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Abstract
Reducing protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is a major regulatory step in the chlorophyll biosynthesis 
pathway. This reaction is catalyzed by light-dependent protochlorophyllide oxidoreductase (LPOR) in oxygenic phototrophs, 
particularly angiosperms. LPOR-NADPH and Pchlide form a ternary complex to be efficiently photo-transformed to 
synthesize Chlide and, subsequently, chlorophyll during the transition from skotomorphogenesis to photomorphogenesis. 
Besides lipids, carotenoids and poly-cis xanthophylls influence the formation of the photoactive LPOR complexes and the 
PLBs. The crystal structure of LPOR reveals evolutionarily conserved cysteine residues implicated in the Pchlide binding 
and catalysis around the active site. Different isoforms of LPOR viz PORA, PORB, and PORC expressed at different stages 
of chloroplast development play a photoprotective role by quickly transforming the photosensitive Pchlide to Chlide. Non-
photo-transformed Pchlide acts as a photosensitizer to generate singlet oxygen that causes oxidative stress and cell death. 
Therefore, different isoforms of LPOR have evolved and differentially expressed during plant development to protect plants 
from photodamage and thus play a pivotal role during photomorphogenesis. This review brings out the salient features of 
LPOR structure, structure–function relationships, and ultra-fast photo transformation of Pchlide to Chlide by oligomeric 
and polymeric forms of LPOR.
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Introduction

Protochlorophyllide oxidoreductase (POR) is a key enzyme 
within the chlorophyll biosynthesis pathway that is involved 
in the reduction of protochlorophyllide (Pchlide) to chlo-
rophyllide (Chlide a). POR exists in two different non-
homologous enzymatic forms (1) NADPH Light depend-
ent Protochlorophyllide Oxidoreductase (LPOR) and (2) 
Light Independent or Dark Operative Protochlorophyllide 
Oxidoreductase (DPOR/LIPOR). LIPOR is chloroplast 
encoded hetero-octameric complex present in anoxygenic 
prokaryotes, oxygenic cyanobacteria, several bryophytes, 

pteridophytes and gymnosperms that does not have an 
absolute requirement of light for catalysis. LPOR is nuclear 
encoded, single polypeptide of approx. 36 kda that is post-
translationally imported to plastids (Armstrong et al. 1995; 
Fujita 1996; Gabruk and Mysliwa-Kurdziel 2020). Light is 
indispensable for the activity of LPOR enzyme much like the 
DNA repair enzyme DNA photolyase (Begley 1994; Björn 
2018), bacterial chlorophyllide a reductase (COR) (Saphier 
et al. 2005), cyanobacterial chlorophyllide f synthase (Chen 
et al. 2010; Ho et al. 2016) and fatty acid photodecarboxy-
lase (FAP) (Sorigué et al. 2017). Unlike archegoniate, LPOR 
is the principal Pchlide reducing enzyme in angiosperms. 
In addition to light and Pchlide as a target substrate, LPOR 
requires NADPH as a reductant to catalyse the stereospecific 
reduction of the C17- C18 double bond of (Pchlide a)—to 
(Childe-a) (Griffiths 1974; Schoefs and Franck 2003).

Photoreduction of Pchlide to Chlide is an ultrafast event 
that involves transient charge separation across the C17-C18 
double bond of the pigment Pchlide leading to the forma-
tion of charge transfer intermediates which facilitate the step 
wise hydride and proton transfer (Archipowa et al. 2018). 

 * Baishnab C. Tripathy 
 baishnabtripathy@yahoo.com

 Pratishtha Vedalankar 
 pratishtha.verma@gmail.com

1 School of Life Sciences, Jawaharlal Nehru University, 
New Delhi 110067, India

2 Department of Biotechnology, Sharda University, 
Greater Noida, Uttar Pradesh 201310, India

http://orcid.org/0000-0002-6494-2123
http://crossmark.crossref.org/dialog/?doi=10.1007/s12298-024-01454-5&domain=pdf


720 Physiology and Molecular Biology of Plants (May 2024) 30(5):719–731

These intermediates have been analysed on an ultra-fast time 
scale by time resolved fluorescent measurements (Heyes 
et al. 2003; Sytina et al. 2008).

LPOR a short‑chain dehydrogenases/
reductases superfamily confrère

LPOR belongs to a large family of enzymes known as short-
chain dehydrogenases/reductases (SDRs) (Yang and Cheng 
2004; Wilks and Timko 1995; Moummou et  al. 2012). 
SDR is part of a large superfamily of enzymes known as 
the ‘RED’ (Reductases, Epimerases, Dehydrogenases) that 
catalyze a variety of NADP (H)—or NAD(P) + -dependent 
reactions (Wilks and Timko 1995; Oppermann et al. 2003; 
Moummou et al. 2012) involving hydride and proton transfer 
(Hoeven et al. 2016; Archipowa et al. 2018). This is one 
of the oldest and most diverse protein families present in 
prokaryotes and eukaryotes that typically occur as oligomers 
(Oppermann et al. 2003; Yang and Cheng 2004). It has a 
wide range of substrates involved in secondary metabolic 
routes ranging from polyols, retinoids, sterols, sugars, 
aromatic compounds, and xenobiotics (Persson et al. 2003). 
Plant LPORs are assigned to SDR73C family in the SDR 
superfamily (Dong et al. 2020).

The classical SDR family of proteins containing all 
oxidoreductases has two domains, one for binding of the 
cofactor and another for binding the substrate (Moummou 
et  al. 2012). Despite the considerably low sequence 
similarity (15–30%), SDR family members bear significant 
structural similarity such as a common a/ß folding pattern 
with Rossmann fold and a highly conserved active site 
containing YxxxK residues in the catalytic motif (YKDSK 
in LPOR) that participate in the proper coordination with 
NADPH and Pchlide binding (Lebedev et al. 2001; Gabruk 
et al. 2016). The N terminal contains a conserved glycine-
rich motif (Gly-X-X-X-Gly-X-Gly) in SDR and GASSGV/
LG in all LPORs. This is important for structural integrity 
and binding of the pyrophosphate portion with NADPH 
(Dong et al. 2020). A key feature of the SDR superfamily 
is its catalytically important tetrad Ser-Asn-Tyr-Lys for 
proton transfer and stabilization of reaction intermediates. 
The catalytic triad in POR contains Thr 145 instead of Ser 
residue (Moummou et al. 2012; Dong et al. 2020). Site-
directed mutagenesis and in vivo analysis confirm that 
Tyr and Lys are the most conserved at the catalytic site 
in all LPOR members and these are indispensable for the 
enzymatic catalytic activity (Wilks and Timko 1995; Suzuki 
and Bauer 1995; Lebedev et al. 2001; Heyes and Hunter 
2002). Two mechanisms of photochemical activation of 
Pchlide were proposed. A) Tyr residue acts as a general acid 
upon deprotonation and facilitates hydride transfer to or from 
NAD (P) + /H (Lebedev et al. 2001) to C17 of Pchlide that 

facilitates a proton transfer at the C-18 position (Johannissen 
et al. 2022). B) Alternatively, the hydride transfer reaction 
is shown to occur in a stepwise manner involving an initial 
electron transfer from NADPH to the excited state of Pchlide 
followed by proton transfer from a tyrosine reside to C18 and 
immediately followed by hydride transfer from NADPH to 
C17 (Heyes and Hunter 2005; Archipowa et al. 2018; Kim 
et al. 2021).

The mutation of either Tyr 275 or Lys-279 does not 
completely abolish the catalytic activity of LPOR. How-
ever, mutation of either residue impairs the formation of the 
ground state ternary enzyme–substrate complex, indicating 
their key role in substrate binding (Dahlin et al. 1999; Heyes 
and Hunter 2002; Heyes et al. 2021). Both residues have 
multiple roles in catalysis, involving the formation of the 
ground state ternary enzyme–substrate complex, stabiliza-
tion of a Pchlide excited state species, and proton transfer 
to the reaction intermediate formed after the light reaction 
(Menon et al. 2009; Dong et al. 2020) (Fig. 1).

LPOR contains 14 amino acids unique TFT domain that 
distinguishes LPOR from other structurally related SDR 
enzymes (Gabruk et al. 2012). The LPOR homologs are 
structurally conserved with sequence identities of about 
54%—65% between higher plant, cyanobacterial and algal 
enzymes (Suzuki and Bauer 1995; Li and Timko 1996; 
Dahlin et al. 1999). The secondary structure analysis of 
LPOR by CD spectroscopy shows 33% alpha-helix, 19% 
beta-sheets, 20% turn, and 28% random coil (Birve et al. 
1996).

Crystal structure of LPOR

Crystal structure of LPORs in their free form (Zhang et al. 
2019) and complexed with NADPH have been solved 
from Thermosynechococcus elongatus and Synechocystis 
sp. PCC 6803 at 1.3–2.4 Å resolution (Zhang et al. 2019; 
Dong et al. 2020). The above studies highlight the potential 
importance of hydrogen-bonding networks involving the 
interaction of LPOR active site residues and Pchlide. The 
general scaffold of protein remains similar to the typical 
αβα-topology with a central β-sheet and multiple flexible 
loops. The crystallographic studies of LPOR demonstrate an 
8β-sheet consisting of strands β 3-β 2- β 1- β 4- β 5- β 6- β 7- 
β 8, the latter being antiparallel. The β-sheets are surrounded 
by 6 α-helices, (αA, α B, α H) on one side and (αC, α D, 
α F) on the other side (Dong et al. 2020). According to 
Zhang et al. (2019) Pchlide binds to the LPOR active site by 
orientation of the polar functional groups that form hydrogen 
bonds with hydrophilic residues in the deep binding pocket 
of enzyme. The hydrophobic Pchlide residue interacts with 
hydrophobic LPOR residues to form a hydrophobic patch 
on the surface of the protein. The pigment-bound AtPORB 
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oligomers form helical filaments and remain embedded 
in the outer leaflet of the lipid bilayer. This shapes the 
architecture of photosynthetic membranes by forming highly 
curved PLBs (Nguyen et al. 2021a, b).

The LPOR homologs of Synecocystis and T. elongatus 
contain four evolutionarily conserved cysteine residues; 
Cys38, Cys89, Cys199, and Cys226 around the active site 
(Silva 2014; Dong et al. 2020). Cys 226 in the loop between 
β6 and αG is essential for LPOR membrane interaction. The 
conserved active site residue Tyr previously touted as the 
proton donor is thought to be important for Pchlide binding. 
Site-directed mutagenesis studies in T. elongatus and LPOR 
ternary structural model by Zhang et al. (2019) reveal that 
cys226, located close to C18 of Pchlide, plays a crucial role 
in Pchlide binding and hydride transfer. Cys226 may act as 
a proton donor either directly or via the water-mediated net-
work. Pchlide also interacts with Tyr223 and Gln248 active 
site residues in T. elongatus during LPOR photochemistry. 
Thus, the proton relay pathway takes place by abundant 
intermolecular polar interactions among NADPH, LPOR, 
and surrounding water molecules with the help of functional 
groups and backbone atoms to stabilize the cofactor (Dong 
et al. 2020) Fig. 2.

Near the nicotinamide end, a clam-shaped cavity is 
formed by predominantly hydrophobic and aromatic residues 
consisting of Leu232, Phe233, His236, Tyr237, Phe240, 
Phe243, and Phe246 etc. (Dong et al. 2020). The extra loop of 
33 amino acid segments uniquely present in LPOR and absent 
in other SDR enzyme superfamily members overlap with 
certain fragments of the clam–shaped cavity. The orientation 
of Pchlide within the binding cavity is essential for the enzyme 
reaction mechanism (Pesara et al. 2023). It participates in 

Pchlide binding, formation of pigment-complexed POR 
aggregates and Chlide release (Birve et al. 1996; Reinbothe 
et al. 2003; Sameer et al. 2021).

The LPOR oligomerization takes place upon Pchlide 
binding which brings about the interaction of the hydrophobic 
residues and intermolecular interactions in the two distally 
located lid regions in the POR monomer active site (Gabruk 
and Mysliwa-Kurdziel 2015; Zhang et al. 2019, 2021). A POR 
octamer has been isolated and its structure investigated by 
cryo-electron microscopy at 7.7 Å resolution. This structure 
shows that oligomer formation is most likely driven by the 
interaction of amino acid residues in the highly conserved lid 
regions (Zhang et al. 2021). In closed conformation two short 
flexible alpha helices act as lid to cover the hydrophobic edge 
of Pchlide in T. elongates. However, only one longer alpha 
helix is observed in Synecocystis with an additional loop that 
extends from the central beta sheet. The lid region positions 
the Pchlide optimally for photocatalysis and its movement 
triggers large conformational changes that facilitates LPOR 
oligomer formation (Zhang et al.2021). According to Zhang 
et al. (2019) three flexible regions (residues 146–160, 228–255 
and 284–291) are missing in T. elongatus but present in 
coenzyme bound Synecocystis LPOR. These highly ordered 
regions are implicated in NADPH binding to LPOR (Zhang 
et al. 2019).

LPOR isoforms

LPOR contains multiple isoforms that exhibit differential 
subcellular localization, expression pattern, mRNA stability, 
plastid import pathway and response to light. Although 

Fig. 1  Proposed proton-relay path from Dong et  al.  (2020). A The 
hydrogen bond network bridging the Tyr193 ηO and a solvent water 
molecule within the SyLPOR and TeLPOR structures. The well-
positioned water, shown in the red sphere, is fixed by the backbone 
oxygens of Ala91 and Asn115, and the ε-amino group of Lys197. The 

hydrogen bonds are shown in dashed lines and the bond lengths (Å) 
are in blue for SyLPOR and dark green for TeLPOR. B A proposed 
proton-relay path following the hydride transfer from NADPH to 
C17. The photon energy (hv) is represented by a yellow thunderbolt 
(Dong et al. 2020)
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LPOR proteins were known since a long time, the genes 
coding LPORA and LPORB were first identified in A. 
thaliana and H. vulgare (Reinbothe et al. 1996). Since then, 
LPOR sequences have been discovered in a number of 
phototrophs. In higher plant LPOR isoforms show > 70% 
sequence identity for the precursor polypeptides and > 80% 
sequence identity for the mature proteins. The transit peptide 
region at the N terminal which is not a part of the mature 
enzyme shows lowest homology (Dong et al. 2020).

In gymnosperms LPOR is encoded by a large multigene 
family, for instance eleven copies of PORB and two copies of 
PORA have been identified in (Loblolly pine) Pinus tadea, 
Pinus mungo, Pinus strobus (Spano et al. 1992; Forreiter 
and Apel 1993; Skinner and Timko 1998, 1999). A. thaliana 
contains three LPOR isoforms (Arabidopsis thaliana PORA 
(AtPORA), AtPORB, and AtPORC) (Reinbothe et al. 2010; 
Sousa et al. 2013; Masuda and Takamiya 2004; Oosawa 
et al. 2000; Benli et al. 1991; Armstrong et al. 1995; Su 
et al. 2001; Pattanayak and Tripathy 2002; Nguyen et al. 
2021a, b). Zea mays contains PORA and two PORB 
orthologs PORB1 and PORB2, latter promoting tocopherol 
biosynthesis post anthesis. Increase in tocopherol content 
was likely accomplished by increased turnover of Chls that 

supply phytol the precursor for tocopherol biosynthesis 
(Zhan et al. 2019).

Two POR isoforms are found in Nicotiana tabacum 
(Masuda and Takamiya 2004), Lycopersicon esculentum 
(Masuda and Takamiya 2004), Zea mays (Horton and 
Leech 1975), Oryza sativa (Sakuraba et al. 2013; Kwon 
et al. 2017), Hordeum vulgare (Apel et al. 1980; Apel 1981; 
Schulz et al. 1989; Holtorf et al. 1995), ornamental plant 
Amaranthus tricolor (Iwamoto et  al. 2001) and several 
other species. A single LPOR gene has been detected in 
Synechocystis sp.strain PCC6803 (Suzuki and Bauer 1995; 
Fujita et  al. 1998; Rowe and Griffiths 1995; Kaneko 
et al. 1996), Plectonema boryanum (Fujita et al. 1998), 
Phormidium lamonosum (Fujita et  al. 1998; Rowe and 
Griffiths 1995), Chlamydomonas reinhardtii ( Li and Timko 
1996), Marchantia paleacea (Takio et al. 1998), Pisum 
sativum (Spano et al. 1992), Triticum aestivum (Teakle and 
Griffiths 1993; Masuda and Takamiya 2004; Schoefs and 
Franck 2003), Avena sativa (Darrah et al. 1990; Klement 
et  al. 1999), Musa (Coemans et  al. 2005) and Cucumis 
sativus (Yoshida et al. 1995; Fusada et al. 2000). PORA 
is exclusively expressed in etiolated seedlings and its 
mRNA abundance and its expression declines rapidly upon 

Fig. 2  The crystal structure of SyLPOR and TeLPOR from Dong 
et al. (2020). Ribbon representation of the overall structures of SyL-
POR and TeLPOR. A Two side views of SyLPOR. The second-
ary structure elements are colored in blue except the antiparallel 
β8 in yellow. The loop region is in gray. The LPOR-specific inser-
tion is colored in black. The NADPH-binding sequence is colored in 
green. Four cysteine residues are shown in sphere mode. The cofactor 

NADPH is shown in stick-and-ball mode. B Front view of SyLPOR 
(Left), TeLPOR (Right), and their superimposition (Middle). The 
secondary structure elements of TeLPOR are colored in deep green 
except β8 in magenta; the NADPH-binding sequence is colored in 
cyan. The α-helices are labeled alphabetically, and the β-strands are 
labeled numerically (Dong et al. 2020)
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illumination in Hordeum vulgare and several other species 
(Armstrong et al. 1995; Holtorf et al. 1995; Reinbothe et al. 
1995; Reinbothe and Reinbothe 1996; Runge et al. 1996; 
Oosawa et al. 2000; Masuda et al. 2003; Garrone et al. 
2015). PORA is light-sensitive, it majorly accumulates 
during skotomorphogenesis and plays a critical role in the 
etioplast development and photomorphogenesis (Paddock 
et  al. 2012; Gabruk and Mysliwa-Kurdziel 2015). As 
Pchlide accumulates in dark-grown tissues in large amounts, 
PORA mainly evolved to ensure fast photo-transformation 
of Pchlide to Chlide upon illumination to prevent Pchlide-
photosensitized and 1O2-induced damage during early stage 
of seedling greening (Fujii et al. 2017).

Overexpression studies of PORA in porB-1 porC-1 
double mutant restore the Chl synthesis at varying light 
intensities indicating that transiently active PORA might 
be capable of functioning at a range of light intensities 
(Paddock et  al. 2010). In essence, PORA expression is 
negatively regulated on exposure to light. In contrast, PORB 
transcripts are majorly present in thylakoid membranes in 
young dark-grown seedlings and in illuminated seedlings. 
PORB concentration remains unaffected during the change 
of illumination conditions from dark to light (Armstrong 
et  al. 1995; Holtorf et  al. 1995; Oosawa et  al. 2000; 
Lebedev and Timko 1999; Ha et al. 2017; Buhr et al. 2017). 
PORB is present right from the seedling development to 
throughout the life of the plant in mature tissues. PORB 
closely resembles PORA but there are significant differences 
between the two enzymes with respect to gene expression, 
requirements for import of the precursor into the chloroplast 
and stability in light. Thus, PORA and PORB have unique 
functions in etiolated seedlings and at the onset of greening 
(Aronsson et al. 2000; Masuda et al. 2003; Dahlin et al. 
1999; Pattanayak and Tripathy 2002, 2011).

PORC is expressed in a light intensity dependent manner, 
being highly expressed in high light (Oosawa et al. 2000; Su 
et al. 2001; Pattanayak and Tripathy 2002). PORC mRNA 
accumulates only after illumination in etiolated seedlings 
and is predominantly detected in fully matured green tis-
sues during development and throughout the life of the plant 
(Su et al. 2001; Pattanayak and Tripathy 2002, 2011; Pad-
dock et al. 2010). Despite the physiological equivalence and 
a perceived redundancy in PORB and PORC functions in 
mature plants under normal growth conditions, it has been 
seen that PORC is differentially regulated and is not under 
circadian control like PORB. The PORC transcripts are 
positively regulated by increasing intensity of light while 
PORB mRNA decreased partially under high light condi-
tions in Arabidopsis. Thus, PORB although constitutively 
active from the seedling stage to the mature plants, it has 
been observed less active under high light conditions 
(Masuda et al. 2003). Based on the biochemical analysis, 
interaction with lipids and evolutionary studies Gabruk and 

Mysliwa-Kurdziel (2020), proposed two group of LPOR 
enzymes- a) Lipid independent Z type LPOR—bacterial 
origin and b) Lipid dependent -Plant origin LPOR- S type 
(AtPORC type active enzymatically active with and without 
lipids) and L type LPOR (are active when bound to lipid 
membrane).

Role of LPOR during greening

When the seed germinates beneath the earth in the 
absence of light i.e., during skotomorphogenesis two 
structurally unique lipid-pigment inner membrane 
systems are present in the etioplasts, prolamellar bodies 
(PLBs) and prothylakoids (PTs) (Kahn 1968a, b; Ryberg 
and Sundqvist 1982b; Wellburn 1984; Artus et al. 1992; 
Gabruk and Mysliwa-Kurdziel 2015). The PLB has a 
tendency to form highly organised cubic phase non lamellar 
structures, while PTs form sac like lamellar bilayers 
(Gunning 1965; Selstam and Sandelius 1984; Brentel 
et  al.1985). The PLBs and PTs predominantly contain 
galactolipids, monogalactosyldiacylglycerol (MGDG) and 
digalactosyldiacylglycerol (DGDG) upto 80 mol %. The 
MGDG is dominant in PLBs while DGDG is more dominant 
in PTs. The anionic lipids sulfosyl quinoline diacylglycerol 
(SQDG) and phosphatidylglycerol (PG) are present to a 
lesser extent (upto 20 mol%) in PLB membrane (Ryberg 
et al. 1983; Selstam 1998; Selstam and Sandelius 1984; 
Solymosi and Schoefs 2008, 2010; Gabruk et  al. 2017; 
Fujii et al. 2017, 2018; Gabruk and Mysliwa-Kurdziel 2020; 
Yoshihara and Kobayashi 2022).

LPOR is the most abundant protein in the PLBs while 
other proteins are dominant in PTs where LPOR is present 
only in minor amounts (Selstam and Sandelius 1984; Dehesh 
and Ryberg 1985; Lindsten et al. 1988). In PLBs majority of 
the LPOR is present in association with the substrate Pchlide 
and co substrate NADPH (Griffiths 1975; Griffiths et al. 
1984; Boddi et al. 1990; Schulz and Senger 1993). These 
ternary complexes are called as subunits which are further 
built into macrodomains with regular polymeric structures 
(Solymosi et al. 2004, 2007). The small aggregates (dimers) 
are present at the outer surface of the PLBs, and the large 
aggregates (oligomers) are built into the inner membrane of 
PLBs (Wiktorsson et al. 1993; Klement et al. 2000).

Numerous studies on leaves and isolated plastids indicate 
that Pchlide: LPOR: NADPH aggregates interact with 
the membrane lipids of PLB and are responsible for light 
triggered PLB dispersion (Engdahl et al. 2001; Aronsson 
et al. 2008). In vitro studies have shown that PLB lipids, 
SQDG and PG increases NADPH binding affinity to plant 
LPOR, while MGDG affects the spectral properties of the 
complex and may trigger oligomerization (Nguyen et al. 
2021a, b). The decrease in DGDG content also resulted 
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in significant structural PLB lattice perturbations, strong 
reduction of PT number, and retarded PLB disassembly 
in the light (Gabruk et al. 2017; Fujii et al. 2017, 2018; 
Gabruk and Mysliwa-Kurdziel 2020). A thaliana PG and 
SQDG single and double mutant analysis shows a partial 
deficiency in PG biosynthesis loosens the lattice structure of 
PLBs and impairs the insertion of  Mg2+ into protoporphyrin 
IX, leading to a substantial decrease in Pchlide content. 
Although a complete lack of SQDG biosynthesis does not 
substantially affect PLB formation and Pchlide biosynthesis, 
a complete lack of SQDG in addition to partial PG deficiency 
strongly impairs these processes and affects the dynamics 
of LPOR complexes after photoconversion of Pchlide to 
Chlide. These studies make it evident that PG is involved 
in Pchlide biosynthesis and PLB formation but SQDG 
likely plays a supplementary role in these processes. This 
suggests different involvements of PG and SQDG in LPOR 
complex organization (Yoshihara et al. 2023). The exact 
mechanisms for these processes, however, are still elusive 
(Gabruk and Mysliwa-Kurdziel 2020). Prokaryotic LPORs 
from Gloeobacter violaceus PCC7421 and Synechocystis 
sp. PCC6803 could successfully restore characteristic 
PLB structures in LPORA knockout mutant of A. thaliana. 
Even though the size and structure of PLBs were normal, 
there was a lower ratio of photoactive to non-photoactive 
Pchlide (Masuda et al. 2009). LPOR overexpression studies 
in LIPOR deficient cyanobacterium in the dark show the 
formation of PLB-like ultra-structures in dark. These studies 
clearly show the intrinsic capability of LPOR to trigger 
PLBs formation irrespective of its origin in phototrophs 
(Yamamoto et al. 2020).

Certain studies indicate that cyanobacterial LPOR 
operate in a lipid independent manner in contrast to higher 
phototrophs where galactolipids play an important role in 
chloroplast differentiation from proplastids or etioplasts 
(Shipley et al. 1973; Gounaris et al.1983; Solymosi et al. 
2007; Gabruk and Mysliwa-Kurdziel 2020). As a result of 
the light-induced reduction of Pchlide, PLBs disintegrate 
and the etioplast develops into the chloroplast. The 
PTs ultimately transform into well-organized thylakoid 
membranes (Oliver and Griffiths 1982; Lindsten et al. 1988). 
The isoforms of LPOR are present at different locations 
of etio-chloroplasts inner membranes (Grzyb et al. 2013; 
Kowalewska et al. 2016). In A. thaliana PORA isoform, 
amino acid residues 85–88 and 240–270 participate in 
oligomerization (Gabruk et al. 2016). There is a possibility 
of the presence of species-specific motifs in plant LPORs 
within the oligomerization region (Dong et al. 2020).

Besides lipids, carotenoids and poly-cis xanthophylls 
influence the formation of the photoactive LPOR com-
plexes and the PLBs (Chahdi et  al. 1998; Park et  al. 
2002; Bykowski et al. 2020). In higher plants the carot-
enoid isomerase (CRTISO) catalyzes the isomerization of 

poly-cis-carotenoids to all-trans-carotenoids. The absence 
of PLBs in crtISO (carotenoid isomerase) mutants demon-
strates that carotenoids facilitate early chloroplast develop-
ment during the first critical days of seedling germination 
and photomorphogenesis (Park et al. 2002). A. thaliana 
seedling deficient in lutein accumulated lower amount of 
Pchlide compared to wt. in etiolated condition. Thus, indi-
cating an equally important role of photoprotective xantho-
phyll carotenoids such as lutein in the morphology of the 
PLB and its interaction with LPOR (Park et al. 2002; Jedy-
nak et al. 2022).

Recently, electron cryo-tomographic studies of pea and 
maize etioplasts revealed that ATP synthase monomers are 
enriched in the PTs. The entire tubular lattice is covered 
by regular helical arrays of LPOR oligomers inserted into 
the outer leaflet of PLBs (Floris and Kühlbrandt 2021; 
Selstam and Sandelius 1984; Dehesh and Ryberg 1985; 
Lindsten et  al. 1988). The atomic structure of LPOR 
assemblies resolved by electron cryo-microscopy reveals 
that LPOR polymerizes with Pchlide and NADPH into 
helical filaments around PLB lipid bilayer. Arabidopsis 
LPOR isoforms form helical filaments with lipids from the 
membranes of PLBs and chloroplasts. Here, the antiparallel 
LPOR dimers assemble into a strand. Portions of LPOR and 
Pchlide insert into the outer membrane leaflet, targeting the 
product, Chlide, to the membrane for the final reaction site 
of chlorophyll biosynthesis. In dark the LPOR filaments 
shape PLB membranes into high-curvature tubules. The 
light-induced disassembly of the PLB provides lipids for the 
organization of thylakoid membranes (Nguyen et al. 2021a, 
b; Solymosi and Mysliwa-Kurdziel 2021).

Subplastidic Chaperon-like protein of POR (CPP1) 
formerly Cdt1 (Cell growth factor 1) that contain J-like 
domain has been characterized in angiosperms such as 
Arabidopsis, Nicotiana (Lee et al. 2013) and Gossypium 
(Osborne et  al. 2023). CPP1 helps in anchoring LPOR 
to PLBs, thus playing a crucial role in Chl synthesis and 
chloroplast biogenesis (Lee et al. 2013).

LPOR‑Pchlide complexes ‑spectral 
properties

The Pchlide reduction reaction consists of 3 distinct steps 
including an initial light-driven step followed by dark steps 
which occur close to or above glass transition temp of 
proteins. The reduction reaction occurs at temperatures as 
low as 193 K, and in response to femtosecond manipulation 
of light pulses, signifying its biochemical novelty (Heyes 
and Hunter 2005, 2002; Heyes et al. 2006). Three spectrally 
different forms of Pchlide are formed at 77 K in etioplast 
due to the formation and aggregation of different sized 
enzyme ternary complex. F631 (due to the Pchlide structural 
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arrangements), Pchlide F644 (mostly due to dimeric 
association of LPOR), and Pchlide F655 (due to oligomeric 
association with LPOR present in PLBs) (Sironval et al. 
1965; Ryberg and Sundqvist 1982a; Böddi et  al. 1989, 
1990, 1998; Böddi and Frank 1997; Stadnichuk et al. 2005; 
Tripathy and Pattanayak 2011). F631 is the photochemically 
inactive or non-photoactive Pchlide that is not directly 
photoconvertible with a flash (Kósa et al. 2006).

These pigments are bound to the membrane surface of 
PTs in a monomeric form or bound to some protein other 
than LPOR or not present in the LPOR active site if bound 
to LPOR (Ryberg and Sundquist 1982a, b; Ikeuchi et al. 
1983; Lindsten et al. 1988; Joyard et al. 1990; Solymosi 
and Mysliwa-Kurdziel 2021). The Pchlide component with 
emission at F644 are dimeric form or smaller oligomers 
of the LPOR ternary complex (Böddi 1991; Böddi et al. 
1992, 1993; Martin et al. 1997;  Chahdi et al. 1998). These 
dimers are located to the edge of the PLB membrane and 
they could be photo transformed with light of low intensity 
(Böddi 1991, 1992; Stadnichuk et al. 2005). Multimeric 
aggregate of the LPOR-dimers form F655 is the main 
photoactive form of Pchlide in etiolated plants that is 
transformed to Chlide (Böddi et  al. 1989; Wiktorsson 
et al. 1993; Schoefs et al. 2000; Kósa et al. 2006). In these 
oligomeric POR–Chlide–NADPH ternary complexes 
Pchlide is bound to the active site of the LPOR macrodomain 
that are associated strongly with the tubular lamellae of 
PLBs (Ryberg and Sundquist 1982a; b; Solymosi and 
Schoefs 2008). These oligomeric complexes have a higher 
emission and are slowly dissociated into smaller complexes 
accompanied by the progressive release of Chlide from the 

LPOR catalytic site (Dalal and Tripathy 2012). Irradiation 
induces a series of changes in the ultrastructural and spectral 
properties of etioplasts that ultimately lead to the formation 
of chloroplasts.

Upon short illumination (30 s) Pchlide F655 is converted 
to Chlide F690 and subsequently to Chl (F682) (Litvin and 
Krasnovsky 1957; Franck and Mathis 1980; Böddi et al. 
1993; Bodd ̈di and Franck 1997; Lebedev and Timko 1999). 
Further illumination leads to the Chlide microcycle where 
the interconversion of oxidized and reduced forms of NADP 
proceeds. Ultimately, it leads to spectral blue shift (Shibata 
shift) at F680 nm (Shibata 1957). The kinetics of this shift 
is dependent on leaf age and environmental conditions (Shi-
bata 1957; Dalal and Tripathy 2012). In intact leaves, a Shi-
bata shift is usually completed within 10–30 min. Shibata 
shift is followed by the formation of photoactive photosys-
tem II (PSII) units containing Chl F684 (Franck et al. 1999). 
The Shibata shift is arrested in extreme environmental con-
ditions including water stress and heat stress resulting in 
impaired plastid development (Smeller et al. 2003; Dalal and 
Tripathy 2012; Mohanty and Tripathy 2011) Fig. 3.

LPOR protects plants from photooxidative 
damage

LPOR bestows photo-protection on the plants by limiting the 
Pchlide-mediated photo-oxidative damage (Buhr et al. 2008; 
Tripathy and Pattanayak 2012; Pattanayak and Tripathy 
2011). Whereas the high light intensity on the surface of 
the ocean could photodamage slower LIPOR-containing 

Fig. 3  Low temperature (77 K) fluorescence emission spectra (E440) 
of leaves from 6-day old etiolated control (upper panel) and water-
stressed (lower panel) rice (PB1) seedlings, showing Shibata-shift. 
For water-stress, seedlings were treated with 50 mM PEG 6000, dis-

solved in nutrient solution, 16  h prior to taking spectra. Low tem-
perature fluorescence emission spectra were recorded before flash, 
immediately after flash of 0.2 s and after 1 min and 10 min post-flash 
incubation (modified from Dalal and Tripathy 2012)
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photoautotrophs, it can cause minimal damage to organisms 
possessing LPOR that converts the photosensitizer Pchlide 
to Chlide rapidly within 1 ms (Sytina et al. 2008; Soffe 2016; 
Heyes et al. 2021). LPOR protects the etiolated and green 
phototrophs by binding to the photosensitive Pchlide pool 
to keep it in photo-transformable form for very fast photo-
conversion of Pchlide to Chlide to minimize generation of 
1O2 that causes destruction of photosynthetic organisms in 
high light (Tripathy and Chakraborty 1991; Chakraborty and 
Tripathy 1992; Tripathy and Pattanayak 2011). Therefore, 
unlike LIPOR containing phototrophs, the LPOR containing 
organisms withstood the selection pressure of tetrapyrrole-
photo-sensitized oxidative stress.

As the accumulation of porphyrins and Pchlide is toxic 
to plants as they act as photosensitizers to generate 1O2 in 
light via type II photosensitization reaction. The 1O2 causes 
severe damage to plants (Chakraborty and Tripathy 1992; 
Tripathy et al. 2007). The interruption of Chl synthesis 
during darkness requires suppression of the synthesis of 
5-aminolevulinic acid (ALA), the first precursor molecule 
specific for Chl synthesis. The Pchlide and Chl biosynthesis 
is negatively regulated by FLU, a nuclear-encoded plastid 
protein. It mediates the regulatory effect by interacting with 
glutamyl-tRNA reductase (GluTR) to downregulate ALA 
biosynthesis in dark (Meskauskiene et al. 2001). The flu 
mutants have unregulated ALA and Pchlide biosynthesis 
that causes excess accumulation of Pchlide responsible 
for generation of 1O2 that causes photooxidative damage 
via executor 1 and executor 2 (Meskauskiene et al. 2001; 
Wagner et al. 2004; Lee et al. 2007; Wang and Apel 2019). 
Conversely, FLU-overexpressing Arabidopsis lines suppress 
ALA synthesis resulting in reduced Chl content in light 
(Hou et al. 2019). Therefore, flu does not allow the synthesis 
of porphyrins and Pchlide in large amounts in plant tissues 
to prevent photooxidative damage. Binding of GluTR and 
LPOR to full-length FLU is essential for inhibiting ALA 
synthesis to avoid the overaccumulation of Pchlide in night 
(Hou et al. 2021). The FC2 isoform of heme catalysing 
enzyme ferrochelatase physically interacts with LPOR to 
stabilize the photoenzyme and suppress ALA synthesis to 
regulate Chl biosynthesis (Fan et al. 2023).

NADPH has several functions in the photoactive 
complexes. As a coenzyme, it provides the electrons and 
one proton for the reduction of Pchlide (Griffiths 1974). In 
etiolated tissues the LPOR forms a ternary complex with 
Pchlide and NADPH that aggregates into multimeric forms. 
After flash illumination NADPH photoreduces Pchlide to 
generate POR-NADP+ -Chlide complex. An immediate 
second flash is photooxidative as  NADP+ is incapable to 
photoreduce Pchlide. After few minutes of dark interval 
between the two flashes, the  NADP+ is re-reduced to 
NADPH that reduces Pchlide to Chlide. Thus, it is apparent 
that NADPH photo-protects the LPOR enzyme during early 

greening phase of angiosperms (Griffiths 1982; Franck and 
Inoue 1984).

Perspectives

Although we know the crystal structure of POR of certain 
prokaryotes, our knowledge of the structure of LPOR and 
its exact catalytic mechanism are still unclear in higher 
plants which often possess 3 different isoforms of the 
photo-enzyme. Besides, the reasons for the photo-lability 
and photo-stability of different isoforms LPOR are poorly 
understood. A comparative account of crystal structures of 
higher plant PORA, PORB and PORC and their catalytic 
mechanism shall be able to indicate the exact mechanism 
of catalysis and photo-stability. Overexpression of PORC 
protects plants from oxidative and other environmental 
stresses because of their evolution in stressful environment. 
This knowledge can be further exploited to raise crop plants 
tolerant to abiotic stresses.
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