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Landslide susceptibility mapping at Gongliu county, China using artificial 
neural network and weight of evidence models

ABSTRACT: The aim of this study was to apply and to verify the use
of artificial neural network (ANN) and weight of evidence (WoE)
models to landslide susceptibility mapping in the Gongliu county,
China, using a geographic information system (GIS). For this aim,
in this study, a landslide inventory map was prepared using earlier
reports and aerial photographs as well as by carrying out field sur-
veys. A total of 163 landslides (70% out of 233 detected landslides)
were randomly selected for model training, and the remaining 70
landslides (30%) were used for the model validation. Then, a total
number of twelve landslide conditioning factors, such as slope angle,
slope aspect, general curvature, plan curvature, profile curvature,
altitude, distance to rivers, distance to roads, lithology, rainfall, normal-
ized difference vegetation index (NDVI), and sediment transport
index (STI), were used in the analysis. Landslide hazardous areas
were analyzed and mapped using the landslide-occurrence factors
by ANN and WoE models. Finally the output maps were validated
using the area under the curve (AUC) method. The validation results
showed that the ANN model with a success rate of 82.51% and
predictive accuracy of 77.31% performs better than WoE (success rate,
79.82%; predictive accuracy, 74.59%) model. Overall, both models
showed almost similar results. Therefore, the two landslide suscepti-
bility maps obtained were successful and can be useful for preliminary
general land use planning and hazard mitigation purpose.

Key words: landslide, susceptibility mapping, artificial neural network
(ANN), weight of evidence (WoE), China

1. INTRODUCTION

Landslides, causing extensive damages to residential regions,
economic losses, and human casualties all over the world,
are one of the most significant natural damaging disasters in
hilly environments due to the steep topography, improper
use of land cover and adverse climatic conditions for landslides
(Akgun et al., 2008; Sujatha et al., 2012; Solaimani et al.,
2013; Ahmed, 2014). Globally, landslides cause approximately
1,000 deaths per year and property damage of about 4 billion
dollars (Lee and Pradhan, 2007). China is one of the countries
in the world mostly affected by landslides, which often result

in large numbers of casualties and huge economic losses. It
is reported that more than 30,737 hazards associated with
landslides occurred in 2012, 2013 and 2014, which caused
a total of 1,256 people dead or missing, and a direct economic
loss of 15.41 billion CNY (http://www.cigem.gov.cn). To mini-
mize the losses of human life and economic value, potential
landslide-prone areas should be identified (Devkota et al.,
2013; Pourghasemi et al., 2013a).

The landslide susceptibility means the likelihood (proba-
bility) of damaging landslide occurrence with statistical sense
(Yang et al., 2015). So far, numerous methodologies have
been developed to assess and map landslide susceptibility
(Akgun et al., 2008; Wu and Chen, 2009; Solaimani et al.,
2013; Wang et al., 2015). Probabilistic models, such as the
frequency ratio, weight of evidence models etc. have been
proposed (Lee and Choi, 2004; Lee and Sambath, 2006; Lee
and Pradhan, 2007; Akgun et al., 2008; Yilmaz, 2009; Regmi et
al., 2010; Pradhan and Lee, 2010c; Xu et al., 2012). The logistic
regression model has also been applied to landslide suscep-
tibility mapping (Ohlmacher and Davis, 2003; Ayalew and
Yamagishi, 2005; Lee, 2005a; Lee and Pradhan, 2007; Yilmaz,
2009). Data mining using fuzzy logic, artificial neural network
and decision tree models have also been applied in geographical
information systems (GIS) as a new landslide susceptibility
assessment method (Lee et al., 2003, 2004; Ermini et al.,
2005; Gorsevski et al., 2006; Biswajeet and Saro, 2007; Yil-
maz, 2009; Saito et al., 2009; Yeon et al., 2010; Nefeslioglu
et al., 2010; Pradhan, 2011a, b; Pourghasemi et al., 2012;
Tien Bui et al., 2012; Bui et al., 2012a; Pradhan, 2013). Addi-
tionally, In order to find the better model that is more accurate
in landslide susceptibility mapping in a study area, some studies
have used two or three models and compare their accuracy
such as probability and statistical analyses, probability and
fuzzy-logic analyses, statistical and ANN analyses, analytic
hierarchy process, probability and statistical analyses, and
probability, statistical, and ANN analyses etc. (Lee and Pradhan,
2007; Pouydal et al., 2010; Constantin et al., 2011; Kanungo et
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al., 2011; Yalcin et al., 2011; Akgun, 2012; Demir et al., 2013;
Devkota et al., 2013; Ozdemir and Altural, 2013; Park et
al., 2013; Pourghasemi et al., 2013b; Solaimani et al., 2013;
Youssef et al., 2014a; Jaafari et al., 2014). The main difference
between this study and the references is that artificial neural
network and weight of evidence models were applied and com-
pared for the landslide susceptibility mapping on the Gongliu
county of China.

This paper attempts to produce landslide susceptibility maps
of Gongliu county in Xinjiang Uygur Autonomous Region,
China, using a geographical information system (GIS). To
achieve this aim, the artificial neural network (ANN) and weight
of evidence (WoE) models to obtain the landslide suscep-
tibility maps using the ArcGIS 10.0 software (ESRI Inc.,
Redlands, CA, USA) were developed, applied, and verified
in the study area.

2. STUDY AREA

The study area, in Xinjiang Uygur Autonomous Region,
consisted of approximately 4,124 km2 located between 81°34′
and 83°35′ west-east longitudes and 42°54′ and 43°38′ north-
south latitudes in the northwestern part of China (Fig. 1). The
climate of this region is characterized by the typical continental
semi-arid climate, the winter is dry and cold, but the summer is
hot and rainy. The temperature of the area varies between
–37 °C in winter and 39 °C in summer with a yearly average
of 7.4 °C. The mean annual rainfall according to local weather
station in a period of 40 years is around 200–700 mm, and
the most rainfall appears in April to July (C.H. of China
Meteorological Administration (CMA) 2014). The altitude
of the area ranges from 767 to 4,217 m asl and the major
terrain can be classified into three regions: the plain region,

Fig. 1. The study area with landslide locations.
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the mountain region, and the hill region. Mountainous and
hilly region accounted for about 72.6% of the total area.
The main streams in the region are Langhe and Nanshan
Rivers, and these rivers and their tributaries form dentritic
drainage system due to topographical and geological features
of the area. The traffic of this area mainly is high way. The
population of the county was about 196,400 in 2011 year.
Major settlements are mainly distributed in the middle of
area. This site is one of the frequent landslide occurrence
areas in China due to the coupling effects of special geo-
logical and climatic conditions and the influences of human
engineering activities. In total, 233 landslides were identi-
fied and mapped in the study area.

3. DATA PREPARATION

3.1. Landslide Inventory Map

The landslide inventory map is essential for the landslide
susceptibility analysis, which can provide information for the
assessment of the influence of different conditioning factors
on landslide occurrence (van Westen et al., 2006; Solaimani
et al., 2013; Pradhan and Kim, 2014; Youssef et al., 2014b).
The reliability and accuracy of the collected data related to
landslides affect the success of landslide susceptibility anal-
ysis. In this study, the landslide inventory map of the region
was prepared by using 1:50,000 scale aerial-photo interpre-
tation and extensive field surveys. In addition, the historical
landslides records obtained from the internet and published
literature were also used (Qin, 2007). A total of 233 landslides
were identified, as shown in Figure 1, 163 (70%) of which
were randomly selected as training data and the remaining
70 (30%) were kept for validation purposes. All data layers
were transformed in raster format with pixel size of 30 × 30
meters, hence the area grid was 3,356 rows by 5,830 columns
with a total of 6,430,157 pixels.

3.2. Thematic Layers

There were twelve landslide conditioning factors (slope
angle, slope aspect, general curvature, plan curvature, profile
curvature, altitude, distance to rivers, distance to roads, lithol-
ogy, rainfall, NDVI, STI) considered in the analyses performed
in the present study. In this study, a 30 m × 30 m digital eleva-
tion model (DEM) was collected from the Advanced Space-
borne Thermal Emission and reflection radiometer (ASTER).
From this DEM, geomorphological thematic data layers, such
as slope angle, slope aspect, general curvature, plan curvature,
profile curvature, and altitude maps, were prepared. Other
parameters were mainly collected from available resources
(geological map, environment geology map, road map and
drainage map etc.). All of these data were produced in raster
format with a pixel size of 30 × 30 m2 to be compatible with
the spatial resolution.

Slope angle, with direct effect on landslide formation, is
frequently used in landslide susceptibility studies (Dai et al.,
2001; Dragićević et al., 2015). Slope aspect is the direction
of maximum slope of the terrain surface (Kayastha et al.,
2013a). The aspect is also an important factor in landslide
susceptibility studies since aspect affects parameters such as
rainfall, discontinuities and exposure to sunlight (Süzen and
Doyuran, 2004; He et al., 2012). Commonly, general curvature,
defined as the rate of change of slope degree or aspect, has
been argued to affect slope stability. The characterization of
slope morphology and flow can be analyzed with the help
of the general curvature map (Nefeslioglu et al., 2008). The
plan curvature is described as the curvature of a contour
line formed by intersection of a horizontal plane with the
surface. The profile curvature is the vertical plane parallel
to the slope direction (Kannan et al., 2013). Plan curvature
influences the convergence and divergence of flow across a
surface. Profile curvature affects the acceleration and decel-
eration of downslope flows and, as a result, influences ero-
sion and deposition (Pourghasemi et al., 2013a; Kritikos and
Davies, 2015). In the present study, the slope angle, slope
aspect, general curvature, plan curvature, and profile cur-
vature were calculated in ArcGIS 10.0 based on DEM data.
The slope angle was divided into seven categories (Fig. 2a)
considering the steepness of the terrain (Kayastha et al.,
2013b; Liu et al., 2014). The aspect was classified into nine
directional classes as flat (–1), north (337.5–360, 0–22.5),
northeast (22.5–67.5), east (67.5–112.5), southeast (112.5–
157.5), south (157.5–202.5), southwest (202.5–247.5), west
(247.5–292.5), and northwest (292.5–337.5) (Fig. 2b). The
general curvature, plan curvature and profile curvature were
divided into three classes, respectively (Figs. 2c–e).

The altitude or elevation does not contribute directly to
landslide manifestation, but in relation to the other param-
eters, like tectonics, erosion-weathering processes, and pre-
cipitation, the altitude contributes to landslide manifestation
and influences the whole system (Ercanoglu et al., 2004;
Rozos et al., 2011). In this study, the elevation ranges from
767 to 4,217  m and was divided into five classes using an
interval of 600 m (Fig. 2f).

Two proximity parameters including distance to rivers
and distance to roads were taken into account in the study.
Rivers/streams may adversely affect stability of the materials
by eroding the toe of the slopes or by saturating the lower
part of material unit resulting in water level increases. Gen-
erally speaking, landslide frequency decreases as distance to
rivers increases (Dai and Lee, 2002; Youssef, 2015; Dragićević
et al., 2015). The distance to rivers was calculated by Euclid-
ean distance tool of ArcGIS 10.0 and reclassified the resultant
map into five classes (Fig. 2g): 0–200, 200–400, 400–600,
600–800, and >800 m. The distance to roads is one of the
causal factors for landslides and is parallel to the effect of the
distance to rivers. The load in the toe of slope can be reduced
by road-cuts (Yalcin et al., 2011). In the present study, five
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different buffer zones were created within the study area to
determine the degree to which the roads affected the slopes
(Fig. 2h).

Lithology is one of the most important parameters for
landslide susceptibility analysis since landslides are controlled
by the rock properties of the land surface and different lith-
ological units have different susceptibility values (Yesilnacar
and Topal, 2005; Yalcin et al., 2011). For the current study,
a lithological map was extracted from the geology database
of the area. The study area is covered with various types of
lithological units. Their names, lithologic characteristics, and
ages of the geological units are provided in Table 1, and the
general geological setting of the area is shown on the source
map (Fig. 2i). 

Precipitation, in particular sudden, intense rain and snow
melt, is a very important controlling factor which triggers mass
movements, increasing the underground hydrostatic level and
water pressure (Van Westen et al., 2006; Shahabi et al., 2014;
Yang et al., 2015). In the present study, the average annual
rainfall was used to characterize the precipitation factor. The
annual rainfall of the study area is shown as Figure 2j, and
reclassified into five classes: <300, 300–400, 400–500, 500–
600, >600 mm/year.

The NDVI is often considered as a controlling factor in
landslide susceptibility mapping. In general, the higher the
value of NDVI is, the larger the area that is covered by vege-
tation. Also, the relatively low vegetation coverage can easier
lead to landslide incidence (He et al., 2012; Youssef, 2015).

Fig. 2. Landslide conditioning factors of the study area: (a) slope angle, (b) slope aspect, (c) general curvature, (d) plan curvature, (e)
profile curvature, (f) altitude.
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In this study, the NDVI map was obtained from Landsat7
ETM+ satellite image acquired on 12 November 2010. The
NDVI value was calculated using the formula:

, (1)

where IR is the infrared portion of the electromagnetic spec-

NDVI IR R– / IR R+ =

Fig. 2. (continued). (g) distance to rivers, (h) distance to roads, (i) lithology, (j) rainfall, (k) NDVI, and (l) STI.

Table 1. Description of geological units of the study area (Qin, 2007)

No. Formation Code Lithology

A – Qh, Qp Cohesive soil, sand gravel, pebbles, loess and gravel

B Wulang, Shuixi Xiaoquangou P1, J1–2, T2–3 Argillaceous siltstone, sandstone, quartz sandstone, quartzite, mudstone, carbonaceous mudstone

C Tuokuzidaban, Ishrick C1, T C2 Conglomerate, limestone, siltstone, volcanic clastic limestone, sandy shale, clay shale

D Akshak, Dahalajunshan C1, Qp Carbonate, clastic rocks, glutenite, limestone, rhyolitic porphyry, basaltic porphyrite

E Shawan D Granite, granodiorite, plagioclase granite, granite porphyry, diorite

F The Permian granite, Tekes P Monzonitic granite, intermediate-acid igneous rocks, neutral volcanic clastic rock

G Xingditag, Tekes Ch, Pt Quartzite, quartz-schist, siltstone, phyllite, limestone and marble rock

H Keketiekedaban S Limestone, pyroclastic rocks, monzonitic granite
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trum, and R is the red portion of the electromagnetic spec-
trum (Youssef et al., 2014a). Finally, the four classes of the
NDVI were extracted as Figure 2k.

The sediment transport index (STI) characterizes the pro-
cess of erosion and deposition (Devkota et al., 2013). The STI
is calculated from the following formula:

, (2)

where AS is the specific catchment’s area (m2/m), and β the
slope gradient. In this study, STI was considered as another
conditioning factor and divided into four classes <5, 5–10,
10–15, >15 (Fig. 2l).

4. MODELING APPROACH

4.1. Artificial Neural Network (ANN) Model

An artificial neural network (ANN) is a “computational
mechanism able to acquire, represent, and compute a mapping
from one multivariate space of information to another, given
a set of data representing that mapping” (Garrett, 1994; Prad-
han and Lee, 2010a). There are many kinds of ANN models,
among which multi-layer perceptron (MLP) is perhaps the most
popular and most widely used ANN architecture (Bui et al.,
2012b; Polykretis et al., 2015). In this study, the MLP Neural
Nets is a feed-forward neural network trained by the backwards
propagation (BP) algorithm, consisting of an input layer, hidden
layers, and an output layer (Fig. 3). The basic mathematical
concepts of the back-propagation algorithm are found in Hush
and Horne (1993). In this specific case, there are 12 input neu-

rons (one each for slope angle, slope aspect, general curvature,
plan curvature, profile curvature, altitude, distance to rivers,
distance to roads, lithology, rainfall, NDVI, STI) and the output
layer will have two neurons. Sandwiched between the input
and output layers is the hidden layer consist of one or more
neurons that are determined based on the training data. Each
neuron in the hidden layer was interconnected to neurons in
both the preceding and following layers by weighted connec-
tions and non-linear activation functions are used to propagate
information between these layers (Pradhan and Lee, 2010b;
Choi et al., 2012). The weight adjustment is controlled by the
momentum and learning rate factors during the training phase
(Bagher-Ebadian et al., 2009).

There are two stages involved in using neural networks
for multi-source classification: the training stage, in which
the internal weights are adjusted, and the classifying stage.
Typically, the back-propagation algorithm trains the network
until some targeted minimal error is achieved between the
desired and actual output values of the network. When the
training is complete, the network is used as a feed-forward
structure to produce a classification for the entire dataset
(Paola and Schowengerdt, 1995; Pradhan and Lee, 2010b). In
this process, each hidden and output layer neuron processes
its inputs by multiplying each input (xi) by a corresponding
weight (wi), summing the product Equation (3), and then
processing the sum (if that exceeds the neuron threshold,
then the neuron is activated) using a non-linear activation
function, Equation (4), to produce a result (yi) (Polykretis et
al., 2015).

, (3)
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=

Fig. 3. Architecture of neural network
model used in the study.
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. (4)

Generally, the number of hidden layers and the number of
nodes in a hidden layer required for a particular classification
problem are not easy to deduce. In this study, the neuron num-
ber of the hidden layer was 25 when calculated by the equation
suggested by Hecht-Nielsen (1987). Therefore, a 12 (input
layers) × 25 (hidden layers) × 2 (output layers) structure was
selected for the network, with input data normalized in the
range of 0.1–0.9 (Pradhan and Lee, 2010c). The nominal
and interval class group data were converted to continuous
values ranging between 0.1 and 0.9. The learning rate was set
at 0.01, and the initial weights were randomly selected. The
root mean-square error (RMSE) goal for the stopping criterion
was set to 0.01. The final weights between layers acquired
during training of the neural network and the contribution or
importance of each of the twelve factors were used to predict
landslide susceptibility.

4.2. Weights of Evidence (WoE) Model

The weight of evidence (WoE) model is based on Bayesian
probability framework, which was originally developed for
mineral potential assessment (Agterberg et al., 1993; Bonham-
Carter et al., 1988; Dahal et al., 2008). The method has later
been adapted by several workers in landslide susceptibility
mapping (van Westen, 2000; Lee et al., 2002; Dahal et al.,
2008; Regmi et al., 2010). A detailed description of the math-
ematical formulation of the model is available in several
research papers (Bonham-Carter et al., 1988; van Westen, 2000;
Lee et al., 2002; Dahal et al., 2008; Regmi et al., 2010). The
WoE model is fundamentally based on the calculation of
positive and negative weights W+ and W–. The model calculates
the weight for each landslide predictive factor (B) based on
the presence or absence of the landslides (D) within the area
as follows (Dahal et al., 2008):

, (5)

, (6)

where P is the probability and ln is the natural log. Sim-
ilarly, B is a class of the particular predictive variable and
the B represents the absence of the class and/or of the event
(landslide). D is the presence of landslide, and D is the absence
of a landslide. A positive weight (Wi

+) indicates that the predict-
able variable is present at the landslide locations. and the magni-
tude of this weight is an indication of the positive correlation
between presence of the predictable variable and landslides. A
negative weight (Wi

–) indicates the absence of the predictable
variable and shows the level of negative correlation (Dahal
et al., 2008). The difference between the two weights is known
as the weight contrast, 

C = Wi
+ – Wi

–, (7)

which provides a measure of the strength of the correlation
between the predictable variable and landslides (Armaş, 2012).
The variance of the contrast, S2(C), is given by the sum of
S2(W+), and S2(W–), and the studentised contrast, C/S(C),
gives a measure of confidence (Kayastha et al., 2012).

5. RESULTS AND DISCUSSION

5.1. Artificial Neural Network (ANN) Model

In this study, the results of frequency ratio for different classes
of the conditioning factors were shown in Table 2, which
show the importance of the respective classes in the slope
instability. It can be observed from Table 2 that the slope
angle class 0–16 has the higher frequency ratio value (>1),
which indicates a high probability of landslide occurrence.
From this, the landslide occurrence decreases by the increase
in slope gradient. The reason for this circumstance may be
that the resistant lithologic units exist in the gentle slopes and
they are not covered by highly and completely weathered litho-
logic units, which are susceptible to landsliding (Akgun et
al., 2008; Yalcin et al., 2011). In the case of slope aspect, most
of the landslides occurred in south facing. The frequency ratio
values of general curvature, plan curvature, and profile curva-
ture show that the frequency ratio values for each class were
similar, which indicates that these classes have no obvious
effect on the occurrence of landslides. In the case of alti-
tude, both 1,600–2,200 m classes have 66.87% of landslide
probability and frequency ratio value of 1.77. Assessment
of distance from rivers and roads showed that distance of
200–400 m of rivers and 0–1,000 m of roads have high cor-
relation with landslide occurrence. In the case of the lithology,
it can be seen that the lithology class D has highest frequency
ratio value (3.28). This indicates that lithological unit of the
carbonate, clastic rocks, glutenite, limestone, rhyolitic por-
phyry, and basaltic porphyrite has the highest influence in
triggering landslides. For the rainfall, the results show that
the frequency ratio values in classes of 400–500, 500–600
mm/year are very high than that of the other three classes.
In addition, the NDVI factor shows that the range <–0.084
and >0.043 is relatively unfavorable (non-susceptible) and
favorable (high susceptible) for landslide occurrence. The
main reason for this is that other conditioning factors, such
as altitude, distance to roads, lithology, and rainfall, play a
more important role in landslide occurrence comparing to
the NDVI factor in this study area. The relation between
STI and landslide probabilities showed that <5 class has
the highest frequency ratio value (1.34). 

For visual interpretation of landslide susceptibility index map,
the data need to be classified into categorical susceptibility
classes (Jaafari et al., 2014). Various classifier systems exist
such as natural breaks, quantiles, equal intervals, and standard

yi f net =

Wi
+ P B|D 

P B|D 
--------------------ln=

Wi
 P B|D 

P B|D 
--------------------ln=
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deviation (Ayalew and Yamagishi, 2005). The natural break
method has been widely used in the various literatures (Akgun
et al., 2012; Pourghasemi et al., 2012, 2013c; Jaafari et al.,
2014; Shahabi et al., 2014). Generally, this method could be
chosen if the data distribution has a positive or negative
skewness (Jaafari et al., 2014). In this study, considering data

distribution histogram, landslide susceptibility map was classi-
fied into five categories by using the natural break method
of ArcGIS 10.0. These categories include five classes of very
low, low, moderate, high, and very high (Fig. 4). 16.58 and
24.37% of the total area are found under very low and low
landslide susceptibility classes. Areas covering moderate, high

Table 2. Spatial relationship between each landslide conditioning factor and landslide for each model

Factors Classes Percentage of 
landslide (%)

Percentage of 
domain (%)

Frequency 
ratio

W+ W– C S(C) C/S(C)

Slope angle (o) 0–8 36.81 24.90 1.48 0.39 –0.17 0.56 0.16 3.47

8–16 26.99 21.93 1.23 0.21 –0.07 0.28 0.18 1.56

16–24 20.25 21.34 0.95 –0.05 0.01 –0.07 0.20 –0.34

24–32 10.43 16.82 0.62 –0.48 0.07 –0.55 0.26 –2.15

32–40 4.29 10.23 0.42 –0.87 0.06 –0.93 0.39 –2.41

40–48 1.23 3.85 0.32 –1.14 0.03 –1.17 0.71 –1.64

>48 0.00 0.94 0.00 0.00 0.01 0.00 0.00 0.00

Slope aspect Flat 10.43 9.18 1.14 0.13 –0.01 0.14 0.26 0.55

North 9.20 12.86 0.72 –0.34 0.04 –0.38 0.27 –1.39

Northeast 13.50 14.16 0.95 –0.05 0.01 –0.06 0.23 –0.24

East 11.66 12.25 0.95 –0.05 0.01 –0.06 0.24 –0.23

Southeast 9.20 9.21 1.00 0.00 0.00 0.00 0.27 0.00

South 11.04 7.49 1.47 0.39 –0.04 0.43 0.25 1.71

Southwest 11.66 9.91 1.18 0.16 –0.02 0.18 0.24 0.75

West 12.88 11.96 1.08 0.07 –0.01 0.09 0.23 0.36

Northwest 10.43 12.98 0.80 –0.22 0.03 –0.25 0.26 –0.97

General curvature <–0.05 40.49 40.16 1.01 0.01 –0.01 0.01 0.16 0.09

–0.05–0.05 19.63 20.25 0.97 –0.03 0.01 –0.04 0.20 –0.20

>0.05 39.88 39.59 1.01 0.01 –0.01 0.01 0.16 0.07

Plan curvature <–0.05 32.52 35.30 0.92 –0.05 0.03 –0.08 0.16 –0.51

–0.05–0.05 37.42 28.89 1.30 –0.14 0.07 –0.20 0.16 –1.24

>0.05 30.06 35.82 0.84 0.20 –0.09 0.29 0.16 1.86

Profile curvature <–0.05 39.26 35.20 1.12 0.11 –0.07 0.17 0.16 1.08

–0.05–0.05 30.06 28.32 1.06 0.06 –0.03 0.08 0.17 0.49

>0.05 30.68 36.48 0.84 –0.17 0.09 –0.26 0.17 –1.54

Altitude (m) <1000 0.00 2.12 0.00 0.00 0.02 0.00 0.00 0.00

1000–1600 18.41 16.77 1.10 0.64 –0.02 0.66 0.20 3.25

1600–2200 66.87 37.71 1.77 0.31 –0.63 0.94 0.17 5.63

2200–2800 13.50 25.84 0.52 –0.54 0.15 –0.69 0.23 –3.02

>2800 1.23 17.56 0.07 –2.16 0.18 –2.35 0.71 –3.30

Distance to 0-200 18.41 17.96 1.03 0.04 –0.01 0.05 0.20 0.23

rivers (m) 200–400 24.54 16.21 1.51 0.54 –0.11 0.64 0.18 3.51

400–600 15.34 14.35 1.07 0.31 –0.01 0.32 0.22 1.47

600–800 15.34 12.97 1.18 0.51 –0.03 0.54 0.22 2.47

>800 26.38 38.52 0.69 –1.13 0.18 –1.31 0.18 –7.34

Distance to 0–1000 31.29 11.52 2.72 1.15 –0.25 1.40 0.17 8.29

roads (m) 1000–1800 9.20 7.77 1.18 0.71 –0.02 0.73 0.27 2.69

1800–2600 12.88 6.46 2.00 1.42 –0.07 1.49 0.23 6.38

2600–3400 5.52 5.62 0.98 0.85 0.00 0.85 0.34 2.47

>3400 41.10 68.63 0.60 –2.15 0.63 –2.78 0.16 –17.45
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and very high susceptibility zones represent 27.32, 19.15 and
12.58% of the total area, respectively. Meanwhile, the results
show that the percentages of the total landslides in very low,
low, moderate, high, and very high susceptibility classes are
0, 3.86, 17.17, 27.04, and 51.93%, respectively (Table 3).

5.2. Weights of Evidence (WoE) Model

Every parameter map is crossed with the landslide inventory

map based on the weights of evidence model using the Arc-
GIS 10.0 software. The resulting total weights, as shown in
Table 2, directly indicate the importance of each factor. In the
case of slope angle, slope class 0–16 shows a good positive
relationship with the occurrence of landslides. The slope aspects
of south are more susceptible to landslides. This is likely due
to the orientation of the main valley, which makes the slopes
with south aspect drier while resulting in less natural vegetative
cover and making the slopes unstable. The results show that

Table 2. (continued)

Factors Classes
Percentage of 
landslide (%)

Percentage of 
domain (%)

Frequency 
ratio W+ W– C S(C) C/S(C)

Lithology A 12.88 34.41 0.37 –0.98 0.28 –1.27 0.23 –5.42

B 0.61 2.83 0.22 –1.53 0.02 –1.55 1.00 –1.55

C 9.82 15.21 0.65 –0.44 0.06 –0.50 0.26 –1.90

D 66.26 20.23 3.28 1.19 –0.86 2.05 0.17 12.36

E 7.36 14.35 0.51 –0.67 0.08 –0.75 0.30 –2.49

F 3.07 8.57 0.36 –1.03 0.06 –1.09 0.45 –2.39

G 0.00 3.32 0.00 0.00 0.03 0.00 0.00 0.00

H 0.00 1.09 0.00 0.00 0.01 0.00 0.00 0.00

Rainfall <300 mm/yr 3.68 22.57 0.16 –2.33 0.22 –2.55 0.42 –6.13

300–400 mm/yr 18.41 25.62 0.72 –0.98 0.09 –1.07 0.20 –5.29

400–500 mm/yr 24.54 5.51 4.45 2.39 –0.23 2.61 0.18 14.34

500–600 mm/yr 53.37 25.36 2.11 0.11 –0.47 0.58 0.16 3.70

>600 mm/yr 0.00 20.94 0.00 0.00 0.24 0.00 0.00 0.00

NDVI <–0.084 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

–0.084 – –0.020 19.02 25.40 0.75 –0.29 0.08 –0.37 0.20 –1.86

–0.020–0.043 69.33 64.61 1.07 0.07 –0.14 0.21 0.17 1.26

>0.043 11.66 9.99 1.17 0.15 –0.02 0.17 0.24 0.71

STI <5 42.95 32.01 1.34 0.29 –0.18 0.47 0.16 2.97

5–10 20.25 19.74 1.03 0.03 –0.01 0.03 0.20 0.16

10–15 13.50 12.45 1.08 0.08 –0.01 0.09 0.23 0.41

>15 23.31 35.80 0.65 –0.43 0.18 –0.61 0.19 –3.28

Fig. 4. Landslide susceptibility map 
derived from the ANN model.
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general curvature, plan curvature, and profile curvature is not
a very sensitive predicting factor in this area because the weights
for each class were similar. But, relatively speaking, general
curvature <–0.05, plan curvature >0.05, and profile curvature
<–0.05 have the high influence in triggering landslides. Alti-
tudes between 1,600 and 2,200 m were shown to have the high-
est studentized contrast, indicating that this category is most
susceptible to landslides. In the case of distance from rivers,
the weight value is higher in the class 200–400 m and lower
in the class >800 m, indicating a lower probability of landslides
farther to rivers. Also distance from roads also has a clear
influence on landslides, because at a distance of <1,000 m
the contrast is much higher than for the other classes, indicating
a lower probability of landslides further away from the roads.
The influence of lithology is also very evident as the contrast
is highest for the lithological unit of the carbonate, clastic rocks,
glutenite, limestone, rhyolitic porphyry, and basaltic porphyrite,
and lowest (negative) for lithological unit of the cohesive soil,
sand gravel, pebbles, loess and gravel. In the case of rainfall,
the classes 400–500, 500–600 mm/year have higher values,
that is, the landslide susceptibility is higher in these ranges. The
relation between NDVI and landslide probabilities showed
that the class of –0.020–0.043 has a high value indicating that
the probability of occurrence of landslide in this normalized
difference vegetation index is high. Similarly, for sediment
transport index, the weight was high in <5 class, which indi-

cates a high probability of landslide occurrence. 
In this study, the final calculated LSI values of the area

for WoE model range from about –50.70 to 56.55. The LSI
on the produced maps was grouped into five classes (very
low, low, moderate, high, and very high) using the natural
break method (Fig. 5). According to this model, 8.88% of the
area is exposed to a very high susceptibility, and 14.29%,
22.73%, 31.44% and 22.66% occupies high, moderate, low
and very low, respectively. It can be observed from Table 3
that 2.15% and 12.45% of the total landslides falls in the very
low and low susceptibility zones respectively. Moderate, high,
and very high susceptible zones represent 23.61%, 19.31%,
and 42.49% of the landslides, respectively. 

5.3. Validation of the Landslide Susceptibility Maps

The critical strategy in prediction models is the task of
validating the predicted results that can provide meaningful
interpretation of the results (Pourghasemi et al., 2013c). The
landslide susceptibility maps derived by two models were tested
using the area under curve (AUC) method. This method works
by creating specific rate curves (i.e., success- and predic-
tion-rate curves) which explains percentage of known land-
slides that fall into each defined level of susceptibility rank
and displays as the cumulative frequency diagram (Chung
and Fabbri, 2003; Intarawichian et al., 2011). In this process,

Table 3. Comparison of predicted landslide hazard zones and observed landslides

Landslide susceptible zones
ANN model WoE model

Area (%) Landslide (%) Area (%) Landslide (%)

Very high 12.58 51.93 8.88 42.49

High 19.15 27.04 14.29 19.31

Moderate 27.32 17.17 22.73 23.61

Low 24.37 3.86 31.44 12.45

Very low 16.58 0 22.66 2.15

Fig. 5. Landslide susceptibility map 
derived from the WoE model.
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the success rate curve is based on a comparison of the sus-
ceptibility map with the landslides used in modeling (i.e.,
the training set) and the prediction rate curve can be created
by the validation landslide inventory (Pradhan and Kim, 2014).
In rate curve, the y axis is normally considered as the cumu-
lative percentage of observed landslide occurrences in different
susceptibility classes and the x axis corresponds to the cumu-
lative percentage of the area of the susceptibility classes. Total
area under a rate curve (AUC) can be used to determine pre-
diction accuracy of the susceptibility map qualitatively in which
larger area means higher accuracy achieved (Lee, 2005b;
Mathew et al., 2009; Intarawichian et al., 2011; Pourghasemi et
al., 2013b). In this study, of the 233 landslides identified,
163 (70%) locations were used for the landslide susceptibility
maps, while the remaining 70 (30%) cases were used for the
model validation. Then success- and prediction-rate curves
were constructed by using the training dataset 70% (163 land-
slide locations) and the remaining 30% (70 landslide locations)
cases respectively, and their respective areas under the curve,
AUC, were calculated to generate the comparisons.

The success rate curves of artificial neural network and
weight of evidence models shown in Figure 6a. It could be
observed that the artificial neural network model have the
higher area under the curve (AUC) values (0.8251) than the
weight of evidence model (0.7982). Similarly, the prediction
rate curves (Fig. 6b) showed that in the susceptibility map using
the artificial neural network model, the AUC was 0.7731.
In the susceptibility map using weight of evidence model,
the AUC was 0.7459. Therefore, it was found that the training
accuracy of the susceptibility maps was 82.51% and 79.82%
for ANN and WoE models, respectively. The overall prediction
rates for the ANN and WoE models were 77.31% and 74.59%
respectively. Thus, it can be concluded that the area under the
curve (AUC) for both the success rate and prediction rate
curves of the ANN and WoE models showed that both models
are successful estimators, and the two models employed in
this study have reasonably good accuracy in predicting the

landslide susceptibility of the study area. In addition, the ANN
model was deemed to be more efficient for landslide sus-
ceptibility mapping of the study area.

6. CONCLUSIONS

In this study, two landslide susceptibility mapping models,
the artificial neural network and weight of evidence models,
were applied to Xinjiang Uygur Autonomous Region, China,
as the study area, using a GIS for estimating the susceptible
areas of the study area. The selection of the twelve condi-
tioning landslide factors including slope angle, slope aspect,
general curvature, plan curvature, profile curvature, altitude,
distance to rivers, distance to roads, lithology, rainfall, NDVI,
and STI, based on consideration of relevance, availability,
and scale of data that was available for the study area, is rel-
ative and subjective, and can be improved in future research.
The susceptibility maps produced by ANN and WoE models
were divided into five different susceptibility classes such as
very low, low, moderate, high, and very high. The validation
has been determined by using the area under the rate curve
method in which the accuracy of the LS maps produced by
the ANN and WoE models was 82.51% and 79.82%, respec-
tively for success rate technique and was 77.31% and 74.59%,
respectively for predictive rate technique. Overall, both mod-
els showed almost similar results and were reasonable models
for the landslide susceptibility mapping of the study area.
Meanwhile, it can be observed that the landslide occurrence
potential map produced by the ANN method is highly believ-
able, because the method’s high and very high landslide
occurrence potential classes correctly predicted most of the
observed landslides. In addition, it should be noted that both
the models were developed on some basic assumptions such
as topography, geology, and stream etc. if data no factors
causing the landslides, such as extreme rainfall, earthquake
shaking, exist, then a more accurate analysis could be done.
The results and findings of the present study can help the

Fig. 6. AUC representing quality model (a) success rate curve and (b) prediction rate curve.
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developers, planners, and engineers for slope management
and land-use planning. Also, it is worth mentioning that the
similar method can be used elsewhere where the same geo-
logical and topographical feature prevails.
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