a0. All of the coefficients are calculated
using ordinary least squares (OLS). The basis functions are
represented by the following equation:

, (4)

where di is the number of variables (interaction order) in the
ith basis function Sji, Xv(j,i) is the vth variable, 1  v(j,i)  d, and tji
is the knot location for each of the corresponding variables.

2.4. Statistical Analyses

The statistical analyses and modeling were performed using R
software (Felicisimo et al., 2013). The RF models were developed

using the R Random Forest package (Liaw and Wiener, 2002).
The implementation of the MARSplines was carried out with
SPM software and the training datasets (Salford Systems, http://
www.salfordsystems.com/).

2.5. Model Validation

The accuracy of the landslide susceptibility maps was evaluated
by calculating the relative operating characteristic curve (ROC)
and the percentage of observed landslide points in the various
susceptibility categories (Nandi and Shakoor, 2010). Previous
studies demonstrated that the area under the ROC curve (AUC)
is suitable for quantifying the uncertainty in model predictions
and can account for detection biases associated with the estimation
(Guzzetti et al., 2005; Wang et al., 2013; Rahmati et al., 2016).
The ability and uncertainty of the RF and MARSpline models
were investigated using the AUC. An AUC value close to 1
indicates a high level of accuracy, whereas an AUC value close to
0.5 indicates inaccuracy (Wang et al., 2013). In order to assess
the relative efficiency of the results, the prediction-area (P-A)
plot can be used to evaluate the ability of the different-sized CMUs
to predict the landslide susceptibility (Yousefi and Carranza,
2015a, b, c). In this study, the P-A plot was used to determine the
relative importance of the different-sized CMUs. More detailed
information on the use of the P-A plot can be found in Yousefi
and Carranza (2015a, b, c), Yousefi and Carranza (2016, 2017),
and Yousefi and Nykänen (2016).

3. RESULTS AND DISCUSSIONS

3.1. Model Performance

The OOB error, which is an unbiased procedure, was used to
select the optimum parameters of the RF algorithm. The OOB
error is a function of the number of trees and is, therefore, lower
when more trees are added to the algorithm. As a result, when
the value of the OOB error changed slowly, appropriate values
of the OOB error and the ntree were obtained. Table 4 shows the
predictive performance of the RF models with different values
of the OOB error and ntree. As shown in Table 4, the accuracies
of the training data decreased from 81.3% to 64.4% as the scale
of the map units increased to 0.09 km2 (RF4). In contrast, the

F x  a0 ai fi x n
i 1=+=

 fi x  Sji Xv j i  tji–  
di
j 1= +=

Table 4. Statistics and accuracies of RF models

OOB ntree Accuracy
RF1 0.204 50 81.3%
RF2 0.225 50 79.2%
RF3 0.263 51 76.3%
RF4 0.360 27 64.4%
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values of the OOB error and the ntree decreased when the size
of the map units increased. These results indicate that a small
tree number and OOB error were observed when the size of the
map units was large and that the scale of the map unit affects the
accuracy of the LSM using the RF algorithm. 

Table 5 shows the predictive performance of the MARSpline
model with different CMUs. The accuracy of the training data
increased from 68.9% to 79.2% as the scale of the map units
decreased. When the map units increased to 0.09 km2

(MARSpline4), the accuracy dropped dramatically. By applying
the MARSpline algorithm, the following models based on the
training dataset and composed of the basis functions with different
CMUs in the study area were obtained:

MARSpline1:
BF3 = max(0, TWIma - 5.515);
BF6 = max(0, 0.0764 - Geo);
BF7 = max(0, Reliefma - 69);
BF11 = max(0, Eleav - 613.1);
BF12 = max(0, 613.1- Eleav);
Y = 0.3553 + 0.0855 × BF3 – 7.0138 × BF6 + 0.003945 × BF7 

+ 0.00069 × BF11 – 0.0011 × BF12, (5)

MARSpline2:
BF3 = max(0, TWIma - 5.880);
BF6 = max(0, 108.14 - Reliefav);

BF8 = max(0, 0.0764 - Geo);
BF9 = max(0, Elema - 667);
BF13 = max(0, Elema - 926);
Y = 0.4371 + 0.0867 × BF3 – 0.0039 × BF6 – 7.192 × BF8 

+ 0.00185 × BF9 – 0.0016 × BF13, (6)

MARSpline3:
BF2 = max(0, 1237 - Elema);
BF4 = max(0, 9.576 - TWIma);
BF5 = max(0, Slopemi - 3.338);
BF7 = max(0, Reliefstd - 3.0834);
Y = 1.1344 – 0.0011 × BF2 – 0.1316 × BF4 + 0.0178 × BF5 

+ 0.0081 × BF7,  (7)

MARSpline4:
BF2 = max(0, 1170 - Elema);
BF4 = max(0, 9.81006 - TWIma);
BF5 = max(0, Slopeav - 31.7212);
BF12 = max(0, 20.57 - Reliefstd);
Y = 0.9958 – 0.00074 × BF2 – 0.1212 × BF4 – 0.1646 × BF5 

– 0.013 × BF12.  (8)

3.2. Variable Importance

The relative importance of the predictors was determined
from the training datasets of the RF models and is shown in Figure
3. The relative importance of the predictors differed between
the four models. The important variables were normalized to
100% in the RF models to provide a simple basis for comparison.
The five most important predictors in all of the models were
Elema, Eleav, Elemi, and Geo, with the exception of the RF4 model,
where Elestd had the fourth highest value. This finding implies
that these environmental variables are the primary indicators of

Table 5. Accuracies of MARSpline models

Accuracy
MARSplines1 79.2%
MARSplines2 75.6%
MARSplines3 75.2%
MARSplines4 68.9%

Fig. 3. Relative importance of each variable using random forest (RF) models with different CMUs, which are normalized to 100%.
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the spatial variability of the landslide susceptibility in Gero City
when using the RF algorithm. Figure 3 shows the effects of the
landslide-conditioning factors for the different-sized CMUs
using the RF model. Elema, Eleav, and Elemi have the most important
influences on the landslide occurrence for the different CMUs.
For the CMU size of 0.09 km2, the Elema value played a key role
in the model performance. Reliefma and Reliefav are very important
factors for modeling landslide occurrence when the small CMUs
are used for training the model. TWIma and TWIstd are more
important when using the larger sized CMUs (0.04 km2 (10 cells
× 10 cells) and 0.09 km2 (15 cells × 15 cells)). Land use/land cover
is not a key factor for LSM in this study area using the RF method.
However, this finding differs from those of several previous
studies (Bui et al., 2005; Nandi and Shakoor, 2010; Wang et al.,
2013), indicating that the map unit (cell-based or catchment-based
map unit) can be an important factor in landslide susceptibility
assessments. 

Figure 4 shows the effect of the landslide-conditioning factors
for the different training datasets for the MARSpline model.
TWIma has an important influence on landslide occurrence for
the different CMUs. For the larger CMUs, Elema plays a key role
in the model performance. The lithology of the formation is

very important for predicting landslide occurrence when the
smaller CMUs are used for training the model. Reliefstd is more
important when using the larger CMUs.

3.3. Spatial Distribution of Landslide Susceptibility 
Index

The landslide susceptibility indices were calculated by applying
the results of the RF and MARSpline models for the different
scales of map units. Figures 5 and 6 show the spatial distributions
of the landslide susceptibility indices derived from the RF and
MARSpline model respectively for Gero City, Gifu Prefecture,
Japan.

3.4. Evaluation of Landslide Susceptibility Maps

The accuracy of the landslide susceptibility maps was evaluated
by calculating the AUC for the ROC and the percentage of observed
landslides in the various susceptibility categories. The AUC values
showed that the RF1 model had the highest success rate (AUC =
0.88) and the best prediction rate (AUC = 0.89) when used with
the smallest map unit (Table 6). As the catchment size increased,

Fig. 4. Parameter importance map obtained from MARSplines model. The horizontal axis is the factor importance.
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Fig. 5. Landslide susceptibility maps derived from RF models: (a) RF1, (b) RF2, (c) RF3, (d) RF4.
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the AUC values of the success rate and prediction rate decreased.
The AUC values showed a similar trend for the MARSpline

algorithm. The RF model with the smallest CMU resulted in the
second highest success and prediction rates (AUC = 0.88 and

Fig. 6. Landslide susceptibility maps derived from MARSpline models: (a) MARSplines1, (b) MARSplines2, (c) MARSplines3, (d) MARSplines4.
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AUC = 0.87, respectively), which were close to the RF1 values.
The RF model provided higher AUC values than the MARSpline
model for the same size of CMUs with the exception of the
CMU with a size of 0.09 km2, where the RF4 model resulted in

success and prediction rates with lower AUC values (AUC =
0.70 and AUC = 0.73, respectively).

In addition, the test landslides were used to assess the accuracy
of the landslide susceptibility maps. There are several mathematical
methods for classifying the degrees of susceptibility (Wang et al.,
2013). In this research, the quantile method was used in the
ArcGIS platform. The quantile method equally divides the
landslide susceptibility areas into equal area classes (ESRI, http:/
/www.esri.com/). The susceptibility maps were then divided
into five susceptibility categories (Fig. 7): very low, low, medium,
high, and very high. If the maximum number of landslides
possible were designated very high susceptibility zones and the
minimum number of landslides possible were designated very
low susceptibility zones, this would indicate that the classification
system for the susceptibility maps is appropriate. Figure 7 shows the

Table 6. Success rates and prediction rates of RF and MARSpline models

Success rate (AUC) Prediction rate (AUC)
RF1 0.88 0.89
RF2 0.87 0.86
RF3 0.82 0.83
RF4 0.70 0.73

MARSplines1 0.88 0.87
MARSplines2 0.85 0.84
MARSplines3 0.81 0.82
MARSplines4 0.72 0.74

Fig. 7. Percentages of test landslide bodies falling into different susceptibility categories: (a) RF, (b) MARSplines.
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percentage of the observed landslides in the various susceptibility
categories.

As shown in Figure 7a, less than 1% (0.82%) of the observed
landslides fell into the very low susceptibility class using the RF
method with the largest map unit. Although the RF1 model
result indicates that 21% of the landslides fell into the very low
susceptibility class, the other results show that less than 5% of
landslides fell into the very low class using the RF algorithms.
Over 22%, 25%, 24%, and 41% of the landslides occurred in the
areas with very high susceptibility classes based on the RF method
with different CMUs. The largest proportion of landslides in the
medium to very high susceptibility classes was 88% based on
the RF4 model. The RF1 model had the lowest value of 63%.
Nearly 74% of the landslides fell into the high and very high
classes according to the RF4 model, which indicates that this CMU
(0.09 km2) was suitable for assessing the landslide susceptibility.
A comparison of the results of the RF1, RF2, and RF3 models
indicates that the larger CMUs provided better results.

Figure 7b shows that the high and very high categories only
contain 37%, 37%, 35%, and 40% of the landslides using the
MARSpline method. It is also not apparent if the percentage
of the landslides in the very high category is higher than the
percentage of the landslides in the other categories in all the
models. The percentages of each class are very similar. For the
MARSpline algorithm, the best model results are obtained for
the largest CMU.

A comparison of the results from the RF and MARSpline
analyses for the same size of CMU shows that the RF model
provides slightly better results. A lower percentage of landslides
fell in the very low and low classes and a greater percentage of
landslides fell into the very high class, especially when the size of
the CMU was 0.09 km2. Over 41% of the landslides fell into
the very high class. These results indicate that the RF model is
relatively successful in determining the landslide susceptibility
in the study area. 

The P-A plots for the different CMUs are shown in Figure 8.
The intersection point of the P-A plots for the RF4 is higher
than the intersection points of the P-A plots for the other
models. Based on the intersection points in Figure 8h, 70.1%
landslide occurrences are delineated in 38.1% of the study area
according to RF4 model. It is the highest percentage landslide
occurrences felling the lowest percentage of study area, which
indicates that the RF4 model is relatively successful for
landslide susceptibility mapping in the study area. The ranking
of the prediction rates of the RF and MARSpline models from
highest to lowest is (1) RF4, (2) RF3, (3) RF2, (4) RF1, (5)
MARSpline4, (6) MARSpline3 (7) MARSpline2 and (8)
MARSpline1. These results were consistent with the results
shown in the previous sections. The RF models had higher

prediction rates than the MARSplines algorithms. the larger
CMUs provided better results.

4. CONCLUSIONS

In this study, the RF and MARSpline models were used for
the assessment of landslide susceptibility at four scales of CMUs
and for the creation of landslide susceptibility maps that can be
used by local authorities for land use and environmental protection
plans. The RF4 model was the best model with the highest
predictive ability for the study area. A susceptibility level at which
an active landslide will occur is assumed in landslide susceptibility
analyses. If only areas with very high landslide susceptibility were
at risk, the RF method would offer the best results. If landslides
were found in areas with high levels of susceptibility, the RF
model would also yield better results because a higher percentage
of landslides were observed in the area of very high susceptibility
(40%).

The results obtained from the RF and MARSpline models
show good prediction abilities with AUC values higher than 0.7.
Although the AUC values were lower for the larger CMUs, the
differences in the results were relatively small. It should also be
noted that the performance of the landslide susceptibility maps
depends not only on the mathematical model but also on the
CMUs. Therefore, if the appropriate CMUs are selected, the
performance of the RF and MARSpline models may improve. 

Furthermore, the main disadvantages of data-driven methods
such as RF and MARSpline models are system bias and uncertainty.
Although the RF model performed better than the MARSpline
model in this study area, the latter model may perform well in
other study areas. It would be of interest to compare the RF
model with other methods, e.g., ANN, BS, and WOE. In many
cases, it is not appropriate to conclude that a particular method
performs better because it is more powerful (Yousefi and
Carranza, 2015c) since the performance of landslide susceptibility
maps depends not only on the mathematical model but also on
the selected datasets and the conditioning factors.

To some extent, the landslide susceptibility maps were not
able to provide more detailed information on the landslide-prone
areas at the medium scale for Gero City but the maps can
provide the local authorities with the spatial distributions of
potential future landslides. Additionally, the factors relating
with the landslide mechanisms are very complex in this area. In
this study, we used the CMUs to create landslide susceptibility
maps because of a lack of conditioning factors. In future studies,
more detailed information and high-resolution datasets should
be used to create landslide susceptibility maps. The catchment
scale-based landslide susceptibly maps provide only basic
information for quantifying the risk of landslides.
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Fig. 8. P-A plot for the different-sized CMUs for the RF and MARSpline models with intersection point values (percentage of known landslide
occurrences, percentage of study area): (a) MARSpline1, (b) MARSpline2, (c) MARSpline3, (d) MARSpline4, (e) RF1, (f ) RF2, (g) RF3, (h) RF4.



354 Lei Chu, Liang-Jie Wang, Jiang Jiang, Xia Liu, Kazuhide Sawada, and Jinchi Zhang

https://doi.org/10.1007/s12303-018-0038-8 http://www.springer.com/journal/12303

ACKNOWLEDGMENTS

This research is supported by National Natural Science
Foundation of China (Grant No.41601209), Natural Science
Foundation for colleges and universities in Jiangsu Province
(Grant No.16KJB220004), Agricultural science and technology
innovation foundation of Jiangsu Province (Grant No.CX(17)1004),
High Academic Talent Foundation Nanjing Forestry University
(Grant No.GXL2014037), Priority Academic Program Development
of Jiangsu High Education Institutions (PAPD). Data were
supported by Gifu University and National Research Institute
for Earth Science and Disaster Prevention of Japan.

REFERENCES

Althuwaynee, O.F., Pradhan, B., Park, H.J., and Lee, J.H., 2014, A novel
ensemble bivariate statistical evidential belief function with knowl-
edge-based analytical hierarchy process and multivariate statistical
logistic regression for landslide susceptibility mapping. Cantena,
114, 21–36.

Bai, S.B., Wang, J., Guo, N.L., Zhou, P.G., Hou, S.S., and Xu, S.N., 2010,
GIS-based logistic regression for landslide susceptibility mapping
of the Zhongxian segment in the Three Gorgesarea, China. Geo-
morphology, 115, 23–31.

Breiman, L., 2001, Random forests. Machine Learning, 45, 5–32.
Bui, D.T., Pradhan, B., Lofman, O., Revhaug, I., and Dick, O.B., 2012,

Landslide susceptibility assessment in the Hoa Binh province of
Vietnam using artificial neural network. Geomorphology, 171–172,
12–29.

Chen, W., Li, W., Hou, E., Bai, H., Chai, H., Wang, D., Cui, X., and
Wang, Q., 2015, Application of frequency ratio, statistical index,
and index of entropy models and their comparison in landslide
susceptibility mapping for the Baozhong Region of Baoji, China.
Arabian Journal of Geosciences, 8, 1829–1841.

Conforti, M., Pascale, S., Robustelli, G., and Sdao, F., 2014, Evaluation
of prediction capability of the artificial neural networks for mapping
landslide susceptibility in the Turbolo River catchment (northern
Calabria, Italy). Catena, 113, 236–250.

Felicisimo, A., Cuartero, A., Remondo, J., and Quiros, E., 2013, Map-
ping landslide susceptibility with logistic regression, multiple adaptive
regression splines, classification and regression trees, and maximum
entropy methods: a comparative study. Landslides, 10, 175–189.

Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., and Reichenbach, P.,
2008, Comparing landslide inventory maps. Geomorphology, 94,
268–289.

Gromping, U., 2009, Variable importance assessment in regression: linear
regression versus random forest. American Statistical Association,
63, 308–319.

Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F.,
2005, Probabilistic landslide hazard assessment at the basin scale.
Geomorphology, 72, 272–299.

Hussin, H.Y., Zumpano, V., Reichenbach, P., Sterlacchini, S., Micub, M.,
Westen, C., and Bălteanu, D., 2016, Different landslide sampling

strategies in a grid-based bi-variate statistical susceptibility model.
Geomorphology, 253,508–523.

Kanungo, D.P., Arora, M.K., Gupta, R.P., and Sarkar, S., 2008, Land-
slide risk assessment using concepts of danger pixels and fuzzy set
theory in Darjeeling Himalayas. Landslides, 5, 407–416.

Kavzoglu, T., Sahin, K.E., and Colkesen, I., 2014, Landslide susceptibil-
ity mapping using GIS-based multi-criteria decision analysis, sup-
port vector machines, and logistic regression. Landslides, 11, 425–439.

Lee, S., 2007, Application and verification of fuzzy algebraic operators to
landslide susceptibility mapping. Environmental Geology, 52, 615–623.

Liaw, A. and Wiener, M., 2002, Classification and regression by random
forest. R News, 2, 18–22.

Muthu, K., Petrou, M., Tarantino, C., and Blonda, P., 2008, Landslide
possibility mapping using fuzzy approaches. IEEE Transactions on
Geoscience and Remote Sensing, 46, 1253–1265.

Nandi, A. and Shakoor, A., 2010, A GIS-based landslide susceptibility
evaluation using bivariate and multivariate statistical analyses. Engineer-
ing Geology, 110, 11–20.

Nefeslioglu, H., Gokceoglu, C., and Sonmez, H., 2008, An assessment
on the use of logistic regression and artificial neural networks with
different sampling strategies for the preparation of landslide sus-
ceptibility maps. Engineering Geology, 97, 171–191.

Oh, H.J. and Pradhan, B., 2011, Application of a neuro-fuzzy model to
landslide susceptibility mapping in a tropical hilly area. Computers
& Geosciences, 37, 1264–1276.

Ozdemir, A. and Altural, T., 2013, A comparative study of frequency
ratio, weights of evidence and logistic regression methods for landslide
susceptibility mapping: Sultan Mountains, SW Turkey. Journal of
Asian Earth Sciences, 64, 180–197.

Pradhan, B., 2010, Landslide susceptibility mapping of a catchment area
using frequency ratio, fuzzy logic and multivariate logistic regres-
sion approaches. Journal of the Indian Society of Remote Sensing,
38, 301–320.

Pradhan, B., 2013, A comparative study on the predictive ability of the
decision tree, support vector machine and neuro-fuzzy models in
landslide susceptibility mapping using GIS. Computers & Geosci-
ences, 51, 350–365.

Rahmati, O., Pourghasemi, R.H., and Melesse, M.A., 2016, Application
of GIS-based data driven random forest and maximum entropy
models for groundwater potential mapping: A case study at Mehran
Region, Iran. Catena, 137, 360–372. 

R Development Core Team, 2009, R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing,
Vienna, 409 p.

Regmi, N.R., Giardino, J.R., and Vitek, J.D., 2010a, Assessing suscepti-
bility to landslide: using models to understand observed changes in
slopes. Geomorphology, 122, 25–38.

Regmi, N.R., Giardino, J.R., and Vitek, J.D., 2010b, Modeling suscepti-
bility to landslides using the weight of evidence approach: western
Colorado, USA. Geomorphology, 115, 172–187.

Saito, H., Nakayama, D., and Matsuyama, H., 2009, Comparison of
landslide susceptibility based on a decision tree model and actual
landslide occurrence: The Akaishi Mountains, Japan. Geomorphol-
ogy, 109, 108–121.

Scaioni, M., 2013, Remote sensing for landslide investigations: from



Landslide susceptibility mapping using RF and MARSpline models based on CMUs 355

http://www.springer.com/journal/12303 https://doi.org/10.1007/s12303-018-0038-8

research into practice. Remote Sensing, 5, 5488–5492.
Sezer, E., Pradhan, B., and Gokceoglu, C., 2011, Manifestation of an

adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang
valley, Malaysia. Expert Systems with Applications, 38, 8208–8219.

Shahabi, H. and Hashim, M., 2015, Landslide susceptibility mapping
using GIS-based statistical models and Remote sensing data in tropical
environment. Scientific Reports, 5, 9899. https://doi.org/10.1038/
srep09899

Shahabi, H., Hhezri, S., Ahmhad, B.B., and Hashim, M., 2014, Land-
slide susceptibility mapping at central Zab basin, Iran: a comparison
between analytical hierarchy process, frequency ratio and logistic
regression models. Catena, 115, 55–70.

Skurichina, M. and Duin, R.P., 2001, Bagging, boosting and the random
subspace method for linear classifiers. Pattern Analysis and Appli-
cations, 5, 121–135.

Sterlacchini, S., Ballabio, C., Blahut, J., Masetti, M., and Sorichetta, A.,
2010, Spatial agreement of predicted patterns in landslide suscepti-
bility maps. Geomorphology, 125, 51–61.

Su, C., Wang, L., Wang, X., Huang, Z., and Zhang, X., 2015, Mapping of
rainfall-induced landslide susceptibility in Wencheng, China, using
support vector machine. Nature Hazards, 76, 1759–1779.

TannerSan, B., 2014, An evaluation of SVM using polygon-based random
sampling in landslide susceptibility mapping: the Candir catchment
area (western Antalya, Turkey). International Journal of Applied Earth
Observation and Geoinformation, 26, 399–412.

Vahidnia, M.H., Alesheikh, A.A., Alimohammadi, A., and Hosseinali,
F., 2010, A GIS-based neuro-fuzzy procedure for integrating knowledge
and data in landslide susceptibility mapping. Computers & Geosci-
ences, 36, 1101–1114.

Varnes, D.J., 1978, Slope movement types and processes. Transporta-
tion Research Board Special Report, 176, 11–33.

Wang, L.J., Guo, M., Sawada, K., Lin, J., and Zhang, J., 2016, A comparative
study of landslide susceptibility maps using logistic regression,
frequency ratio, decision tree, weights of evidence and artificial
neural network. Geosciences Journal, 20, 117–136.

Wang, L.J, Sawada, K., and Moriguchi, S., 2013, Landslide susceptibil-
ity analysis with logistic regression model based on FCM sampling
strategy. Computers & Geosciences, 57, 81–92.

Xu, C., Xu, X., Dai, F., and Saraf, A., 2012, Comparison of different
models for susceptibility mapping of earthquake triggered land-
slides related with the 2008 Wenchuan earthquake in China. Com-
puters & Geosciences, 46, 317–329. 

Yalcin, A., Reis, S., Aydinoglu, A.C., and Yomralioglu, T., 2011, A GIS-
based comparative study of frequency ratio, analytical hierarchy pro-
cess, bivariate statistics and logistics regression methods for land-
slide susceptibility mapping in Trabzon, NE Turkey. Catena, 85,
274–287.

Yang, R.M., Zhang, G.L., Liu, F., Lu, Y.Y., Yang, F., Yang, F., Yang, M.,

Zhao, Y.G., and Li, D.C., 2016, Comparison of boosted regression
tree and random forest models for mapping topsoil organic carbon
concentration in an alpine ecosystem. Ecological Indicators, 60,
870–878.

Yao, X., Tham, L.G., and Dai, F.C., 2008, Landslide susceptibility map-
ping based on support vector machine: a case study on natural
slopes of Hong Kong, China. Geomorphology, 101, 572–582.

Yeon, Y.-K., Han, J.-G., and Ryu, K.H., 2010, Landslide susceptibility
mapping in Injae, Korea, using a decision tree. Engineering Geol-
ogy, 116, 274–283.

Yilmaz, I., 2010, Comparison of landslide susceptibility mapping meth-
odologies for Koyulhisar, Turkey: conditional probability, logistic
regression, artificial neural networks, and support vector machine.
Environmental Earth Sciences, 61, 821–836.

Youssef, A.M., Al-Kathery, M., and Pradhan, B., 2015, Landslide sus-
ceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using
GIS-based frequency ratio and index of entropy models. Geosci-
ences Journal, 19, 113–134.

Youssef, A.M., Pradhan, B., Jebur, M.N., and El-Harbi, H.M., 2015,
Landslide susceptibility mapping using ensemble bivariate and
multivariate statistical models in Fayfa area, Saudi Arabia. Environ-
mental Earth Sciences, 73, 3745–3761.

Yousefi, M. and Carranza, E.J.M., 2015a, Fuzzification of continuous-
value spatial evidence for mineral prospectivity mapping. Comput-
ers & Geosciences, 74, 97–109.

Yousefi, M. and Carranza, E.J.M., 2015b, Prediction-area (P-A) plot and
C-A fractal analysis to classify and evaluate evidential maps for min-
eral prospectivity modeling. Computers & Geosciences, 79, 69–81.

Yousefi, M. and Carranza, E.J.M., 2015c, Geometric average of spatial
evidence data layers: a GIS-based multi-criteria decision-making
approach to mineral prospectivity mapping. Computers & Geosci-
ences, 83, 72–79.

Yousefi, M. and Carranza, E.J.M., 2016, Data-driven index overlay and
Boolean logic mineral prospectivity modeling in greenfields explo-
ration. Natural Resources Research, 25, 3–18.

Yousefi, M. and Carranza., E.J.M., 2017, Union score and fuzzy logic
mineral prospectivity mapping using discretized and continuous
spatial evidence values. Journal of African Earth Sciences, 128, 47–60.

Yousefi, M. and Nykänen, V., 2016. Data-driven logistic-based weighting of
geochemical and geological evidence layers in mineral prospectiv-
ity mapping. Journal of Geochemical Exploration, 164, 94–106.

Zarea, M., Pourghasemi, H.R., Vafakhah, M., and Pradhan, B., 2012,
Landslide susceptibility mapping at Vaz watershed (Iran) using an
artificial neural network model: a comparison between multi-layer
perceptron (MLP) and radial basic function (RBF) algorithms. Ara-
bian Journal of Geosciences, 6, 2873–2888.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


