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Modeling the permeability of heterogeneous oil reservoirs using a robust method

ABSTRACT: Permeability as a fundamental reservoir property plays
a key role in reserve estimation, numerical reservoir simulation,
reservoir engineering calculations, drilling planning, and mapping
reservoir quality. In heterogeneous reservoir, due to complexity,
natural heterogeneity, non-uniformity, and non-linearity in param-
eters, prediction of permeability is not straightforward. To ease this
problem, a novel mathematical robust model has been proposed to
predict the permeability in heterogeneous carbonate reservoirs. To
this end, a fairly new soft computing method, namely least square
support vector machine (LSSVM) modeling optimized with cou-
pled simulated annealing (CSA) optimization technique was utilized.
Statistical and graphical error analyses have been employed sep-
arately to evaluate the accuracy and reliability of the proposed model.
Furthermore, this model performance has been compared with a
newly developed multilayer perceptron artificial neural network
(MLP-ANN) model. The obtained results have shown the more
robustness, efficiency and reliability of the proposed CSA-LSSVM
model in comparison with the developed MLP-ANN model for the
prediction of permeability in heterogeneous carbonate reservoirs.
Estimations were found to be within acceptable agreement with
the actual field data of permeability, with a root mean square error
of approximately 0.42 for CSA-LSSVM model in testing phase, and a
R-squared value of 0.98. Additionally, these error parameters for
MLP-ANN are 0.68 and 0.89 in testing stage, respectively.

Key words: permeability estimation, heterogeneous reservoir, least
square support vector machine, coupled simulated annealing, artificial
neural network

1. INTRODUCTION

Permeability parameter plays a key role in reservoir char-
acterization, and represents and controls the relationship
between pores and production rate. In addition, it is a required
reservoir property for reserve estimation, numerical reser-

voir simulation, injection and production calculations, res-
ervoir engineering calculations, mapping reservoir quality,
and drilling planning (Al-Anazi and Gates, 2010a). In het-
erogeneous reservoirs, problems related to reservoir char-
acterization are difficult due to complexity, natural heterogeneity,
non-uniformity and non-linearity in parameters such as per-
meability.

Normally, well log technology and in-place testing (well
testing) as well as experimental measurement are three methods
to determine the permeability (Wong et al., 2000; Karim-
pouli et al., 2010). Generally, the aforementioned methods
are time consuming, expensive and tedious, which makes
the use of computing methods more attractive. Hence, a more
robust and easier-to-use computational approach should be
developed and proposed.

In recent years, intelligent/smart methods have been pro-
gressively employed petroleum and chemical calculations
(Mohaghegh et al., 1994; Ghiasi et al., 2013; Hosseinzadeh
and Hemmati-Sarapardeh, 2014; Kamari et al., 2014a; Kamari
et al., 2014b; Kamari et al., 2014c; Nejatian et al., 2014; Talebi
et al., 2014; Zendehboudi et al., 2014; Esfahani et al., 2015;
Fathinasab et al., 2015; Kamari et al., 2015a; Kamari et al.,
2015b). The artificial neural networks (ANNs) are able to
solve complex nonlinear and classification problems, and they
can perform prediction and generalization rapidly once trained
(Gharbi, 1997). In the presence of a small size of dataset,
ANN technique may lead to an overfitting problem during
training/learning phase, which potentially consequences a
poor performance for capability, applicability and general-
ization model (Al-Anazi and Gates, 2012). Although ANN
has demonstrated some successful applications to estimation
of permeability (Bhatt and Helle, 2002; Saemi et al., 2007;
Tahmasebi and Hezarkhani, 2012), the basic training/learning
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mathematical algorithm has been planned to overcome the
problems of approximately large sample sizes. Hence, for a
given small size of dataset, extensive experiments with several
different training/learning methods are required to perform an
accurate regression by ANN model (Kaviani et al., 2008).

In recent years, one of the most important smart tech-
niques, namely support vector machine (SVM), have rapidly
gained much popularity due to their excellent performance
and have become well known in solving complex classification
and regression problems (Al-Anazi and Gates, 2012). The
SVM technique has found many applications in various
fields of science and engineering including but not limited
to porosity and permeability estimation from well log data,
lithology identification, pattern recognition in medical sci-
ence, speech and text detection, etc. (Li et al., 2000; Choisy
and Belaid, 2001; Gao et al., 2001; Ma et al., 2001; Van Gestel
et al., 2001)

El-Sebakhy (2009) used support vector machines for pre-
dicting the PVT properties of crude oil systems and solved
most of the existing neural networks drawbacks. Furthermore, a
comparative study was carried out to compare support vector
machines regression performance with the one of the neural
networks, nonlinear regression, and different empirical cor-
relation techniques. The results indicated that the performance
of support vector machines is accurate and outperforms
most of the published correlations. 

Al-Anzi and Gates (2010a) applied a nonlinear SVM
technique in a highly heterogeneous sandstone reservoir to
classify electrofacies and predict permeability distributions.
The results showed that the SVM method yields comparable
or superior classification of the lithology, and estimates the
permeability better than the neural network methods. More-
over, comparison between log-based and core-based clus-
tering revealed that permeability prediction based on core-
based clustering was slightly better than that of the log based
clustering. Al-Anzi and Gates (2012) evaluated the capa-
bility of support vector regression (SVR) for prediction of
porosity and permeability in a heterogeneous sandstone res-
ervoir under the effect of small sample size. Performance of
SVR model was compared to the multilayer perception
(MLP) neural network. The results demonstrated that SVR
yields consistently better predictions of the porosity and
permeability with small sample size than the MLP method.

Chamkalani et al. (2013) developed a new scaling equa-
tion for determining asphaltene precipitation quantitatively.
They used least square support vector machines/regression
(LSSVM/LSSVR) to build a nonlinear model. The results showed
that the proposed LSSVM algorithm is highly satisfactory.

In this study, more than 700 data points collected from
well log data of a heterogeneous carbonate oil reservoir located
in Saudi Arabia have been applied. Then, to develop the
proposed model, the dataset has been divided into two sub-
sets of training (80% for construction of the model) and
testing (20% for evaluation of the model performance and

accuracy). Least square support vector machine (LSSVM)
has been utilized in this study to construct nonlinear modeling.
Besides, Coupled Simulated Annealing (CSA) optimization
technique has been employed for tuning the LSSVM
parameters. Here, it is worthwhile to note that the LSSVM
technique has not so far been implemented for forecasting
the permeability of heterogeneous oil reservoirs. Addition-
ally, adequacy and reliability of the model has been evaluated
through statistical and graphical error analyses, and finally
the obtained results by the CSA-LSSVM model have been
compared to an MLP-ANN model's outputs.

2. DATA GATHERING

As a result, huge amount of oil exists in carbonate res-
ervoirs which normally have complex structures including
matrix and fractures (Alizadeh et al., 2013; Hashemi-Kiasari et
al., 2014; Kamari et al., 2015c). In other words, there are rock
complexities at various scales, i.e., faults, fissures, vugs,
microfractures poorly interconnected matrix pore structure,
which make them attractive to more study. Furthermore,
studying such reservoirs in terms of reservoir properties like
permeability is required because the production rate of sand-
stone reservoir is decreasing. Therefore, a large databank
(more than 700 data points) was provided from various wells
of a real naturally fractured reservoir. The current case study
is located in one of offshore reservoirs in Saudi Arabia.
According to the obtained geological setting and the avail-
able data, this reservoir can be classified as a structural and
heterogonous reservoir. The high variation in the data indi-
cates that due to heterogeneity in this reservoir the traditional
methods are not able to estimate the petrophysical parameters
effectively. In this oil field, a lot of wells have been drilled
in which several petrophysical parameters have been acquired.
But, all of them are not suitable for this study. Therefore, among
all of the available data, we selected the following parameters:
total porosity (PHIT), gamma ray (GR), sonic compression transit
time (DT), thermal neutron apparent porosity (NPHI), bulk
density (RHOB), and deep Induction log (ILD). The descrip-
tive statistics of these parameters are given in Table 1.

Furthermore, in order to indicate the impacts of the well
log databank on the permeability clearer, permeability data
points as a function of various input parameters are sketched
in Figure 1. Moreover, calculated correlation coefficients for
each well log variable against core permeability are summa-
rized in Table 1. This table well reveals that PHIT has the
highest correlation coefficient and GR has the lowest one.
The collected database includes a wide range of permeability
from 0.0001 to 9.929 D. This further indicates the high degree
of heterogeneity of reservoir formations. A total of 702 core
measurements for permeability and their corresponding well
logging responses were available for model training and
testing. A part of actual field data of permeability used in
this study is presented in Appendix A.
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3. MODEL DEVELOPMENT

3.1. Artificial Neural Network

A simple artificial neural network is an artificial intelli-
gence (IA) technology which has various applications in
robotic, electronics, financial, medical, and economic as well
as oil and gas industry (Tahmasebi and Hezarkhani, 2012).

ANNs simulate the work of the human brain and nervous
system. Actually, originated by the biological nervous sys-
tem, they effort to imitate the learning activities of human’s
brain (Mohaghegh et al., 1994; Balan et al., 1995; Mohaghegh
et al., 1995). ANN is an especially efficient mathematical
scheme to approximate any function with finite number of
discontinuities by learning the relationships between input
and output vectors (Ganguly, 2003; Laugier and Richon, 2003).

Fig. 1. Permeability as a function of 
input parameters.

Table 1. Descriptive statistics of well log data set

PHIT GR DT NPHI RHOB ILD

Min. 5.7 7.643 64.4 0.213 1.873 0.1682

Mean 26.7388 27.89966 93.2405 0.297066 2.233562 73.18516

Max. 36.3 83.0234 109.3 0.484 2.6822 2000

Var. 43.18466 240.1747 21.91796 0.001742 0.011873 86732.95

Corr. 0.698522 –0.62445 –0.10943 –0.34806 –0.53328 0.368705
var., variance; corr., correlation coefficient; min., minimum value; max., maximum value; mean, the average for each attribute.
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ANNs have the capability to identify complex problems quickly
with a high degree of accuracy, and they are not prejudiced
in their calculations and analysis (Ramgulam, 2006). Addition-
ally, ANNs are efficient tools at predicting non-linear prop-
erties. Neural networks form a wide category of computer
algorithms that solve several kinds of problems such as pattern
classification, functions approximation, pattern completion,
pattern association, filtering, optimization, and automatic con-
trol (Mohaghegh, 2000).

A multilayer ANN consists of different layers. The first
and the last layers are the input and output layers, respectively.
The intermediate layer, which is exactly between these two
layers, connects them indirectly. This layer is called the hid-
den layer. It should be mentioned that the hidden layer can
be more than one layer. How to connect neurons in a neural
network makes the type of network. There are different types
of neural network. The two general types are feed-forward
and backward. Multi-layer perception is the most popular
feed-forward network (Saeedi et al., 2007; Nowroozi et al.,
2009).

The training phase consists of estimating weights that
minimize deviations between network outputs and real data
(Al-Anazi and Gates, 2010b). Training data are used for the
determination of optimum values of weights and biases of
the model, while testing data are used for checking the model
performance. The MLP uses a back-propagation (BP) method
for training the network which in essence is a type of super-
vised learning methods (Tahmasebi and Hezarkhani, 2012).

3.2. Least Square Support Vector Machine

Support vector machine is one of the most effective and
consistent strategies developed from machine learning prin-
ciples (Suykens and Vandewalle, 1999; Eslamimanesh et al.,
2012). An SVM works as a promising tool for a category
of relevant supervised learning methods which can be used
not only for analyzing data and recognizing patterns, but
also for regression analysis. Based on SVM fundamentals
any function f(x) can be regressed and rewritten as below
(Suykens et al., 2002b):

, (1)

where wT, (x) and b are the transposed output layer vector,
the feature map and the bias, respectively. Moreover, x is
a vector of dimension n. The following cost function proposed
by Vapnik should be minimized to find w and b (Suykens
et al., 2002b):

Cost function = , (2)

subjected to the following constraints:

,   ,

, ,

,  , (3)

where xk and yk are kth input and output data points, respec-
tively. The ε stands for the fixed precision of the function
approximation, and the k and k are slack variables. It should
be mentioned that selecting a small ε in order to increase the
accuracy of the model might cause some of the data points
to lie beyond the ε precision, and this issue may result in infea-
sible solution. Therefore, slack parameters should be used to
determine the allowed margin of error. The amount of the
deviation from the desired ε is determined by the tuning
parameters of the SVM (the c > 0 in Eq. 2). To minimize the
cost function defined in Equation (2) along with its con-
straints presented in Equation (3), the Lagrangian for this
problem should be used as follows (Suykens et al., 2002b):

, (4)

, (4a)

, (4b)

where ak and ak
*  are Lagrangian multipliers. Lastly, the

final form of the SVM is obtained as follows:

. (5)

One should solve a quadratic programming problem in order
to solve the above problem and find ak, ak

*, and b, which
is very difficult and computationally expensive. Afterward,
Suykens and Vandewalle (Suykens and Vandewalle, 1999;
Pelckmans et al., 2002) modified the SVM to LSSVM and
reformulated it as below (Suykens et al., 2002b):

Cost function = , (6)

subjected to the following constants (for k = 1,...,N):

, (7)

where γ is tuning parameter in LSSVM model, and ek is the
error variable. The Lagrangian for this problem is as below:

, (8)

where ak stands for Lagrangian multipliers. The derivatives
of Equation (8), should be equated to zero to obtain the
solution. Thus, the following equations have to be solved:
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,

,

, k = 1,2,..., N. (9)

As can be seen from Equation (9), there are 2N + 2, equa-
tions and 2N + 2 unknowns (ak, ek, w, and b). The solution
to the system of equations defined in Equation (9) provides
the parameters of LSSVM.

The LSSVM has a tuning parameter , as stated earlier.
Both SVM and LSSVM are kernel-based methods, hence
the parameters of the kernel function are considered as
other tuning parameters. In this study the widely used RBF
kernel function was used (Fayazi et al., 2013; Hemmati-
Sarapardeh et al., 2013; Kamari et al., 2013a, 2013b, 2015),
which is as follows:

. (10)

The other tuning parameter is 2. Hence, two tuning parameters
exist in LSSVM algorithm with RBF kernel function, which
should be obtained by minimization of the deviation of the
LSSVM model from experimental values (Suykens et al.,
2002b). The mean square error (MSE) of the obtained results
of the LSSVM algorithm is measured as follows:

MSE = , (11)

where K is the permeability, rep./pred. and exp. denote the
represented/predicted, and experimental permeability, respec-
tively, and n shows the number of data points from the ini-
tial population. In this study, the LSSVM algorithm developed
by Suykens and Vandewalle (1999) was used.

As pointed out in the previous section, LSSVM modifies the
inequality constraints of Equation (3) to the equality constraints
of Equation (7) and it is a superiority compared to the tra-
ditional SVM. The parameters of the LSSVM can easily be
obtained by solving the system of equations presented in
Equation (9) instead of solving a nonlinear quadratic pro-
gramming (Suykens et al., 2002b). 

4. RESULTS AND DISSCUSSION

The available permeability dataset was randomly divided
into two sub-datasets of the “Training” and “Testing”. Nor-
mally, the training set is used for constructing the model
and the testing set is utilized to investigate the model per-
formance and accuracy. About 80% of the main dataset was
randomly chosen for the training purpose and generating
the model and the remained 20% was used for testing. It

should be noted that for the MLP-ANN model 80% of the
main dataset was used as the training set, 5% as the “Validation”
set to optimize the model parameters, and the remained 15%
was considered as the testing set. The data points should be
accumulated homogeneously in the domain of each sub-dataset
to result in an appropriate distribution (Gharagheizi et al.,
2011).

In the next step, in order to predict permeability of the
heterogeneous reservoir, two distinct models were developed
using CSA-LSSVM and MLP-ANN strategies. The same input
parameters have been chosen to generate these two models
consisting of total porosity (PHIT), gamma ray (GR), sonic com-
pression transit time (DT), thermal neutron apparent porosity
(NPHI), bulk density (RHOB), and deep Induction log (ILD). 

CSA has been employed to determine the optimum values
of the LSSVM parameters, namely γ and σ2. The optimized
values of LSSVM parameters are 1.004 and 18.0604 for σ2 and
γ, respectively. The number of reported digits for LSSVM
parameters (σ2 and γ) are generally acquired by means of sensi-
tivity analysis of the overall error of the optimization approach.

In a parallel study, we used the same dataset to develop
a MLP-ANN model in order to visualize, investigate and
compare the obtained results of LSSVM and MLP-ANN mod-
els. In the MLP-ANN, the structure of the network was designed
based on the input layer, single hidden layer, and output layer.
The tanh-axon was selected as the transfer function, and
Levenberg-Marquardt back propagation was employed in
all training steps. The size of the hidden layer is measured
by the number of processing neurons which must be optimized.
The parameters associated with the ANN-MLP model were
optimized through a testing-cross validation phases on the
available data set. In each run of generated training and test-
ing set, the values of RMSE and R² were observed to select
the optimum network.

To pursue our objective, statistical errors analysis, in which
root mean square error (RMSE) and R-squared error (R2) are
employed, and graphical error analysis, in which crossplot
is sketched, have been utilized. More details about statistical
and graphical error analyses can be found elsewhere (Mont-
gomery, 2008; Zendehboudi et al., 2011; Kamari et al., 2013a;
Shafiei et al., 2013; Hemmati-Sarapardeh et al., 2014). Table 2
lists a comparison of the R-squared and root mean square
errors for the estimation of permeability based on training
and testing data sets for the LSSVM and MLP-ANN mod-
els. As a result, the table reports a R2 of approximately 0.98
and 0.89 in testing phase for the LSSVM and MLP models,
respectively. Furthermore, the LSSVM model has been
developed with a RMSE of 0.30 and tested with the value
of 0.42. On the other hand, the reported RMSE errors for
the MLP-ANN model proposed in this study are 0.41 and
0.68 for training and testing stages, respectively. From the
issues discussed above, it can be concluded that the devel-
oped LSSVM model is more accurate than the MLP-ANN
model in both training and testing phases. In other words,
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the results obtained in this study reveal that the LSSVM
outperforms MLP-ANN for the estimation of permeabilities
of heterogeneous oil reservoirs, although the differences are
not large in training phase.

To better show the accuracy performance of the devel-
oped models, a graphical error analysis was conducted in this
study. To this end, the values calculated by the CSA-LSSVM
and MLP-ANN models have graphically been compared by
two known plates called scatter diagram and point-to-point
comparison curve. Additionally, the statistical error analysis
in terms of RMSE and R-squared errors is illustrated graph-
ically. The bar plots in Figure 2 present the calculated RMSE
for the developed CSA-LSSVM and MLP-ANN models in
both training and testing phases. In Figure 2, the results
show that the LSSVM model outperforms the MLP-ANN in
both training and testing phases. This means that the CSA-
LSSVM is more able than the MLP-ANN model for the
estimation of permeabilities of heterogeneous oil reservoir.
Figure 3 demonstrates that the calculated R2 for the MLP-
ANN model has a value almost equal to the LSSVM model
in training set. On the other hand, Figure 3 illustrates that
the calculated R-squared in testing phase for the CSA-LSSVM is
less than MLP-ANN model. This means that the permeability
values estimated by CSA-LSSVM model are in more agree-
ment with the actual field data of permeability. The obtained
results indicated that overfitting problems are less probable
in CSA-LSSVM method, and also it has proper generaliza-
tion performance. It should be noted here that a R2 magni-
tude greater than 0.9 generally shows a very satisfactory
model performance; while a R2 dimensions in the range of
0.8–0.9 expresses a good performance, and a value less than
0.8 indicates an unsatisfactory model performance, based on
the statistical analysis (Ahmadi and Shadizadeh, 2012).

Crossplots or scatter diagrams of training and testing data-
sets for the permeability values obtained by the CSA-LSSVM
and MLP-ANN models against the actual field data are
illustrated in Figures 4 and 5, respectively. As it is clear from
the figures, the predicted values by the CSA-LSSVM model
are matched better on the actual field data of permeability
compared to the data estimated by the developed MLP-

Table 2. Performance results of the proposed models

Error MLP-Training MLP-Testing LSSVM-Training LSSVM-Testing

RMSE 0.414048883 0.686396013 0.305114267 0.429597089

R2 0.978118454 0.891354195 0.98207575 0.981200104

Fig. 2. Calculated RMSE for proposed models at training and test-
ing phases.

Fig. 3. Calculated R² for proposed models at training and testing
phases.

Fig. 4. Crossplot for LSSVM model.
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ANN model. Additionally, Figures 4 and 5 illustrate that the
estimated data points by the CSA-LSSVM model are more
distributed around the unit slope line than the developed

MLP-ANN model. In other words, the distribution of data
points predicted by MLP-ANN model in outside the unit
slope line is more than the developed CSA-LSSVM model,
which shows the superiority of LSSVM approach in predict-
ing permeability of heterogeneous oil reservoirs. In a further
comparison, the predicted and actual field data of permea-
bility at both training and testing sets for CSA-LSSVM and
MLP-ANN models is illustrated in Figures 6 and 7, respec-
tively. As can be seen from Figures 6 and 7, the CSA-LSSVM
model outputs have a better agreement with the actual field
data of permeability than the MLP-ANN model results. This
means that the estimated values by the developed CSA-LSSVM
model are closer to the actual field data. In other words, this
shows the high capability of the CSA-LSSVM approach in
predicting permeabilities of heterogeneous oil reservoirs.

To show the importance degree (weights) of well log data
on permeability estimated by LSSVM approach (accurate
model), a sensitivity analysis has been performed in the current
study. To this end, the relevancy factor (r) approach (Chen et al.,
2014) is employed for evaluating the effect of well log data
during estimation of permeability. The relevancy approach gives
a clear image of effective variables for the estimation of per-
meability. The results of sensitivity analysis performed using rel-
evancy approach are illustrated in Figure 8. As clear from the
figure, the weights of well log data (most important input
variables) in terms of their calculated relevancy factor for predic-
tion of permeability has been shown graphically. Figure 8
indicates that PHIT, GR, and RHOB have highest influences
on the permeabilities estimated by the CSA-LSSVM model,
respectively. The results of sensitivity analysis conducted in

Fig. 5. Crossplot for MLP-ANN model.

Fig. 6. Comparison between experi-
mental data and estimated permeabil-
ity by LSSVM model.
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this study are important to find the importance degree of well
log data on the permeability for seismic studies in future.

From the results obtained in this study, it is concluded
that the CSA-LSSVM technique shows better capability for
modeling nonlinear problems than the traditional neural net-
works so that this makes it more attractive for prediction of
permeability of heterogeneous oil reservoirs. As a conse-
quence, the ANN methodology has a poor performance for
prediction targets in the presence of a small size of dataset
because of its high number of adjustable parameters. Addi-
tionally, the models developed on the basis of ANN approach
have the over-fitting problem so that they may lead to error

in the outside ranges of data which have been developed
based on. Furthermore, the number of adjustable parameters
required to develop an ANN based model is many more
than the LSSVM methodology. As a result, LSSVM meth-
odology has only two adjustable parameters. Normally, the
high number of adjustable parameters causes the over-fit-
ting problem, and decreases the capability and reliability of
modeling approaches in solving nonlinear problems. The
advantage of LSSVM approach is that it does not need to
use a large number of data points in order to optimize and
achieve the best (optimal) condition for prediction. Whereas,
other locally regression methods such as neural networks
have a poor performance for prediction in the presence of
a small size of dataset, as pointed out earlier. Additionally,
priori determination of the network topology is not required
in LSSVM approach and can be automatically determined
as the training process. Moreover, the number of hidden
nodes and hidden layers should not be determined in CSA-
LSSVM model. Furthermore, this model has fewer adjust-
able parameters (typically two) compared to ANN methods.
However, despite the attractive benefits in terms of time,
cost, and mathematical point of views, the LSSVM approach
has some potential disadvantages: 1) every data point of an
existing database is contributing to the model developed
and the relative importance of a data point is given by its
support value; 2) the second problem is that it is well known
that the utilize of a sum squared error cost function without

Fig. 7. Comparison between experi-
mental data and estimated permeabil-
ity by MLP-ANN model.

Fig. 8. The effects of well log data on the permeabilities estimated
by CSA-LSSVM model.
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regularization might lead to predictions which are less robust
(Suykens et al., 2002a).

As a matter of fact, accurate determination of permeability
is of great importance in issues related to fluid flow through
porous media and reservoir engineering. Therefore, the models
developed in this study can be applied precisely in calculations
associated with the production rates and Darcy’s equation.
Furthermore, the LSSVM model has an acceptable capability
to apply in reservoir and production engineering software.
Additionally, the determination of permeability for reservoir
candidate to apply enhanced oil recovery methods is a critical
issues nowadays. Regarding the well log data, the model devel-
oped in the current study is able to determine the range of
permeability before implanting different enhanced oil recov-
ery in reservoirs candidates.

 
5. CONCLUSION

The least square support vector machine regression meth-
odology as a supervised learning technique has been described
in order to predict permeability distribution of a heteroge-
neous carbonate reservoir in this study. A hybrid LSSVM-
CSA technique was used to optimize the model parameters.
Moreover, an MLP-ANN model was constructed to compare
the results and also to investigate advantages of the pro-
posed LSSVM model. The accuracy and prediction capability
of these models have been tested through statistical and
graphical error analyses, and the superiority of the CSA-
LSSVM model over the MLP-ANN model was shown. The
results illustrated that SVR-based technique with the tuning
parameters optimized by the CSA, can result in excellent
generalization and can advantageously predict the permea-
bility in heterogeneous carbonate reservoirs. The CSA-
LSSVM model can easily be implemented in any reservoir
simulation software and outperforms the traditional ANN
models in permeability prediction.
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APPENDIX

A part of the actual field databank utilized in the current
study to propose the predictive models is summarized in
Table A1. The table lists most of the effective parameters
for the estimation of permeability of heterogeneous oil res-

ervoir. The parameters are the total porosity, gamma ray,
sonic compression transit time, thermal neutron apparent
porosity, bulk density, and deep Induction log, as well as
corresponding the permeability data.

Table A1. Well log data used for the estimation of permeability

Index PHIT GR DT NPHI RHOB ILD Permeability

1 14.4 44.777 88.2 0.241 2.402 1.857 0.0061

2 19 12.8864 90.32 0.259 2.2064 0.293 0.0086

3 33.4 15.1676 90.16 0.2398 2.22124 0.3176 5.983749

4 31.2 13.961 89.66 0.2812 2.2462 0.2076 4.041334

5 28.6 26.665 91.75 0.282 2.131 143.125 3.067557

6 28.1 19.1954 91.5 0.2616 2.212 0.34 2.378969

7 31.2 17.274 101.1 0.319 2.19 8.164 1.659201

8 31.5 16.8878 93.6748 0.2668 2.1362 187.625 5.11862

9 8.9 58.957 88.84 0.3136 2.49 0.796 0.0001

10 21.5 23.872 96.4 0.319 2.193 4.609 0.054

11 30.2 14.3808 90.84 0.2852 2.2198 0.3268 3.161486

12 30.7 18.4414 92.2124 0.2614 2.145 2000 6.042994

13 29.6 27.502 94.6872 0.312 2.0978 34.9496 2.379101

14 32.2 11.71 96.3 0.282 2.232 26.719 4.390206

15 30.2 13.6856 91.86 0.2868 2.2048 0.3148 4.032048

16 30.8 17.2338 94.42 0.2884 2.1776 0.438 2.552121

17 24.2 12.0938 93.74 0.2548 2.2186 20.7282 1.076501

18 31 11.656 91.2 0.262 2.214 4.676 5.299903

19 20.6 57.7588 100.38 0.3414 2.314 2.3852 0.0056

20 25.5 57.6692 83.2 0.3206 2.523 0.3822 0.037945

21 13 45.597 96.3 0.335 2.32 1.799 0.0018

22 22.5 80.6332 96.58 0.3956 2.3236 2.216 0.8542

23 28.8 11.2358 89.66 0.2568 2.2132 0.3808 4.474302

24 25.2 40.612 89.5 0.273 2.377 0.409 0.8266

25 33 11.8444 89.24 0.2446 2.2186 0.4304 6.189636

26 30.3 22.727 93 0.285 2.113 185.25 5.428903

27 14.2 67.4222 100.14 0.388 2.3702 1.2296 0.0016

28 20.9 51.954 90.4 0.26 2.407 1.366 0.002

29 18.7 47.2568 97.88 0.3142 2.306 1.8418 0.0035

30 11.8 52.047 89.6 0.379 2.161 1.543 0.0006

31 30.1 17.9964 90.188 0.259 2.1318 2000 5.945203

32 26.4 26.9002 81.82 0.2794 2.5112 0.4544 0.0143

33 28.6 21.2044 97.22 0.2644 2.2364 0.46 0.845063

34 33.2 9.722 89.1 0.277 2.228 11.461 5.075784

35 31.2 14.1276 92.7372 0.2754 2.1504 636.6 6.701497

36 35.6 18.1234 98.08 0.3252 2.1924 0.316 2.731614

37 33.2 13.7828 93.85 0.2826 2.109 355.8 8

38 11.8 52.047 89.6 0.379 2.161 1.543 0.0006

39 32.8 14.2958 92.5996 0.2772 2.1358 448.9 9.929606

40 9.6 32.684 94.82 0.2852 2.292 2.527 0.0001

41 29.7 51.715 89.7 0.273 2.391 1.794 0.157314
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Table A1. (continued)
42 29.2 7.643 91.1 0.271 2.206 10.703 4.022576

43 33.1 52.944 82.8 0.418 1.873 1.299 7.345

44 30.5 37.373 91.7 0.281 2.333 2.221 1.411469

45 30.3 22.727 93 0.285 2.113 185.25 5.428903

46 9.8 45.0748 91.36 0.2422 2.3658 2.3444 0.0006

47 29.7 22.726 94.2 0.313 2.198 13.227 1.476318

48 32.3 17.6922 89.96 0.27 2.1954 0.3724 4.496103

49 31.4 17.2864 91.36 0.218 2.1942 0.3492 4.379002

50 14.8 50.1168 99.88 0.3998 2.463 1.613 0.0002

51 29.9 20.8188 88.94 0.2752 2.2152 0.3648 3.571343

52 30.9 17.4846 94.975 0.2848 2.1608 82.0752 3.537902

53 17.1 71.524 91.6 0.288 2.434 1.005 0.0111

54 29.6 18.8316 89.38 0.2704 2.2024 0.3796 3.748102

55 31.9 14.1288 91.62 0.2612 2.2036 0.3646 5.196547

56 12.8 59.388 89.7 0.262 2.439 0.807 0.0036

57 29.4 13.5626 90.9 0.303 2.1998 0.2974 2.085143

58 26.2 36.973 95.2 0.276 2.245 3.162 0.1141

59 29.9 14.1722 91.12 0.2932 2.1926 0.3016 3.692202

60 33.4 25.53 92.5996 0.3116 2.09 20.797 3.770458

61 14.8 49.439 98.3 0.318 2.3488 1.6442 0.0027

62 25 41.045 93.6 0.353 2.311 1.394 0.151893

63 27.4 31.954 91.675 0.3118 2.2294 0.9352 0.4885

64 28.6 26.5026 91.875 0.2774 2.135 64.5128 2.099201

65 31.5 16.8878 93.6748 0.2668 2.1362 187.625 5.11862

66 32 19.262 64.4 0.298 2.168 7.828 2.144901

67 30.9 17.4846 94.975 0.2848 2.1608 82.0752 3.537902

68 29.5 17.1246 93.22 0.3194 2.181 0.1842 1.418501

69 29 17.2026 92.3372 0.2758 2.1462 342.4 6.470538

70 28.2 16.246 91.2 0.265 2.235 21.656 3.16916
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