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A comparative study of landslide susceptibility maps using logistic regression, 
frequency ratio, decision tree, weights of evidence and artificial neural network

ABSTRACT: For the purpose of comparing susceptibility mapping
methods in Mizunami City, Japan, the landslide inventory was
partitioned into three groups as various training and test datasets
to identify the most appropriate method for creating a landslide
susceptibility map. A total of fifteen landslide susceptibility maps
were produced using frequency ratio, logistic regression, decision
tree, weights of evidence and artificial neural network models, and
the results were assessed using existing test landside points and
areas under the relative operative characteristic curve (AUC). The
validation results indicated that the logistic regression model could
provide the highest AUC value (0.865), and a relatively high percent-
age of landslide points fell in the high and very high landslide sus-
ceptibility classes in this study. Furthermore, the paper also suggested
that the model performances would be increased if appropriate
landslide points were used for the calculation.

Key words: landslide susceptibility mapping, logistic regression (LR),
frequency ratio (FR), decision tree (DT), weights of evidence (WOE),
artificial neural network (ANN)

1. INTRODUCTION

Landslides are considered to be the most common geo-
logical disaster, causing loss of human life and damage to
the economy (Bui et al., 2012; Shahabi et al., 2014). In the
published research literature, three main methodologies for
assessing landslide susceptibility and hazards were proposed:
heuristic, deterministic and quantitative. During the last decade,
the implementation of quantitative methods in geographic
information systems (GIS) was widely applied for landslide
susceptibility analysis. Several different quantitative approaches
to evaluate the landslide susceptibility can be found in the cur-
rent literature, including frequency ratio (Yalcin et al., 2011;
Ozdemir and Altural, 2013), logistic regression analysis (Bai
et al., 2010; Das et al., 2010; Pradhan, 2010a, 2010b; Wang
et al., 2013; Althuwaynee et al., 2014; Shahabi et al., 2014),
bivariate statistic analysis (Nandi and Shakoor, 2010; Xu et al.,
2012), weights of evidence (Regmi et al., 2010a, 2010b),

artificial neural networks (Poudyal et al., 2010; Pradhan et
al., 2010; Yilmaz, 2010; Bui et al., 2012; Conforti et al., 2014),
and decision trees (Saito et al., 2009; Yeon et al., 2010; Althu-
waynee et al., 2014).

In recent years, some studies have compared landslide
susceptibility maps by using these quantitative methods. Yilmaz
(2010), Pradhan and Lee (2010a, 2010b) compared the land-
slide susceptibility (LS) maps by using the frequency ratio
(FR), logistic regression (LR) and artificial neural network
(ANN) models, whereas Ozdemir and Altural (2013) pre-
sented a comparative study of FR, LR and weights of evidence
(WOE) models for landslide susceptibility analysis. Xu et al.
(2012) compared LR with bivariate statistics (BS) and ANN,
and found LR to be the most efficient of these techniques.
Pradhan (2013) assessed the predictive ability of a decision tree
(DT) model with two other mathematical models. Moreover, a
new landslide susceptibility analysis method, multivariate adap-
tive regression splines (MARSplines) proposed by Felicisimo
et al. (2013), was adopted to compare the landslide suscep-
tibility maps with DT and LR. Despite the popularity of the
above methods, few studies have been carried out on land-
slide susceptibility analysis using FR, LR, WOE, ANN, and
DT applied separately for landslide susceptibility mapping
in different areas. In this study, the five mathematical mod-
els have been applied to analyze landslide susceptibility for
the first time in Mizunami City, Gifu Prefecture, Japan. The
results obtained from these models with different training
datasets are compared to determine the most suitable method
for landslide susceptibility mapping. The effective LS maps will
help the local government implement city planning, infrastruc-
ture construction, and agricultural development schemes.

2. STUDY AREA

The Mizunami City is located in the southeastern region
of Gifu Prefecture, Japan, which covers an area of 175 km2

(Fig. 1). The elevation in this area ranges from 137 m to 792
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m, and steep slopes are very common. The monthly precipitation
ranges from 47.7 mm to 263.1 mm (Japan Meteorological
Agency). Typhoons occasionally bring intense precipitation
and cause landslides and debris flows in the city. In the study
area, based on the landslide classification system of Varnes
(1978), the predominant type of landslide is translational slides,
which has appeared on cut slopes or embankments along
two highways, Chuo Expressway and Japan National Route 21.
The geological components of the study area are primarily
sedimentary rocks, plutonic rocks, volcanic rocks, granite and
sandstone. Generally speaking, intense or prolonged rainfall,
snow melting and human activity substantially influence the
slopes in the study area.

3. SPATIAL DATABASE PREPARATION

3.1. Landslide Inventory Map

The preparation of a landslide inventory map is the first
step of LS analysis. A landslide inventory map records the loca-
tions, characteristics, and outlines of landslides (Ozdemir and
Altural, 2013). In the study area, the inventory map includ-
ing scarp areas and landslide bodies was provided by NIED
(National Research Institute for Earth Science and Disaster
Prevention, http://www.bosai.go.jp/activity_special/data; http://
lsweb1.ess.bosai.go.jp). The numbers of the landslide bod-
ies are 219. The size of landslide body ranges from 2.5 ×

Fig. 1. Geographical location of Mizunami City, Gifu Prefecture, Japan.
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Fig. 2. Geology condition map of Mizunami City.



120 Liang-Jie Wang, Min Guo, Kazuhide Sawada, Jie Lin, and Jinchi Zhang

10–3 km2 to 1.25 km2. Previous studies had revealed that the
landslide area percentage (LAP) and the landslide number
density (LND) are 12.9% and 1.26 landslides/ km2, respectively
(Wang et al., 2013). Detailed information about LAP and
LND can be found in the literature (Xu et al., 2012).

3.2. Landslide Conditioning Factor

Collecting ideal landslide conditioning factors at a suit-
able scale is an intriguing task (Pradhan, 2013) that requires
comprehensive knowledge to understand the conditioning
factors and to recognize the importance of each factor. In
this study, a topographic dataset, a water-related dataset, a
geological/land cover dataset, and a human activities dataset
were constructed for LS analyses. The critical point was the
selection of appropriate pixel size for positional accuracy and
precision of susceptibility levels in the resultant map (Shahabi
et al., 2014). Wang et al. (2013) showed that a pixel size of
10 m was enough for LS analysis in the study area. A digital
elevation model (DEM) is built by using LiDAR (Airborne
Light Detection and Ranging) points and a triangulated irregular
network (TIN), and then converted to a 10 m raster-based
data layer using GIS software. 

The topographic parameters elevation, slope angle, and curva-
ture were derived from the digital elevation model (DEM).
Slope is viewed as the major conditioning factor, which is
frequently used in the calculation of landslide susceptibility
analysis (Nandi and Shakoor, 2010; Xu et al., 2012; Yalcin
et al., 2011; Wang et al., 2013; Shahabi et al., 2014). Accord-
ing to the importance of slope conditions and configurations
in landslide occurrence, the study area was divided into ten
slope categories as (0–5°), (5–10°), (10–15°), (15–20°), (20–
25°), (25–30°), (30–35°), (35–40°), (40–45°) and (>45°), which
are shown in Table 2. Elevation is also considered as an

important factor in landslide susceptibility mapping (Xu et
al., 2012). According to the obtained map of the DEM, the
elevation of the study area was classified into ten classes
using 50 m intervals: (<150), (150–200), (200–250), (250–300),
(300–350), (350–400), (400–450), (450–500), (500–550) and
(>550) m. For the classification of the curvature, the grid map
of the parameter was obtained from the DEM. The curvature
of the study area was classified into ten classes using 0.5
intervals: (<–1.5), (–1.5 – (–1)), ((–1) – (–0.5)), (–0.5 – 0), (0–
0.5), (0.5–1), (1–1.5), (1.5–2), (2–2.5) and (>2.5).

The water-related dataset, including flow direction, topo-
graphic wetness index (TWI) and the distance-to-streams
factor, was derived from the DEMs and river distribution
maps. The flow direction derived from DEM was classified
into 8 directions: (1 (E)), (2 (SE)), (4 (S)), (8 (SW), (16 (W)),
(32 (NW), (64 (N) and (128 (NE). The closeness of the slope
to a stream is another important factor in terms of stability.
Streams may adversely affect stability by eroding the slope
or by saturating the lower part of the material, possibly resulting
in an increase in the height of the water table at the base of
the slope (Yalcin, 2008; Nourani et al., 2014). In the case of
the map of the distance to the stream, ten classes were made
using the buffer tool in ArcGIS software with 200 m intervals:
(<200), (200–400), (400–600), (600–800), (800–1000), (1000–
1200), (1200–1400), (1400–1600), (1600–1800) and (>1800)
m. Regardless of the sampling strategy, most landslides are
observed to occur near the stream (0–400 m). In the TWI (–3 – 3)
map, which was derived from the DEM, ten categories were
created for the analysis. For the classification of the flow direction,
the grid map of the parameters was obtained from the DEM.

Landslides may occur on roads and on the side of the slopes
affected by roads (Yalcin, 2008). According to recent stud-
ies, cutting slopes for highway construction and frequency
vibrations caused by cars could induce landslides (Mittal et

Table 1. lithologies of the geological unit in the study area

Geologic unit Description

Hsr Late Pleistocene to Holocene marine and non-marine sediments

J2-3as Sandstone of Middle to Late Jurassic accretionary complex

J2-3ac Triassic to Middle Jurassic chert block of Middle to Late Jurassic accretionary complex

J2-3ax Melange matrix of Middle to Late Jurassic accretionary complex

K1-2gd Early to Late Cretaceous granodiorite (Older Ryoke Granite)

K2gp Late Cretaceous felsic plutonic rocks (Younger Ryoke Granite)

K2gr Late Cretaceous granite (Younger Ryoke Granite)

K2gd Late Cretaceous granodiorite (Younger Ryoke Granite)

K2vf Late Cretaceous non-alkaline felsic volcanic rocks

K2vi Late Cretaceous non-alkaline felsic volcanic intrusive rocks

M8tux Ryoke Metamorphic rocks (gneiss and schist)

N1sr Early Miocene to Middle Miocene marine and non-marine sediments

N2sn Middle to Late Miocene non-marine sediment

N3sn Late Miocene to Pliocene non-marine sediments

Q3tl Late Pleistocene lower terrace
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Table 2. landslide conditioning factors in the analyses and results from the frequency ration and weights of evidence approaches

Mathematical Methods FR WOE WOE WOE

Factors Sampling RD TD RL RD TD RL

class id W– W+ Wc W– W+ Wc W– W+ Wc

Elevation 150 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

(m) 150–200 2 0.3 0.1 0.1 0.1 –1.1 –1.2 0.1 –2.2 –2.3 0.1 –2.2 –2.2 

200–250 3 1.2 0.8 0.9 –0.0 0.2 0.2 0.0 –0.3 –0.3 0.0 –0.1 –0.2 

250–300 4 1.6 1.7 1.5 –0.1 0.5 0.5 –0.1 0.5 0.6 –0.1 0.4 0.4 

300–350 5 1.6 1.7 1.6 –0.1 0.5 0.6 –0.1 0.6 0.7 –0.1 0.5 0.6 

350–400 6 1.3 1.3 1.5 –0.1 0.2 0.3 –0.1 0.3 0.4 –0.1 0.4 0.6 

400–450 7 0.8 0.9 0.9 0.0 –0.2 –0.2 0.0 –0.1 –0.1 0.0 –0.1 –0.1 

450–500 8 0.5 0.7 0.4 0.1 –0.7 –0.7 0.0 –0.4 –0.4 0.1 –0.9 –1.0 

500–550 9 0.1 0.1 0.2 0.1 –2.2 –2.2 0.1 –2.1 –2.1 0.1 –1.8 –1.8 

>550 10 0.3 0.0 0.5 0.0 –1.2 –1.2 0.0 0.0 0.0 0.0 –0.7 –0.7 

Slope angle 0–5 1 0.4 0.4 0.5 0.1 –0.9 –1.0 0.1 –0.9 –0.9 0.1 –0.8 –0.9 

(degree) 5–10 2 1.0 1.1 1.1 –0.0 0.0 0.0 –0.0 0.1 0.1 –0.0 0.1 0.1 

10–15 3 1.3 1.3 1.3 –0.1 0.2 0.3 –0.1 0.3 0.4 –0.1 0.3 0.4 

15–20 4 1.2 1.1 1.2 –0.0 0.2 0.2 –0.0 0.1 0.1 –0.0 0.2 0.2 

20–25 5 1.0 0.9 1.0 –0.0 0.0 0.0 0.0 –0.1 –0.1 0.0 –0.0 –0.0 

25–30 6 1.0 0.8 0.8 0.0 –0.0 –0.0 0.0 –0.2 –0.2 0.0 –0.2 –0.2 

30–35 7 0.9 0.8 0.7 0.0 –0.2 –0.2 0.0 –0.2 –0.2 0.0 –0.3 –0.3 

35–40 8 0.9 0.9 0.9 0.0 –0.1 –0.1 0.0 –0.1 –0.1 0.0 –0.2 –0.2 

40–45 9 1.1 1.2 1.0 –0.0 0.1 0.1 –0.0 0.2 0.2 0.0 –0.0 –0.0 

>45 10 1.1 1.4 1.2 –0.0 0.1 0.1 –0.0 0.3 0.3 –0.0 0.2 0.2 

FR W– W+ Wc W– W+ Wc W– W+ Wc

Distance to 200 1 0.9 0.4 0.9 0.0 –0.1 –0.1 0.0 –0.8 –0.9 0.0 –0.1 –0.1 

faults (m) 200–400 2 0.8 0.4 0.9 0.0 –0.2 –0.2 0.0 –0.9 –0.9 0.0 –0.1 –0.1

400–600 3 0.7 0.5 0.7 0.0 –0.3 –0.3 0.0 –0.6 –0.7 0.0 –0.3 –0.3

60–800 4 0.9 0.7 1.1 0.0 –0.1 –0.1 0.0 –0.3 –0.3 –0.0 0.1 0.1 

800–1200 5 1.3 1.0 1.6 –0.1 0.3 0.3 –0.0 0.0 0.0 –0.1 0.4 0.5 

1200–1600 6 1.5 1.2 2.1 –0.1 0.4 0.5 –0.0 0.2 0.2 –0.2 0.7 0.9 

1600–2000 7 1.2 1.5 1.6 –0.0 0.2 0.2 –0.1 0.4 0.5 –0.1 0.5 0.5 

2000–3000 8 0.7 1.1 0.5 0.0 -0.3 –0.4 –0.0 0.1 0.1 0.1 –0.6 –0.7 

3000–5000 9 0.6 0.9 0.5 0.1 –0.5 –0.6 0.0 –0.1 –0.1 0.1 –0.8 –0.9 

>5000 10 1.0 1.5 0.0 0.0 –0.0 –0.0 –0.1 0.4 0.5 0.1 –4.1 –4.2 

Land use water 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Residential 1 0.7 0.9 0.7 0.0 –0.4 –0.4 0.0 –0.1 –0.2 0.0 –0.3 –0.3 

Bamboo 2 4.8 6.4 0.0 –0.0 1.6 1.6 –0.0 1.9 1.9 0.0 0.0 0.0 

Cropland 3 0.7 0.9 0.5 0.0 –0.4 –0.5 0.0 –0.1 –0.1 0.1 –0.7 –0.8 

Forest 4 0.7 0.6 0.4 0.1 –0.4 –0.5 0.1 –0.5 –0.7 0.2 –1.0 –1.2 

Grassland 5 1.5 0.7 2.3 –0.0 0.4 0.4 0.0 –0.4 –0.4 –0.1 0.9 0.9 

Herbaceous 6 0.7 0.3 0.8 0.0 –0.4 –0.4 0.0 –1.1 –1.1 0.0 –0.2 –0.2 

Plantation 7 1.2 0.9 1.1 –0.0 0.2 0.2 0.0 –0.1 –0.2 –0.0 0.1 0.2 

Woodland 8 1.4 1.8 1.7 –0.2 0.4 0.5 –0.3 0.6 0.9 –0.2 0.5 0.8 

Distance to 200 1 1.2 1.3 1.3 –0.1 0.2 0.2 –0.1 0.2 0.4 –0.1 0.3 0.4 

Streams (m) 200–400 2 1.2 1.3 1.2 –0.1 0.2 0.3 –0.1 0.2 0.3 –0.1 0.2 0.3 

400–600 3 1.0 1.1 0.9 –0.0 0.0 0.0 –0.0 0.1 0.1 0.0 –0.1 –0.1 

600–800 4 1.0 0.8 0.9 0.0 –0.0 –0.0 0.0 –0.2 –0.3 0.0 –0.1 –0.1
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Table 2. (continued)

FR W– W+ Wc W– W+ Wc W– W+ Wc

 800–1000
1000–1200

5
6 

 0.8 
0.4

0.6 
0.4

0.6
0.2

0.0
0.0

–0.2 
–0.9 

–0.3 
–0.9 

 0.0 
0.0

–0.5
–0.9 

–0.5
–0.9

0.0
0.0

–0.5 
–1.6

–0.5
–1.6 

1200–1400 7 0.2 0.3 0.0 0.0 –1.7 –1.7 0.0 –1.3 –1.3 0.0 –5.0 –5.0 

1400–1600 8 0.3 0.2 0.3 0.0 –1.1 –1.1 0.0 –1.6 –1.6 0.0 –1.2 –1.2 

 1600–1800
>1800

9
10 

 0.4 
0.5

 0.0 
0.0

0.7 
0.7

0.0 
0.0 

–0.9 
–0.8

–0.9 
–0.8

 0.0 
0.0

0.0 
0.0

0.0 
0.0

0.0 
0.0

–0.4 
–0.3 

–0.4
–0.3

TWI –1 1 0.7 0.6 0.5 0.0 –0.4 –0.4 0.0 –0.5 –0.5 0.0 –0.7 –0.8 

–1 – (–0.5) 2 0.9 0.8 0.8 0.0 –0.1 –0.1 0.0 –0.2 –0.2 0.0 –0.3 –0.3 

–0.5 – 0 3 1.0 1.0 0.9 –0.0 0.0 0.0 –0.0 0.0 0.0 0.0 –0.1 –0.1 

0–0.5 4 1.1 1.1 1.0 –0.0 0.1 0.1 –0.0 0.1 0.1 –0.0 0.0 0.1 

0.5-1 5 1.2 1.2 1.2 –0.0 0.2 0.2 –0.0 0.2 0.2 –0.0 0.2 0.2 

1–1.5 6 1.2 1.2 1.3 –0.0 0.2 0.3 –0.0 0.2 0.2 –0.0 0.3 0.3 

1.5–2 7 1.1 1.3 1.3 –0.0 0.1 0.1 –0.0 0.2 0.3 –0.0 0.3 0.3 

2–2.5 8 1.0 1.1 1.1 0.0 –0.0 –0.0 –0.0 0.1 0.1 –0.0 0.1 0.1 

2.5–3 9 0.7 0.8 0.9 0.0 –0.3 –0.3 0.0 –0.3 –0.3 0.0 –0.1 –0.1 

>3 10 0.2 0.3 0.3 0.1 –1.4 –1.4 0.0 –1.2 –1.3 0.0 –1.1 –1.1 

Flow 1(E) 1 1.1 1.3 1.1 –0.0 0.1 0.1 –0.0 0.3 0.3 –0.0 0.1 0.1 

direction 2(SE) 2 1.3 1.7 1.4 –0.0 0.3 0.3 –0.1 0.5 0.6 –0.0 0.3 0.4 

4(S) 3 1.2 1.4 1.2 –0.0 0.2 0.2 –0.1 0.3 0.4 –0.0 0.2 0.2 

8(SW) 4 1.0 1.1 1.0 0.0 –0.0 –0.0 –0.0 0.1 0.1 0.0 –0.0 –0.0 

16(W) 5 0.8 0.7 0.8 0.0 –0.2 –0.2 0.1 –0.4 –0.4 0.0 –0.2 –0.2 

32(NW) 6 0.8 0.5 0.8 0.0 –0.2 –0.2 0.1 –0.6 –0.7 0.0 –0.2 –0.2 

64(N) 7 0.8 0.5 0.8 0.0 –0.2 –0.2 0.1 –0.7 –0.7 0.0 –0.2 –0.2

128(NE) 8 1.0 1.0 1.0 –0.0 0.0 0.1 0.0 –0.0 0.0 –0.0 0.0 0.0 

FR W– W+ Wc W– W+ Wc W– W+ Wc

Distance to 500 1 1.5 1.9 2.2 –0.1 0.4 0.5 –0.1 0.6 0.8 –0.2 0.8 0.9

highways (m) 500–1000 2 2.2 2.1 2.3 –0.1 0.8 0.9 –0.1 0.8 0.9 –0.1 0.9 1.0

1000–1500 3 1.8 1.9 2.0 –0.1 0.6 0.6 –0.1 0.6 0.7 –0.1 0.7 0.8

1500–2000 4 0.8 0.3 1.2 0.0 –0.2 –0.2 0.1 –1.2 –1.2 –0.0 0.2 0.2

2000–3000 5 1.1 0.6 1.2 –0.0 0.1 0.1 0.1 –0.5 –0.6 –0.0 0.2 0.2

3000–4000 6 0.8 0.8 0.6 0.0 –0.2 –0.2 0.0 –0.2 –0.2 0.1 –0.6 –0.6

4000–5000 7 0.4 0.5 0.4 0.1 –1.0 –1.0 0.1 –0.6 –0.7 0.1 –0.9 –0.9

5000–6000 8 0.2 0.0 0.2 0.1 –1.7 –1.8 0.1 –3.3 –3.3 0.1 –1.4 –1.5

6000–8000 9 0.6 0.9 0.1 0.1 –0.5 –0.5 0.0 –0.1 –0.1 0.1 –3.0 –3.1

>8000 10 0.5 0.8 0.0 0.0 –0.7 –0.7 0.0 –0.2 –0.3 0.0 0.0 0.0

Curve –1.5 1 0.5 0.5 0.5 0.1 –0.6 –0.7 0.1 –0.7 –0.8 0.1 –0.8 –0.9 

–1.5 – (–1) 2 1.5 1.6 1.5 –0.0 0.4 0.5 –0.0 0.5 0.5 –0.0 0.4 0.4 

–1 – (–0.5) 3 1.2 1.3 1.3 –0.0 0.2 0.2 –0.0 0.3 0.3 –0.0 0.2 0.3 

–0.5 – 0 4 1.0 1.0 1.1 0.0 –0.0 –0.0 –0.0 0.0 0.0 –0.0 0.1 0.1 

0–0.5 5 1.1 1.1 1.1 –0.0 0.1 0.1 –0.0 0.1 0.1 –0.0 0.1 0.2 

0.5–1 6 1.3 1.3 1.3 –0.0 0.3 0.3 –0.0 0.2 0.3 –0.0 0.2 0.3 

1–1.5 7 1.3 1.2 1.2 –0.0 0.2 0.3 –0.0 0.2 0.2 –0.0 0.2 0.2 

1.5–2 8 1.2 1.2 1.1 –0.0 0.2 0.2 –0.0 0.2 0.2 –0.0 0.1 0.1 

2–2.5 9 1.5 1.4 1.3 –0.0 0.4 0.4 –0.0 0.3 0.3 –0.0 0.3 0.3 

>2.5 10 0.4 0.4 0.3 0.1 –0.9 –1.0 0.1 –1.0 –1.1 0.1 –1.1 –1.2 
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al., 2008; Regmi et al., 2010a). The distance to two major
highways, the Chuo expressway and Japan National Route
21, are calculated using GIS. For designating the influence
of the highways on the slope stability, the study area was
divided into ten different buffer categorizes: (<500), (500–1000),
(1000–1500), (1500–2000), (2000–3000), (3000–4000), (4000–
5000), (5000–6000), (6000–8000) and (>8000) m. Most
landslides occur near the road (0–1500 m) with different sam-
pling strategies, but the extended area of this class is large.
There are plenty of landslide pixels that fell into other buf-
fer categories. In this study, only two major highways have
been considered.

The geological map and distances to faults used to represent
the features of the slope materials and the co-seismic con-
ditions were provided by the Geological Survey of Japan,
AIST. Note that the geology of our study area is very complex
and the lithologic units comprise several formations (Fig. 2).
The formations were therefore classified into fifteen categories
with respect to landslide susceptibility. The descriptions of the
geological units are provided in Table 1. Geological faults are
an important susceptibility factor. For designating the influence
of the faults on slope stability, the study area was divided into
ten different buffer categorizes: (<200), (200–400), (400–600),
(600–800), (800–1200), (1200–1600), (1600–2000), (2000–
3000), (3000–5000) and (>5000) m as shown as Table 2.

The land cover map is also a factor for predicting landslide
occurrence. All of the landslide conditioning factors from
the above datasets were stored in the spatial database using
a spatial analysis tool (ArcGIS software) with a spatial res-
olution of 10 m.

4. LANDSLIDE SUSCEPTIBILITY MAPPING

4.1. Training and Testing Datasets

The way we choose the training dataset may affect landslide

susceptibility mapping results. Vahidnia et al. (2010) and Yeon
et al. (2010) used partial landslide points to denote the training
dataset, and used a subset of these points for the testing dataset.
Nandi and Shakoor (2010) partitioned the landslide inven-
tory into two subsets: landslides in the left part of the study
area were used as the training dataset, and those of the right
part were used as the testing dataset. Pradhan (2013) used
50% of landslide grid cells for training, and other 50% for
testing were selected at random. In this study, the landslide
inventory was divided into three different subsets including:
(1) half of the landslide points for training by random selection,
and half for testing (abbreviation as RD sampling strategy);
(2) landslide points from the right side of dividing line 1 for
training, and the left side for testing (abbr. RL sampling strat-
egy); (3) landslide points from above line 2 for training, and
below for testing (abbr. TD sampling strategy) (Fig. 3). For
the BS model, only the landslide data are required. However, it
is necessary to obtain satisfactory sample data representing
the absence of landslide occurrence to fit the LR and ANN
models (Xu et al., 2012). For the RD sampling strategies,
the numbers of landslide free points from the region of sta-
ble slopes in the study area were chosen randomly to be the
same as the selected landslide points. For testing data, we use
the remaining half of the grid cells of the landslide points and
non-landslide points. For the RL and TD sampling approaches,
the non-landslide points were selected randomly from the
training area, divided by lines 1 and 2, and the testing datasets
were chosen from the testing area. Additionally, the ratio of
landslide points to non-landslide points is equal to 1.

4.2. Frequency Ratio Model (FR)

The frequency ratio (FR) model is a simple tool to cal-
culate the probabilistic relationship between a landslide and
landslide conditional factors (Ozdemir and Altural, 2013). The
FR is the ratio of the area where landslides have occurred to the

Table 2. (continued)

Geologic FR W– W+ Wc W– W+ Wc W– W+ Wc

Hsr 1 0.8 1.2 1.1 0.0 –0.2 –0.2 –0.0 0.2 0.2 –0.0 0.1 0.1 
J2-3ac 2 2.3 0.2 3.6 –0.0 0.8 0.9 0.0 –1.5 –1.6 –0.1 1.3 1.4 
J2-3as 3 1.1 1.5 0.4 –0.0 0.1 0.1 –0.0 0.4 0.5 0.0 –1.0 –1.0 
J2-3ax
K1-2gd

4
5

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

K2gd 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
K2gp 7 0.1 0.0 0.1 0.1 –2.7 –2.8 0.0 0.0 0.0 0.1 –2.2 –2.3 
K2gr 8 0.9 1.2 0.5 0.0 –0.1 –0.1 –0.0 0.2 0.2 0.1 –0.7 –0.8 
K2vf 9 2.4 3.2 3.9 –0.1 0.9 1.0 –0.2 1.2 1.4 –0.3 1.4 1.7 
K2vi 10 1.4 0.0 2.3 –0.0 0.3 0.3 0.0 0.0 0.0 –0.0 0.8 0.8 

M8tux 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
N1sr 12 1.1 0.9 0.6 –0.0 0.1 0.1 0.0 –0.1 –0.2 0.1 –0.5 –0.5 
N2sn 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
N3sn 14 1.0 0.8 0.9 0.0 –0.0 –0.1 0.1 –0.3 –0.4 0.0 –0.1 –0.2 
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total study area and is also the ratio of the landslide occur-
rence probability to the non-occurrence probability for a
given attribute (Lee and Talib, 2005). First, the frequency ratio

of each range or type of factor is calculated, then the FRs
are summed with Equations (1) and (2) as the landslide sus-
ceptibility index (LSI) (Yilmaz, 2010).

Fig. 3. Landslide inventory map of Mizunami City with dividing lines of the training and test areas.
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, (1)

LSI = , (2)

where Di is the area of landslide of the i-th category, Ai is the
area of the i-th category for a certain parameter and N is
the category number of the parameter. The results obtained
by the FR method are easy to understand. A FR value greater
than 1 indicates a high probability of landslide occurrence,
and a value less than 1 indicates a low correlation (Oh et al.,
2010; Ozdemir and Altural, 2013). The FR values of the
conditioning factors are reported in Table 2. Although the
training datasets are different, the FR of the relationship
between LSI and land use/cover is higher in woodland areas
than in other land use areas, except for the bamboo area. The
bamboo area has the highest FR value except when choos-
ing the RL sampling strategy. The FR values for the rela-
tionship between LSI and geology are higher in J2-3ac and
K2vf. However, the FR value of J2-3ac indicates a low
correlation using the TD sampling points because only a
small percentage of landslide points fell in the J2-3ac class
using the TD sampling strategy according to Figure 3 and
Table 2. Relationships between curvature and landslide occur-
rence indicate that landslides generally do not occur near
areas with curvature values smaller than –1.5 or larger than 2.5.
Flow directions with E, SE, and S directions have stronger
relationships than other areas and exhibit high probabilities
of LS. FR values are larger where TWI ranges from 0.5–2,
which indicates a high correlation. The FR analyses demon-
strate that the areas with slopes between 10–20° have high

probabilities of landslide occurrence. There are no significant
differences between slope classes, because in Japan, the
potential landslides do not have steep slopes as in USA and
China (Wang et al., 2013). LS is also high in the areas where
the elevations range from 250–400 m; when the elevations
are higher than 400 m or lower than 250 m, the probabil-
ities of LS decrease. The distance to streams smaller than
400 m has a stronger relationship with LS than other factors,
and areas with small distances to streams have high prob-
abilities of LS. Relationships between distance to highways
and landslide occurrence indicate that landslides generally
occurred near the highways, with distances smaller than
1500 m. A distance of 1500 m from a highway may not induce
landslide occurrence, but there is a significant correlation
between the extent and frequency of landslides on one hand
and distance to the regional highways system on the other
(Shahabi et al., 2014). In the study area, the highway system
causes cuts to form in slopes, thereby destabilizing them.

Thus the contrast value is higher for distances to highways
less than 1500 m compared with other classes, as there are plenty
of pixels compared to other classes. However, the spatial
relationship between landslide occurrence and highway con-
struction is very close, especially in the study area. The ratio
between LS and distance to faults is larger than 1 for distance
to faults values between 800 m and 2000 m, revealing a high
correlation with LS. From Table 2, there is a possibility that
geological factors influence landslide occurrence rather than
distance to faults. The LS maps produced from the FR model
are given in Figure 4.

4.3. Weights of Evidence Model (WOE)

WOE is a Bayesian approach in a log-linear form, which

FR

Di/ Di
i 1=

N



Ai/ Ai
i 1=

N


-------------------=

FR

Fig. 4. landslide susceptibility maps using FR model. (a) RD sampling strategy; (b) RL sampling strategy; (c) TD sampling strategy.
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uses prior probability and posterior probability (Regmi et al.,
2010a). The detailed theoretical background and algorithm
of WOE can be found in Regmi et al. (2010a, 2010b). The
WOE approach has been widely applied in many studies
(Van Westan et al., 2003; Regmi et al., 2010a, 2010b; Neu-
hauser et al., 2011; Ozdemir and Altural, 2013). Weight val-
ues for the classes of landslide conditioning factors are
calculated by the following equations (Regmi et al., 2010a):

, (3)

, (4)

where A1 is the number of landslide pixels present in a
given factor class. A2 is the number of landslide pixels not
present in the same given factor class. A3 is the number of
pixels in a given class in which no landslide pixels are
present, and A4 is the number of pixels in the given factor
class when neither landslide nor the given factor is present
(Regmi et al., 2010a, 2010b; Ozdemir and Altural, 2013).

Positive and negative weights (W+ and W–) reveal the relation-
ship between the conditioning factors and landslides. A positive
weight indicates the presence of a conditioning factor for
landslides, and the magnitude of the weight shows the positive
correlation between the presence of a conditioning factor and
a landslide. In contrast, the negative weight indicates an absence
of a conditioning factor, and the magnitude indicates a neg-
ative correlation (Regmi et al., 2010a; Ozdemir and Altural,
2013). The Wc (Wc = W+ – W–) value, which is defined as the
difference between W+ and W–, reflects the overall spatial
association between a conditioning factor and a landslide
occurrence (Regmi et al., 2010a; Xu et al., 2012). A positive Wc

value indicates a positive spatial correlation between a con-
ditioning factor and a landslide, whereas a negative Wc value
indicates unfavorable conditions for a landslide (Regmi et al.,
2010a, 2010b; Ozdemir and Altural, 2013). A weigh contrast
close to zero indicates that the factor is not significant for
analyzing a landslide. The final probability (P) of each cell is
the sum of the weights of each parameter and the prior proba-
bility Pp(S) (Ozdemir and Altural, 2013). The final proba-
bility is calculated by employing the following equations

, (5)

, (6)

where NL is the number of landslide pixels, and Np is the total
number of study area pixels.

For each of the landslide conditioning factors, the weights,

contrasts, and probability values were calculated using different
training datasets with Equations (3)–(6) as shown in Table 2.
The conditioning independence of the factors was tested using
chi-square statistics. The results suggested that the pairs were
not significantly different. Afterward, the independent factors
were used to create the landslide susceptibility maps using the
ArcGIS 9.3 platform. 

The Wc values of the conditioning factors are shown in Table
2. Although the training datasets are different, the Wc values
of the relationship between LSI and land use/cover are higher in
woodland areas than other land use areas except for the bamboo
area. The bamboo area has the highest Wc values except when
choosing the RL sampling strategy where the grassland has
the highest weight contrast. The Wc values are also high in the
areas where the elevations range from 250–400 m; when
the elevations are higher than 400 m, the probabilities of LS
decrease. Relationships between curvature and landslide occur-
rence indicate that landslides generally do not occur near
areas where the curvature has values smaller than –1.5 or
larger than 2.5. The Wc values of distance to faults between
800 m and 2000 m are positive, revealing a high correlation
with LS. Also, the flow directions of E, SE and S directions
have high probabilities of LS. The Wc values are larger for
TWI and range from 0.5–2, which indicates a high positive
spatial correlation. The WOE results demonstrate that areas
with slopes between 10–20° have high probabilities of land-
slide occurrence. Wc values are also high in the areas where
the distance to stream is smaller than 400 m, indicating high
probabilities of LS. Relationships between distance to high-
ways and landslide occurrence indicate that landslides gener-
ally occurred near the highways, with distances smaller than
1500 m, which was similar to the FR model results. With differ-
ent sampling strategies, the roles of geologic condition are
different. The Wc values of geology are higher in J2-3ac, and
K2vf has high probabilities of LS using the RD and RL sam-
pling strategies. When the TD sampling strategy was applied,
the Wc value of J2-3ac indicates a highly negative spatial
correlation with LS. Those results also indicate the importance
of geologic conditions for landslide susceptibility mapping.
The WOE models are used to create the LS maps shown in
Figure 5.

4.4. Logistic Regression (LR)

The logistic regression (LR) model is a commonly used
mathematical method to establish the relationship between
conditioning factors and landslides (Bai et al., 2010; Das et al.,
2010; Oh et al., 2010). Some studies have compared the logistic
regression model with other methods and have found logistic
regression to be the most accurate of these techniques (Bui
et al., 2012; Xu et al., 2012). Therefore, a forward stepwise
logistic-regression model is applied to create landslide-sus-
ceptibility maps. The predicted values range from 0 to 1, and
can be defined by the following formulas:

W +

A1
A1 A2+
-------------------

A3
A3 A4+
-------------------
-------------------ln=

W 

A2
A1 A2+
-------------------

A4
A3 A4+
-------------------
-------------------ln=

P exp W +
 Pp S ln+ =

Pp S 
NL

NP

------=
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, (7)

, (8)

where y is the linear logistic model, b0 is the intercept of
the model, n is the number of landslide-controlling factors,
b is the weight of each factor, x represents the landslide condi-
tioning factors and P is the probability of landslide occurrence
(landslide susceptibility index).

Two important parameters, tolerance (TOL) and the variance
inflation factor (VIF), were used to determine the colinear-
ities between independent variables. If TOL < 0.4 and VIF > 2,
those parameters were not selected in the logistic regression
models (Bui et al., 2012). In this study, there are no high
correlations among the dependent variables. The training data-
sets were then used in the SPSS software to model the rela-
tionship between the probability of landslide occurrence and
the conditioning factors. The last category was assigned as the
reference category for each categorical variable. The spatial
relationship between landslide occurrence and conditioning
factors was assessed using the LR model with different train-
ing datasets. 

Table 3 demonstrates that the results of the models had
statistical significance and that the independent variables

could account for the variance in the dependent variables in
the models by using Cox & Snell R2 values, which range from
0.36 to 0.43, and Nagelkerke R2 values ranging from 0.49 to
0.57. Table 3 also reveals that the sampling strategies have no
important impact on model performance because the Cox &
Snell R2 and Nagelkerke R2 values are very close to each other.

The coefficients of the LR model are shown in Figure 6.
From Figure 6, the statistical relationship between condi-
tioning factors and landslide occurrence can be understood.
It is found that LR coefficients had generally positive cor-
relations with TWI with different training datasets. All of
the coefficients of the TWI classes are positive. This means
that TWI is positively related to the occurrence of a land-
slide. We also determined that the importance of each land-
slide conditioning factor for landslide occurrence is very
different with different training datasets. The highest LR
coefficients of elevation range from 250–400 m, except when
choosing the TD sampling strategy, where elevation has no
influence on a landslide occurrence. LR coefficients generally
have negative correlations with distance to stream, except when
using the TD sampling strategy, where this factor plays no
role in the occurrence of landslides. Relationships between
distance to highways and landslide occurrence indicate that
landslides generally occurred near highways, with distances

y b0 b1x1 b2x2 +bnxn+ + +=

p ey/ 1 ey+ =

Fig. 5. Landslide susceptibility maps using WOE model. (a) RD sampling strategy; (b) RL sampling strategy; (c) TD sampling strategy.

Table 3. Statistics and accuracy of the logistic regression models

Hosmer and Lemeshow
–2 Log likelihood

Cox & Snell 
R Square

Nagelkerke 
R Square

Predicted 
accuracyChi-square df Sig.

LR(RD) 29.997 8 0.00 23058.540 0.428 0.572 0.80

LR(TD) 118.735 8 0.00 24963.426 0.360 0.492 0.79

LR(RL) 120.044 8 0.00 24675.432a 0.404 0.544 0.81
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smaller than 1500 m, except when choosing the RL sampling
strategy. Figure 6 shows that LR coefficients have strongly
negative correlations with distance to faults using the TD
sampling strategy, but when we select the RL sampling datasets,
the correlation between LR and distance to faults vanishes.
From Figure 6, the coefficients demonstrate that slopes between
5–15° have positive correlations with landslide occurrence
using the TD sampling strategy; otherwise, the slope has a
negative correlation with LS. The coefficients for curvature
are negative, revealing high correlations with LS. The value
of flow direction equal to 2 has a positive correlation with

LS using the RD sampling strategy. The other coefficients
of flow direction indicate negative correlations with land-
slide occurrence. The relationship between LS and land use/
cover are complicated by the use of different sampling strategies.
The grassland area has the highest positive weight using the
RD sampling strategy, while the grassland has a negative
correlation with LS using TD sampling strategy. Using RL,
the forest has high probabilities of LS with positive correlations,
and otherwise have negative correlations with landslide occur-
rence. The coefficient values of geology are higher in J2-3ac,
and K2vf exhibits high probabilities of LS using both the RD

Fig. 6. LR coefficients for the study area. (a) Elevation; (b) Slope angle; (c) Distance to faults; (d) landuse/cover; (e) Distance to streams;
(f) TWI; (g) Flow direction; (h) Distance to highways; (i) Curvature; (j) Geologic unit. The horizontal axis is corresponding to the ID
number in Table 2.
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and RL sampling strategies. When the TD sampling strategy
was applied, the coefficient of K2gd indicates a high spatial
correlation with LS. The above analyses indicate that the sam-
pling strategy may affect the model performances. Based on

formulas 7 and 8, the LS values were calculated using the
GIS platform and the factors overlay technology. The LS maps
created by LR are shown in Figure 7.

Fig. 6. (continued).

Fig. 7. Landslide susceptibility maps using LR model. (a) RD sampling strategy; (b) RL sampling strategy; (c) TD sampling strategy.
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4.5. Decision Tree (DT)

The decision tree model is a technique using tree structures
for finding and describing structural patterns in data, and
does not require the relationships between all of the input
variables and an objective variable in advance (Saito et al.,
2009). The objective of the DT model is to build the decision
rules that can be used to predicate the relations between the
independent variables and an objective variable (Pradhan,
2013). Generally, a decision tree structure has three parts from
top to bottom, such as a root node, a set of internal nodes,
and a set of terminal nodes (leaves). The processing is car-
ried out by moving down the tree until the terminal node is
reached (Saito et al., 2009). There are four major algorithms
for construction of decision tree models, including classi-
fication and regression tree (CART), chi-square automatic
interaction detector decision tree (CHAID), ID3 and C4.5
(Pradhan, 2013). In this study, CART was selected as the
decision tree model because of the performance efficiency
(Felicisimo et al., 2013). The implementation of CART was
carried out with SPM software with all of the training data-
sets (Salford Systems, http://www.salfordsystems.com/). The
CART creates complex tree constructions that are later pruned
back to avoid overfitting. In this study, a 10-fold cross-val-
idation was also adopted to evaluate the robustness of the
decision-tree model, along with optimizing the decision-tree
size (Saito et al., 2009). Therefore, the numbers of the termi-
nal nodes are less than 21 nodes, and some less important fac-
tors were excluded. Figure 8 shows the effect of each landslide
conditioning factor with different training datasets for the DT
model. The lithological formations in the study area have the
most important influence on landslide occurrence. When
the TD sampling strategy is chosen for model construction,

the distance to highway and distance to fault values play a
key role in model performance. The elevation factor is very
efficient for landslide occurrence when the RL sampling strat-
egy is used for training. Distance to stream is more important
when using the RL sampling strategy. Landuse/landcover is
also a key factor for landslide susceptibility mapping. The
LS maps created by DT can be found in Figure 9.

4.6. Artificial Neural Network (ANN)

A neural network may be used as a direct substitute for
auto correlation, multivariable regression, linear regression,
trigonometric, and other statistical analysis and techniques
(Yilmaz, 2010). An artificial neural network model (ANN) has
a capacity to imitate the neural system of human brains (Xu
et al., 2012). Therefore, it can extract patterns and detect trends
that are too complex to be noticed by other techniques (Yilmaz,
2009). The ANN model acts as an expert to detect important
predictive patterns that are not obvious to a non-expert. Com-
pared with other statistical models, an ANN model has the abil-
ity to cope with imprecise and fuzzy data, so they can handle
continuous, category and binary data without violating any
assumptions (Yilmaz, 2009). Therefore, it is considered an
efficient approach for landslide susceptibility analysis. 

Among many types of ANN models, the back-propagation
(BP) training algorithm is the most frequently and instruc-
tively used neural network model, also it is accepted as one
of the most useful neural networks for landslide susceptibility
prediction and decision making (Yilmaz, 2010; Pradhan and
Lee, 2010a, 2010b). In this study, the BP algorithm is used.

The purpose of ANN is to build a model of data-generating
processes so the network can generalize and predict outputs
from inputs (Pradhan and Lee, 2010b). The BP algorithm is

Fig. 8. Parameter importance map obtained from DT model. The horizontal axis is the factor importance.



Landslide susceptibility mapping using different mathematical methods 131

a multi-layer neural network, which has an input layer, several
hidden layers and an output layer (Pradhan and Lee, 2010b).
The hidden layer neurons process the inputs through a series of
calculations, such as multiplying each input by a correspond-
ing weight, summing the product, and subsequently process-
ing the sum with a nonlinear transfer function to produce a
result (Pradhan and Lee, 2010b; Xu et al., 2012). At the end
of the training process, the artificial neural network creates
a model that has the ability to predict a target value from a
given input value (Pradhan and Lee, 2010b). The architec-
ture and detailed algorithm of neural networks can be found

in the literature (Yilmaz, 2009; Yilmaz, 2010; Pradhan and
Lee, 2010b).

The data used in the ANN model should be partitioned
into at least two subsets, such as training and test datasets.
The training dataset is used in the training stage of the model
development to update the weights of the network, and then
the test dataset, which is different from the training dataset,
is applied to evaluate the network performance and confirm
its accuracy (Pradhan and Lee, 2010b). There are no exact
mathematical rules to determine the required minimum size
these subsets (Nefeslioglu et al., 2008). Therefore, three groups

Fig. 9. Landslide susceptibility maps using DT model. (a) RD sampling strategy; (b) RL sampling strategy; (c) TD sampling strategy.

Fig. 10. Landslide susceptibility maps using ANN model. (a) RD sampling strategy; (b) RL sampling strategy; (c) TD sampling strategy.
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of training and test datasets (including RD, TD and RL
samplings) are used in this study.

The ENVI software package was used for training and
testing the ANN model. A three layer feed-forward network
that consists of an input layer, one hidden layer, and one output
layer was used as a network structure (Xu et al., 2012). Three
groups of training datasets were selected in the study, and
the factors were adjusted using the same parameters of the
ANN model as follows (Xu et al., 2012);

Activation function: Logistic;
Training threshold contribution: 0.9;
Training rate: 0.2;
Training momentum factors: 0.9;
Training root square error exit criteria: 0.1;
Number of hidden layers: 1;
Number of training iterations: 1000;
As in many other network training methods, models and

parameters were used to reach minimum Root mean square
(RMS) values (Yilmaz, 2009). In this study, the RMS values
of training and testing were set as 0.01 for the ANN structure.
After the network goal was reached, the study area was fed into
the network to estimate the landslide susceptibility (Yilmaz,
2009). The sets of the landslide susceptibility indexes of each
grid were calculated, and landslide susceptibility maps are
shown in Figure 10.

5. RESULT AND COMPARISON

There are many classification methods available such as
natural breaks, equal intervals and standard deviations (Ayalew
and Yamagishi, 2005; Pradhan, 2013). In this paper, the land-
slide susceptibility-index maps were divided into four classes
by the natural breaks method under the ArcGIS platform. The
accuracy of the landslide susceptibility maps were evaluated
by calculating the relative operative characteristic (ROC) and
the percentage of observed-landslide points in various suscep-
tibility categories using three different test datasets (Nandi
and Shakoor, 2010). The area under the ROC curve (AUC)
represents the quality of the probabilistic model (its ability
to predict the occurrence or non-occurrence of an event)
(Yesilnacar and Topal, 2005). The value of AUC ranges from
0.5 to 1. An AUC value close to 1 indicates high accuracy, and
an AUC value close to 0.5 indicates inaccuracy (Fawcett,
2006). 

Figure 11 shows the percentage of observed-landslide points
in various susceptibility categories using three different test
datasets. From Figure 11a, more than 80% of observed land-
slides are found in high and very high susceptibility classes
for the ANN and DT models, whereas the FR and LR models
indicate that approximately 70% of the landslides are con-
centrated in the high and very high susceptibility classes. Over
48% and 44% of the landslides occur in areas with very high
susceptibility classes based on ANN, and LR, respectively.
The proportion of landslides that had high to very high suscep-

tibility was 90.3% based on ANN model, which was higher
than for the DT (83%) and LR (72%) models. The WOE model
had the lowest value, which was only 22.4%. Additionally, using
the RL sampling strategy (Fig. 11b), only 61% of the land-
slides were concentrated in the high and very high categories of
the DT model, which was the highest. For the ANN, LR
and FR models, approximately 57.7%, 22.3% and 30.1% of
the landslides were in the high and very high categories.
WOE has the highest percentage of landslide bodies in the
very low category, approximately 61%, which is an unaccept-
able result. Figure 11c shows that the very high category
contains 58.1% and 42.5% of the landslide bodies using the
LR and DT models, respectively. The highest proportion of
landslides appearing from high to very high susceptibility is
86.3%, based on the LR model. However, the DT and ANN
models contain 58.1% and 42.5%, respectively, of the land-
slide points falling in the high and very high classes. Over
30% of the landslide points concentrate in the low and very
low categories, which is an unacceptable result. Comparing
the results from all of the models, we determine that better
results could be obtained by using the LR and DT models
with a higher percentage of landslide points concentrated in
high and very high classes using a different sampling strategy.

Some landslide susceptibility indexes obtained from mathe-
matical models are outside of the range of 0 to 1. The following
equation (Eq. 9) was applied to transform the landslide suscepti-
bility index to values between 0 and 1, and then the ROC
curve was used to assess the quality of the landslide sus-
ceptibility maps;

, (9)

where, Li is the normalized value of the landslide suscep-
tibility index, Lmin is the minimum value of Li, and Lmax is the
maximum value of Li.

When the ROC curves of these five mathematical methods
were considered together, their overall performance could
be identified (Fig. 12). Figure 12 shows the AUC values of test
landslide points by different mathematical models. According
to the obtained AUC, LR has slightly higher prediction per-
formance (0.787) than WOE (0.777), FR (0.776), DT (0.744)
and ANN (0.737) using the random (RD) sampling strategy.
Additionally, LR also provides a higher prediction performance
(0.865) than FR (0.772) and DT (0.724) using the TD sampling
strategy. In contrast, when the LR sampling strategy is applied,
DT has the highest AUC value (0.704). The results may be
observed because the random (RD) sampling strategy covers
all of the spatial distribution characteristics of landslides and
makes the five mathematical models slightly more success-
ful than the TD and RL sampling strategies which only par-
tially cover landslide spatial distribution characteristics. The
WOE model exhibits poor calculation results for all of the
sampling strategies. This may be observed because in the WOE
model, the relationships between sampling points and con-

Li
Li Lmin–

Lmax Lmin–
-----------------------=
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Fig. 11. Percentages of observed landslides falling into different susceptibility categories using ANN, FR, LR, DT and WOE using different
sampling strategies. (a) RD sampling strategy; (b) RL sampling strategy; (c) TD sampling strategy.
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ditioning factors are poorly related, and fewer connections
make the WOE performance poorer than other models. There-
fore, one can conclude here that the selection of mathematical
model has an impact on the overall prediction performance
of a landslide susceptibility analysis. The LR model has the
highest AUC value when using the TD sampling strategy, which

may be due to the following reasons. First of all, most of the
large scale unstable slopes were along the two highways (see
Fig. 1). The large number of training points from the upside
of a highway makes the data richer, and the enrichment makes
the LR model more accurate than other methods. Another
reason may be the fortuitous of the calculation result. When

Fig. 12. ROC curves evaluation of the five models. (a) RD sampling strategy; (b) RL sampling strategy; (c) TD sampling strategy.
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using the RL sampling strategy, the LR model has a high
percentage of landslide points falling in the low category
because this sampling strategy ignores the true distribution pat-
tern of the landslides. This is the reason why sampling strategy
plays a key role in landslide susceptibility mapping. Apart
from the above result, it is clear that DT methods have performed
reasonably well, with AUC > 0.7 prediction performance using
the various sampling strategies.

From the above analysis, the various datasets may affect
the landslide susceptibility model performance. That is the main
topic in the paper. When the purpose of this study is considered,
local governments should first consider the landslide dis-
tribution pattern of the study area, choose the suitable sam-
pling strategy, and then select the proper methods to produce
reliable landslide susceptibility maps.

6. DISCUSSION AND CONCLUSIONS

In this paper, five mathematical models, including the
ANN, FR, DT, LR and WOE methods, with three sampling
strategies are used to analyze landslide susceptibility and create
landslide susceptibility maps that are useful to local authorities.
According to the results, the LR and DT models achieved
more efficient model performance with higher percentages
of test landslide points falling in high and very high classes
and a steady AUC value. The ANN, FR, DT, LR and WOE
methods should be used and assessed carefully by a landslide
expert or a geological engineer because these powerful methods
are easily affected by the training and test landslide datasets.
In this study, the results obtained from DT show steady pre-
diction power with an AUC value larger than 0.7. Additionally,
the results with the RD (random) sampling strategy provided
more reliable model performance with a higher percentage
of test landslide points falling in high and very high classes
and with high AUC values (AUC > 0.7). However, it is noted
that the performance of landslide susceptibility maps depends
not only on the mathematical model used but also on the
selected training and test dataset. For this reason, if the proper
landslide points are selected by field observation, the per-
formance of the landslide susceptibility results produced by
the ANN, FR, DT, LR and WOE methods may increase. To
some extent, the landslide susceptibility maps could not pro-
vide more detailed information on the landslide-prone areas
at the medium scale for Mizunami City, but the maps would
provide the local authorities with the spatial distribution trend of
a landslide that may occur in the future. Additionally, the
landslide mechanism in the study area is very complicated.
There is still an indispensable need for further investigation
of landslide mechanisms in Mizunami City.
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