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Abstract
Meiosis is a distinctive type of cell division that reorganizes genetic material between generations. The initial stages of 
meiosis consist of several crucial steps which include double strand break, homologous chromosome pairing, break repair 
and crossover. Crossover frequency varies depending on the position on the chromosome, higher at euchromatin region and 
rare at heterochromatin, centromeres, telomeres and ribosomal DNA. Crossover positioning is dependent on various fac-
tors, especially epigenetic modifications. DNA methylation, histone post-translational modifications, histone variants and 
non-coding RNAs are most probably playing an important role in positioning of crossovers on a chromosomal level as well 
as hotspot level. DNA methylation negatively regulates crossover frequency and its effect is visible in centromeres, pericen-
tromeres and heterochromatin regions. Pericentromeric chromatin and heterochromatin mark studies have been a centre of 
attraction in meiosis. Crossover hotspots are associated with euchromatin regions having specific chromatin modifications 
such as H3K4me3, H2A.Z. and H3 acetylation. This review will provide the current understanding of the epigenetic role 
in plants during meiotic recombination, chromosome synapsis, double strand break and hotspots with special attention to 
euchromatin and heterochromatin marks. Further, the role of epigenetic modifications in regulating meiosis and crossover 
in other organisms is also discussed.
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Introduction

Meiotic division is essential in all the sexually propagating 
eukaryotes. Meiosis maintains stable chromosome numbers 
across generations, as it ensures that every gamete receives 
only half the number of chromosomes of a parent. Meiotic 
cells undergo single round of DNA replication and con-
densation before two rounds of chromosomal segregation 
(Yelina et al. 2015a, b; Dawe 1998; Mercier et al. 2015). 
The major differences between mitosis and meiosis are the 
ploidy of progeny cells and additional steps undergoing in 
Prophase I (Mercier et al. 2015). In Arabidopsis thaliana, 
meiosis starts with double strand breaks (DSBs) at the lep-
totene stage and recombination process commences. Pairing 

between homologous chromosomes occurs at zygotene via 
the polymerization of the synaptonemal complex (SC) and 
recombination proceeds. Synapsis completes by pachytene, 
SC disassembles in the diplotene stage and the chiasmata 
structure displays the crossover sites between homologous 
chromosomes. Chromosomal condensation occurs during 
diakinesis and bivalents are visible (Sims et al. 2021; Ross 
et al. 1996; Mercier et al. 2015). Segregation of homologs 
takes place during meiosis I and segregation of sister chro-
matids occur during meiosis II to generate 4 gametes. DSB 
repair happens through crossovers (COs) and non-crossovers 
(NCOs) (shown in Fig. 1). It’s common in all the plants to 
have more DSBs than the resulting crossovers. Most of these 
breaks end up as Non-crossovers (NCOs) and sister chroma-
tids are used as a template in this repair pathway. Not just 
crossing overs, non-crossovers (gene conversions) are also 
important for maintaining diversity (Mercier et al. 2015).

Meiotic crossovers use homologous chromosomes as a 
template and shuffle the genetic information. It is a neces-
sary for each pair of homologs to undergo a minimum of 
one crossover for proper segregation i.e., obligatory cross-
ing over (Darlington et al. 1932). Recombination has been 
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one of the major factors in driving speciation and variation. 
However, its effect on the genome varies as the recombina-
tion sites are unevenly distributed. Certain regions of the 
genome are more prone to crossover events than others and 
these regions are known as recombination hotspots (Marand 
et al 2019). In most flowering plants, crossing overs are 
abundant in sub-telomeric and chromosomal arms whereas 
crossovers are scarce in ribosomal DNA, pericentromeric 
and centromeric regions (i.e., U-shaped trend). The excep-
tions are plants like Nelumbo nucifera and Camellia sinensis 
which have higher recombination rates in the middle of the 
chromosome (Brazier and Glemin et al. 2022). The longer 
the chromosomal length, the higher the chance of distal bias 
(Haenel et al. 2018).

Epigenetic modifications are known to have been involved 
in meiotic regulation and crossover (Yelina et al. 2015a, b). 
It refers to a layer of information that exists beyond what 
is encoded in the DNA sequence. Epigenetic modifications 
can be divided into four categories: DNA methylation, his-
tone post-translational modifications, chromatin remodel-
ling and non-coding RNAs (ncRNAs) (Portela and Estel-
ler 2010; Dziegielewski and Ziolkowski 2021). All these 
modifications are very dynamic in nature which means they 
could be stage-specific, tissue-specific, loci-specific. These 
dynamic structural changes can affect processes like tran-
scription, DNA repair, chromosome segregation and trans-
poson movements. Chromatin states in a chromosome are 
differentiated into euchromatin (enriched with active genes), 
facultative heterochromatin (enriched with repressed genes) 
and constitutive heterochromatin (enriched with transposons 
and repeats). Epigenetic modifications regulate directly (in 
cis) or indirectly through regulating meiotic gene expres-
sion (in trans) (Mirouze et al. 2012). Most of the studies on 
plant meiosis are available in male meiosis. It is technically 

difficult to isolate intact embryo sac mother cell with analys-
able chromosomes (Koul et al. 2023). The recombination 
steps take most of the time of meiotic phase indicating that 
it’s a time taking and highly regulated process (Prusicki et al. 
2019; Osman et al. 2021).

All the epigenetic classes interplay with each other and 
reinforce through many positive and negative feedback 
mechanisms (Portela and Esteller 2010). The epigenetic fac-
tors initiating and determining the crossover sites in flower-
ing plants still remain a puzzle.

Meiosis in plants: an overview

In plants, meiotic studies with recombination patterns are 
available in Arabidopsis, barley, wheat, maize, rice, potato 
and tomato (Anderson et al. 2014; other references are men-
tioned in Table 1). Meiotic events and genetic regulation 
of meiotic division in plants are more or less the same as 
observed in Arabidopsis. The meiotic processes of Arabi-
dopsis are briefly discussed here. Arabidopsis thaliana 
stands out as a model plant for studying chromatin anoma-
lies and meiotic recombination because of the already avail-
able resources with chromosome spreading protocols (Ross 
et.al. 1996), crossover numbers (Francis et al. 2007) and 
lesser chromosomal number (2n = 10). The process of mei-
otic recombination involves the exchange of genetic material 
between homologous chromosomes that occurs in several 
steps, which can be summarized as follows: (1) Chromo-
some condensation (2) DNA double-strand break formation 
(3) Resection (4) Strand invasion and double holiday junc-
tion formation (5) Resolution (Fig. 1).

During early prophase I of meiosis, the replicated homol-
ogous chromosomes condense. Double strand breaks (DSBs) 

Fig. 1  Steps occurring in the 
Arabidopsis recombination 
process is shown in brief. A 
Homologous chromosomes are 
shown in two contrasting col-
ours (blue and pink). Estimated 
frequency of each crossover 
pathway is represented in 
brackets. The prominent 
proteins involved in each step 
are mentioned on the left side. 
(MRNS complex- MRE11-
RAD50-NBS1/XRS2-SAE2/
COM1, MUS81-MMS AND 
UV SENSITIVE81, FANCM-
FANCONO ANEMIA COM-
PLEMENTATION GROUP M, 
DHJ-Double Holliday Junction). 
B Some of the important mei-
otic stages are represented at the 
lower panel of the figure
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are the starting point for meiotic recombination. They are 
catalysed by SPORULATION 11 (SPO11) (Grelon et al. 
2001). DSBs are then processed by MRE11-RAD50-NBS1/
XRS2-SAE2/COM1 (MRNS) complex and EXO I generates 
3’ overhang single-stranded DNA (ssDNA). The 3’ over-
hangs are bounded by heterotrimeric replication protein A 
(RPA) complex and loading of recombinases like RADIA-
TION SENSITIVE51 (RAD51) and DISRUPTED MEI-
OTIC cDNA1 (DMC1) takes place during leptotene stage 
(Li et al. 2004; Couteau et al. 1999). In pachytene, the syn-
aptonemal complex (SC) is completely formed between 
aligned maternal and paternal chromosomes forming syn-
apsis between the bivalents. SC is the zipper like tripartite 
proteinaceous structure formed between chromatin loops 
made up of central elements and lateral axes. One of the 
single-stranded DNA ends invades the homologous chro-
mosome and pairs up with a complementary strand on the 
homologous chromosome. DNA synthesis follows, extend-
ing the invading strand and displacing the original strand 
of the homologous chromosome. This leads to the creation 
of the Holliday junction, a structure where the two DNA 
duplexes are intertwined. In diplotene, the Holliday junc-
tion is resolved in two ways: either by cutting the junction 
horizontally to produce two non-crossover products or by 
cutting it vertically to produce two crossover products. As 
the homologous chromosomes separate, X-shaped structures 

called chiasmata are formed. Chromosomes further separate 
and condense by diakinesis stage. The resulting chromo-
somes are different from the original chromosomes as they 
contain a mixture of genetic information from each parent 
(for a detailed recombination process, see the review; Mer-
cier et al. 2015).

Homologous recombination (HR) happens in both 
somatic cells and meiotic cells. In somatic cells, it is pre-
dominantly repaired through Non-Homologous End Joining 
pathway (NHEJ) and rarely through HR. Sister chromatids 
act as a template in somatic cells, while homologous chro-
mosome act as a template in meiotic cells. It has been known 
that DMC1 favours inter-homolog recombination (IH) and 
crossing over in meiotic cells while RAD51 favours sister 
chromatid recombination in both mitotic and meiotic cells. 
RAD51 and DMC1 function independently and are spatially 
separated during meiosis (Kurzbauer et al. 2012). Their foci 
do not colocalize and the DMC1 triggers down-regulation 
of RAD51 exchange activity through an unknown signalling 
pathway however the presence of RAD51 is essential during 
chromosomal strand exchange (Da Ines et al. 2022).

In Arabidopsis, on an average of 250 DSBs, 12 recombi-
nation events takes place per meiosis. Out of these 12, 10 are 
class I COs and the other two are class II COs (Mercier et al. 
2015). Homolog-dependent repair of a DSB can occur through 
Class I, Class II and NCO pathways. Class I is interference 

Table 1  Factors influencing crossover positions like DNA sequence motifs, histone modifications and transposons that are correlated with 
recombination hotspots are specified in the table

– indicates data is not available

Plant name Sequence motifs Modifications posi-
tively correlated

Modifications nega-
tively correlated

Transposons References

Arabidopsis (Arabi-
dopsis thaliana)

A-rich, CCN and CTT 
repeat

H3K4me3, H2A.Z, H2A.W6, H2AW7, 
H3K9me2

Helitron/Pogo/Tc1/
Mariner DNA trans-
posons

Naish et al. (2021), 
Shilo et al. (2015)

Wheat (Triticum 
aestivum)

A-rich, CCG repeat, H3K27me3 H3K27me2/1; 
H3K9me2

Mariner TE Liu et al. (2021), 
Darrier et al. (2017), 
Tock et al. (2021)

Maize (Zea mays) GC rich (MHS) H3K4me3
(∼20%)

Gypsy He et al. (2017)

Rice (Oryza sativa) GGC, TACT H3K4me3, 
H3K27me3, 
H3K9ac, H4K12ac,

H3K36me3 Stowaway and PIF/
Harbinger

Si et al. (2015), Marand 
et al. (2019)

Potato (Solanum 
tuberosum)

poly-AG, poly-A/T, 
CCN repeat

H3K4me3 – Stowaway Marand et al. (2017)

Soybean
(Glycine max)

poly-A and AT-rich 
motifs

H2A.Z, H3K4me3, 
H3K9me3, 
H3K27me3, 
H3K14ac, 
H3K27ac, H3K56ac 
H4K12ac

H3K36me3 and 
H3K4me1

– Ma et al. (2023)

Tomato (S. lycoper-
sicum)

CCN repeats, poly-
A/T and AT-rich 
motifs

– – – Demirci et al. (2017)
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dependent and relies on a group of proteins called ZMM and 
two other conserved proteins called MutL HOMOLOGS 
(MLH1 and MLH3) (Jean et al. 1999; Mercier et al. 2015). 
That is why class I is also called as ZMM pathway. Class II is 
interference independent (little or no interference) and MMS 
AND UV SENSITIVE81 (MUS81) contribute to it (Higgins 
et al. 2008; Mercier et al. 2015). Sturtevant (1915) described 
interference as follows: “The occurrence of one crossing-over 
in a given chromosome pair prevents another nearby” . Class 
I contributes to above 70–80 per cent of all the crossovers 
and class II plays just a minor role. Although Class II is inter-
ference independent, class I and class II COs can detect and 
interfere with each other (Anderson et al. 2014). FANCONO 
ANEMIA COMPLEMENTATION GROUP M (FANCM) and 
RECQ4 helicases direct recombination intermediates from 
class II CO pathway to synthesis-dependent-strand-annealing 
NCO pathway (Crismani et al. 2012; Lorenz et al. 2012; Mer-
cier et al. 2015). Apart from these three, there is a non-inter-
ference pathway described in Solanum lycopersicum called 
FANCD2 (FANCONO ANEMIA D2) (Kurzbauer et al. 2018). 
There is limited information available about this pathway. It is 
unclear why many pathways have to be evolved and interplay 
with each other. According to population genetics perspective, 
the substrate of each pathway could have the deciding factor 
in evolving different pathways (Ziolkowski et al. 2023). Ribo-
somal DNA (rDNA) arrays regulate their crossover numbers 
through NHEJ pathway (Sims et al. 2019).

In Arabidopsis, crossovers can be estimated through clas-
sical genetic analysis using segregation of markers in the 
progeny, chiasmata counting, visual assay of fluorescent pol-
len tetrads (FTLs) and immunostaining of MLH1 foci (Ber-
chowitz and Copenhaver 2008; De Muyt et al. 2009; Mercier 
et al. 2015; Francis et al. 2007). FTLs are as best as Chla-
mydomonas reinhardtii zoospores and Saccharomyces tet-
rads systems to determine the crossover rates from a region 
of interests (Francis et al. 2007). Deep tetrad software ease 
the process through it’s high-throughput analysis of tetrads 
and yield very quick results (Lim et al. 2020). Flow cytom-
etry based protocols can achieve high-throughput analysis 
but they miss out on calculating double crossovers and gene 
conversion measurements (as pollen tetrads -qrt1 mutants 
are not used in the protocol) (Yelina et al. 2013). Fluorescent 
antibodies usage against MLH1 and MUS81 foci gives the 
number of class I COs and class II COs, respectively (Mer-
cier et al. 2015).

Factors affecting crossover positioning

Epigenetic modifications, such as histone modifica-
tions, DNA methylation and DNA remodelers can influ-
ence crossover positioning by altering the accessibility 
of DNA to the recombination machinery. The process of 

homologous chromosome pairing during meiosis can influ-
ence the positioning of crossovers. Telomeres attach to the 
nuclear membrane in the early prophase I stage and form 
bouquet-shaped chromatin organisation. In grasses, there 
is asynchronous timing of axis maturation and SC forma-
tion leading to early maturation and localisation of ZMM 
proteins in distal regions. It is believed early interaction can 
lead to early designation of crossover sites (Higgins et al. 
2012, 2022). Pro-Crossover ZMM class of proteins like 
HUMAN ENHANCER OF INVASION 10 (HEI10) diffuse 
and coarsen across the chromosome. Only these foci turn 
into crossovers (Morgan et al. 2021). Crossing over in plants 
is tightly regulated by the ZMM pathway and synaptonemal 
complex (Durand et al. 2022). The DNA sequences called 
DNA motifs or sequence motifs, are found in the vicinity 
of crossover hotspots. They vary from plant to plant. Sur-
prisingly, transposons also overlap with crossover locations. 
(shown in Table 1). Structural variants like inversions, trans-
positions and indels can also show local CO suppression and 
determine CO positioning (Rowan et al. 2019).

Epigenetic factors involved in the regulation 
of meiosis

Histone modifications in meiotic regulation

In eukaryotes, DNA wraps around the positively charged 
proteins called histones and this DNA–protein complex is 
called chromatin. About 146 bp of DNA make a tight 1.65 
negative super helical turns around an octamer of core his-
tone proteins. The histone octamer consists of a central het-
erotetramer of histones H3 and H4, flanked by two heterodi-
mers of histones H2A and H2B (i.e., two copies of H3, H4, 
H2A and H2B each) (Fischle et al. 2003).

A variety of posttranslational modifications have been 
discovered on tails such as acetylation, methylation, ubiq-
uitination, phosphorylation, sumoylation and ribosylation 
(some of the marks are shown in Fig. 2). The histone modi-
fications are seen in both amino-terminal (N-terminal) and 
carboxy-terminal tails. Modifications are abundant in the H3 
histone N-terminal tail. The modifications acting as hallmark 

H2B       H3

H2A       H4

H2B       H3

H2A       H4

Mono methyla�on

Ubiqui�na�on

Acetyla�on

Tri methyla�on

Fig. 2  Diagram depicting histone octamer and displaying various 
histone modifications in their tails. The histone octamer shown in the 
figure is a 3-D version of it (H1 linker is missing). Various covalent 
modifications are represented in different shapes and shades
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of actively transcribed regions are called active chromatin 
marks and the marks abundant in non-transcribed regions 
are called repressive chromatin marks. These modifications 
are written by writer proteins, read by reader proteins and 
removed by eraser proteins. Some of the proteins can do 
multiple roles. All these effector proteins help to precisely 
balance the location of histone marks. For example, SET 
DOMAIN GROUP8 (SDG8) in Arabidopsis encodes for a 
histone methyl transferase that have both a writer domain 
called SET domain and a reader domain called CW domain. 
JUMONJI 30 (JMJ30), a histone demethylase acts as an 
eraser for the same histone mark H3K36me3 (Cheng et al. 
2020).

Acetylation of histone proteins involves the addition of 
an acetyl group to lysine residues, which neutralizes the 
positive charge of the lysine (+ 1 to 0) and weakens the 
interaction between the histone and the negatively charged 
DNA. This leads to a more relaxed chromatin structure and 
increased accessibility of the DNA to transcription fac-
tors and other regulatory proteins. Methylation of histone 
proteins occurs on lysine or arginine residues and can have 
different effects depending on the specific site and degree 
of methylation. Phosphorylation of histone proteins occurs 
on serine, threonine, and tyrosine residues and can affect 

chromatin structure and gene expression in a variety of ways 
(Peterson et al. 2004). The role of histone marks can change 
from one organism to the another. H3K4me2 is an active 
chromatin mark in animals and Arabidopsis but it acts as a 
repressive mark in rice (Liu et al. 2019; Cheng et al. 2020; 
Tock et al. 2021). Histone euchromatin (active) and hetero-
chromatin (repressive) marks are represented in Table 2.

Cohesin subunit AtSYN4 recruits Histone H2A mon-
oubiquitination (H2Aub1) mark specifically into the 
genomic loci showing that there could be prominent inter-
play between cohesin subunits and histone modification 
enzymes (Zhang et al. 2023). Transcription factors also 
recruit the chromatin modifying enzymes leading to the 
accumulation of specific histone marks (Zhang et al. 2015) 
(Both cohesin and transcription factor recruitment are shown 
in Fig. 3).

In Arabidopsis, recombination hotspots tend to be located 
in gene-rich regions of the genome and these are highly 
correlated with active chromatin modifications, including 
H2A.Z, histone H3 Lys4 trimethylation (H3K4me3) (Choi 
et al. 2013), low nucleosomal density, low DNA methylation 
(Choi et al. 2018; Underwood et al. 2018).

In Arabidopsis, Histone H3 Lys 4 trimethylation 
(H3K4me3), an active euchromatin mark, is highly enriched 
near SPO11-1 oligos but not highly correlated with double 
strand breaks at fine level. In the DSB site, exonucleases 
release SPO11-oligonucleotide complexes. These oligos 
provide a high-resolution profile of meiotic DSB patterns 
genome-wide (Choi et al. 2018). SET DOMAIN GROUP 
2 (SDG2) encodes for the H3K4me3 mark and the loss of 
function mutant sdg2 has not shown any defect in meiosis. 
Its role is limited to post meiotic microspore development, 
especially chromatin decondensation in the pollen vegeta-
tive nucleus (Pinon et al. 2017). In Saccharomyces cerevi-
siae (budding yeast), H3K4me3 is enriched in the vicinity 

Table 2  Classification of the major histone marks in Arabidopsis 
based on their transcription function (Cheng et al. 2020; Tock et al. 
2021; Zhang et al. 2023; Liu et al. 2016)

Euchromatin marks Heterochromatin marks

H2Bub1 H3K9me1/2
H3K4me1/2/3 H3K27me1/2/3
H3K36me2/3/ac H2Aub1
H3 K9/K14/K18/K23/K27ac
H4 K5/K8/K12/K16/K20ac

HMT

TF
Cm

Cohesin

Euchroma�nHeterochroma�n

DSB machinery

Sequence mo�fs

HMT

Fig. 3  Diagram showing the DSBs generally localise with euchroma-
tin features like low nucleosomal occupancy, DNA methylation  (Cm) 
and sequence motifs. Most of the DSBs in Arabidopsis overlap with 
promoter regions. Cohesins and Transcriptions factors (TF) recruit 

various kinds of histone modification enzymes. Histone methyl trans-
ferases-(HMTs) responsible for euchromatin is shown in green colour 
and for heterochromatin is shown in brown colour
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of DSB sites and the mutant showed a drastic reduction 
in DSBs (Borde et al. 2009). Spp1 subunit of COMPASS 
complex recognises H3K4me3 rich hotspots and Mer2 axis 
and recruits the DSB site to the chromosomal axis for the 
action of Spo11 (Acquaviva et al. 2013; Lambing et al. 
2020; Yelina et al. 2015a, b). Surprisingly in Schizosac-
charomyces pombe (fission yeast) H3K9ac is more signifi-
cantly enriched than H3K4me3 in hotspots (Yamada et al. 
2013). PR DOMAIN CONTAINING 9 (PRDM9) depend-
ent H3K4me3 majorly determines recombination hotspots 
in humans and mice (Baudat et al. 2009). PRDM9 (meiosis-
specific histone lysine methyltransferase with SET domain) 
binds to DNA at the hotspot and trimethylates H3K4 as well 
as H3K36, which causes nucleosomes to move apart creating 
favourable site for SPO11 to produce double strand break 
(Parvanov et al. 2010; Diagourage et al. 2018; Bhattacharya 
et al. 2019; Powers et al. 2016) (Fig. 4). DSBs are formed 
in the prdm9 mutant, but are formed at different locations. 
It means PRDM9 does not initiate the meiotic recombina-
tion but is required only for determination of hotspot posi-
tion and DSBs (Brick et al. 2012). CXXC finger-domain 
protein, a component of H3K4 methyltransferase in mice 
is involved in regulating meiotic gene expression (Ki et al. 
2022). However, plants lack PRDM9 homologs and CXXC 
kind of finger-domain proteins. Almost in all the organisms 
H3K4me3 is seen in the vicinity of recombination hotspots 
but the mark is probably controlled through different molec-
ular mechanisms.

In Arabidopsis, Histone 3 lysine 9 dimethylation 
(H3K9me2), a repressive mark, is abundant in transpos-
able elements and repetitive sequences. H3K9me2 mark 
is controlled by methyl transferases called SUPPRES-
SOR OF VARIEGATION HOMOLOG 4/KRYPTONITE 
(KYP/SUVH4/5/6) and histone demethylases called IBM1 
(INCREASE IN BONSAI METHYLATION). Mutants of 

KYP/SUVH4/5/6 have shown an increase in recombination 
without any chromosomal defects (Underwood et al. 2018) 
whereas demethylase mutant ibm1 has displayed incomplete 
synapsis, chromosome entanglement, reduction of recom-
bination during meiosis and fertility. The number of chi-
asmata per cell in ibm mutants is less compared to the WT 
(He et al. 2022). These defects are due to IBM1-mediated 
alterations in gene expression and interaction with cohesin 
cofactor PDS5s in downstream (Cheng et al. 2022; He et al. 
2022). It means that timely maintenance of H3K9 demeth-
ylation is more important than H3K9 methylation in plant 
meiosis. Whereas in mammalian meiosis H3K9 methylation 
is important for prophase progression. Loss of heterochro-
matic H3K9 methylation leads to improper synapsis, lead-
ing to abnormal chromosome segregation and infertility in 
mice (Tachibana et al. 2007; Takada et al. 2021). Similar to 
Arabidopsis, drosophila and fission yeast H3K9me2 mutants 
are reported to have more crossovers (Ellermeier et al. 2010; 
Peng and Karpen 2009). In fission yeast, H3K9 methyla-
tion marks attract mitotic cohesion complex and limit DSBs 
around centromeres. It’s unknown in plants how H3K9me2 
is limiting DSBs (Nambiar and Smith 2018). In higher 
organisms, pericentromeres are evolved to have 100 times 
lower crossovers than chromosomal arms. Recombination 
in pericentromeres is known to have mis-segregation and 
aneuploidy (for example: Down syndrome) (Nambiar and 
Smith 2016). Whereas in Arabidopsis, cytologically there 
are no chromosomal defects found despite increasing peri-
centromeric crossovers (Underwood et al. 2018).

REC8, a sister chromatid cohesin is associated with sup-
pression of DSBs and meiotic crossovers (Lambing et al. 
2020). In fission yeast, REC8 is enriched in the centromeres. 
In H3K9me2 mutants of fission yeast, REC8 loading is 
greatly reduced and leading to chromosomal segregation 
defects (Ellermeier et al. 2010). Despite the fact that the 
REC8 and H3K9me2 peaks overlap in Arabidopsis, REC8 
loading remained normal in H3K9me2 and non-CG DNA 
methylation mutants. It’s also possible that other heterochro-
matin marks are driving the REC8 localisation in Arabidop-
sis (Lambing et al. 2020). In yeast, H3 histone modifications 
are involved in meiotic recombination and highly acetylated 
in recombination hotspots (Borde et al. 2009; Merker et al. 
2008; Yamada et al. 2004). However, in Arabidopsis, H3 
Histone hyperacetylation with overexpression line gcn5-
related histone N-acetyltransferase (mcc1), displayed dif-
ficulty in segregation, altered chiasmata distribution, leading 
to the abortion of half of the gametes (Perrella et al. 2010).

In maize, DSBs are distributed uniformly in a chromo-
some but crossovers follow the usual U-shaped trend (higher 
CO rate in chromosomal ends and lower CO rate in cen-
tromeres). Not even 20 percent of hotspots are associated 
with H3K4me3 mark. As the majority of Maize genome is 
filled with transposons, DSBs are abundant in transposons 

Euchroma�n

SPO11 
dependent
DSB

PRDM9

H3K4me3

H3K36me3

H3K9me2

Heterochroma�n

Fig. 4  Model showing the role of histone marks and PRDM9 in 
SPO11-dependent double strand break in mammals



1951Physiology and Molecular Biology of Plants (December 2023) 29(12):1945–1958 

1 3

but only the genic DSBs turned into crossovers (He et al. 
2017). So, with all these unique features maize has to be 
considered as an outlier. In allopolyploids like wheat, spa-
tiotemporal asymmetry of meiotic programs is possibly 
favouring distal pattern of crossover localisation (Higgins 
et al. 2022; Osman et al. 2021). Along with the distinct pat-
tern, H3K4me3, H3K9me3, H3K27me3 and H3K27me2 
marks are also preferentially enriched in distal parts of wheat 
chromosomes (Osman et al. 2021; Tock et al. 2021). Faculta-
tive heterochromatin mark H3K27me3 is positively corre-
lated along with (ASYNAPTIC 1) ASY1 and DMC1 peaks 
with crossover regions. This polycomb repressive mark is 
enriched in the crossover active distal regions of chromo-
somes and is highly associated with disease responsive genes 
(nucleotide binding leucine rich-repeat proteins) (Tock et al. 
2021; Liu et al. 2021). H3K27me2 is also enriched in the 
distal area of chromosomes, but it’s associated with crosso-
ver suppression. Both the marks are mutually exclusive 
and the H3K27me2 role in supressing crossovers is also 
observed in Arabidopsis and maize (Liu et al. 2021).

In rice and soybean, Histone 3 lysine 36 trimethylation 
(H3K36me3), an active transcription mark is negatively cor-
related with crossovers (Ma et al. 2023; Marand et al. 2017). 
Even in yeast, H3K36me3 negatively correlates with DSBs 
and meiotic crossovers (Hansen et al. 2011; Merker et al. 
2008). Further, H3K36me3 mark decreases resection and 
promoting non-homologous end joining pathway (NHEJ) 
(Pai et al. 2014). The immunolocalization analysis of various 
H3 methylation and acetylation modifications throughout all 
phases of meiosis in Aegilops sp., Secale cereale and Arabi-
dopsis thaliana showed that their distribution and dynamics 
of histone marks are species specific and stage specific. This 
implies that there is an evolutionary divergence in histone 
language (Oiliver et al. 2013).

DNA methylation in meiotic regulation

DNA methylation mainly occurs at the fifth position of 
cytosine, resulting in 5′-methylcytosine (5-mC). In general, 
hypermethylation and hypomethylation are found in hetero-
chromatin and euchromatin regions, respectively (Zhang 
et al. 2018). In plants, DNA methylation occurs at cytosine 
residue in all three sequence contexts such as symmetric 
CG, CHG and asymmetric CHH (where H is any nucleotide 
except G) while CG methylation is predominant in animals. 
As of now, only 5 methyltransferases are known in Arabi-
dopsis. They are METHYLTRANSFERASE 1 (MET1), 
CHROMOMETHYLASE 2 (CMT2), CHROMOMETHY-
LASE 3 (CMT3), DOMAINS REARRANGED METH-
YLTRANSFERASE 1 (DRM1) and DOMAINS REAR-
RANGED METHYLTRANSFERASE 2 (DRM2). DRM2 
is responsible for DNA methylation in all three sequence 
contexts (CG, CHG and CHH), whereas MET1 and CMT3 

maintain CG and CHG methylation, respectively. CMT2 and 
DRM2 are jointly responsible for maintaining CHH meth-
ylation in long heterochromatic transposable elements (TEs) 
and short euchromatic TEs, respectively (Fang et al. 2021).

In Arabidopsis, the centromeres are highly heterochro-
matic regions that are epigenetically silenced by H3K9me2 
and DNA methylation in CG and non-CG sequence contexts. 
MET1 maintains CG methylation all over the chromosome 
(Mirouze et al. 2012). Loss of CG methylation in met1 is 
shown to have more SPO-11-1-oligos, reduction of nucleo-
some density, slight gain of H3K4me3 and transcriptional 
reactivation of repetitive sequences in centromeres. The 
met1 mutant got triggered into crossover remodelling and 
resulted in having complex phenotype of increased chromo-
somal arms, centromere recombination and decreased peri-
centromeric recombination (Choi et al. 2018; Yelina et al. 
2012). In total, DSB foci and crossover number remain the 
same but the crossovers are redistributed to chromosomal 
arms from pericentromeres. The redistribution is limited to 
only interfering crossovers (class I COs) (Choi et al. 2018; 
Yelina et al. 2015a, b). In somatic cells of met1 mutant, there 
is a redistribution of epigenetic marks among H3K9me2, 
DNA methylation and H3K27me3 in PcG target genes (Del-
eris et al. 2012). Ectopic H3K9me2 marks noticed in the 
proximal region of chromosomes could be due to the redis-
tribution of chromatin marks. Along with the alteration in 
chromatin modifications, crossover interference mechanisms 
might be responsible for this complex phenotype (Yelina 
et al. 2015a, b).

The chromatin remodeler DDM1 (DECREASED DNA 
METHYLATION 1) gene is responsible for DNA methyla-
tion and heterochromatin maintenance. In the ddm1 mutant, 
CG methylation is reduced throughout the genome espe-
cially in heterochromatin regions. FTL markers between 
euchromatin regions showed more recombination rate but 
the pericentric heterochromatin FTL markers showed similar 
recombination rate as of control (Bessudo and Levy 2012). 
DDM1 is also responsible for maintaining classical Men-
delian trait segregation. This is possibly through excessive 
gene conversion happening in the heterochromatin (Ali et al. 
2021). A similar study in mouse, DNA methylation mutant 
dnmt3, has shown increased DSBs formation and gain of 
H3K4me3 marks in retrotransposon regions (Zamudio et al. 
2015).

The mutation in the H3K9 methyltransferase (KYP/
SUVH4/5/6) or the CHG methylation maintenance gene 
CMT3 (CG methylation remains same), showed a significant 
increase SPO11-1-oligos and crossovers in pericentromeric 
regions. Both class I and class II crossovers are elevated in 
the mutant (Underwood et al. 2018). Overall, both CG and 
non-CG methylation are able to inhibit DSBs, but only CHG 
methylation has the ability to inhibit crossovers at pericen-
tromeric region (Choi et al. 2018). In somatic cells, CHG 
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methylation and H3K9me2 are mutually linked and depend-
ent on each other. Proteins encoding these epigenetic modi-
fications are able to recognise each other (Du et al. 2012). 
Additional binding proteins like AGENET DOMAIN CON-
TAINING P1 (AGDP1) also link H3K9me2 and non-CG 
DNA methylation (Zhang et al. 2018). A positive reinforcing 
loop is noticed in meiotic chromosomes also i.e., promot-
ing each other’s presence (Underwood et al. 2018). In all 
the plants studied, methylation has been negatively impact-
ing crossing over. An unusual occurrence in the form of 
CHH and CHG methylation peaks is observed in rice hot-
spot regions (Marand et al. 2019). Rate of recombination in 
epigenetic mutants of Arabidopsis, categorized by region of 
chromosome, are represented in Table 3.

Histone variants in meiotic regulation

In addition to histone covalent modifications, there is an 
additional tier of variation called histone variants. Histone 
variants are versions of proteins that differ from the canoni-
cal histones in their amino acid sequence. Dozens of histone 
variants like H2A, H2B and H3 families have been discov-
ered in eukaryotes (for example, H2A.Z) (Jamge et al. 2023). 
There is a great correlation and interplay between Histone 
modifications and these variants, which means that a vari-
ant is strongly associated with a specific mark (Loppin et al. 
2020). For example, H3.3 is strongly associated with H3 
acetylation and H3K36 methylation, whereas H3.1 is associ-
ated with H3K27me1. Histone variants can be incorporated 
into chromatin in a replication-independent manner, mean-
ing that they are added to pre-existing chromatin rather than 
during DNA replication. This allows cells to modify chro-
matin structure in response to different signals and cellular 
states (Jamge et al. 2023).

Histone variant H2A.Z foci colocalize with crosso-
ver regions, DMC1 and RAD51. The knockdown mutant 
(arp6) has shown low DSB which led to low crossover 
numbers (Choi et al. 2013). ACTIN RELATED PROTEIN 
6 (ARP6), a subunit of SWR1 ATP dependent remodelling 
complex is necessary for H2A.Z deposition and regulates 
meiotic gene expression during megasporogenesis (Qin et al. 
2014). In fission yeast, the variant promotes chromatin com-
paction through cohesins (Yamada et al. 2018). Although the 

variant promotes DSBs, it is not enriched around the hot-
spots (Yamada et al. 2018). Phosphorylated H2A.X signals 
DNA damage response and invites chromatin remodelling 
complexes (Rogakou et al. 1998; Kuo 2021). This mark is 
generally used in immunolocalization studies to determine 
DSBs (Higgins et al. 2012). H2A.W, a heterochromatin mark 
is independent of other heterochromatin features and causes 
heterochromatin condensation (Yelagandula et al. 2014). 
HTA6 and HTA7 are the two major genes responsible for 
H2A.W variant deposition and proteins are enriched on the 
pericentric heterochromatin (Yelagandula et al. 2014; Kuo 
2021). The recombination rate is increased only in the het-
erochromatin regions of hta6-1 hta7 mutants although the 
mutants showed normal cytology. Double mutants of the 
hta7 cmt3 did not show to any significant rise in crossovers 
compared to the single mutant (hta7). The overall study 
has shown that the H2A.W variant is a repressor of meiotic 
recombination (Kuo 2021).

Noncoding RNAs in meiotic regulation

Noncoding RNAs are classified as small RNAs (sRNAs), 
medium size ncRNAs (mncRNAs) and long-size ncR-
NAs (lncRNAs). A large number of non-coding RNAs are 
upregulated in the events of meiosis. They have a prominent 
role in controlling meiotic gene expression, chromosome 
condensation and centromere organisation. Transcriptome 
studies in various plants have shown the significance of non-
coding RNAs in meiosis (Jiang et al. 2023; Dziegielewski 
and Ziolkowski 2021). Small interfering RNAs (siRNAs) 
are important for transposon silencing and DNA methyla-
tion. Mutants of miRNA biogenesis and function, dcl, hyl1, 
hen1, hst and ago1, have shown higher expression of SPO11, 
DMC1, RAD51, MSH4, and MUS81 (Dziegielewski and 
Ziolkowski 2021).

Other factors affecting crossover rate

Chromatin loops

Meiotic chromosomes are organized in loops and attached 
to the chromosome axis which interacts with chromatin 
to regulate meiotic recombination. At the macro level, 

Table 3  Recombination rate in 
various Arabidopsis epigenetic 
mutants is summarised 
in accordance with the 
chromosomal region. Distal 
region includes chromosomal 
arms and subtelomeres

*indicates CO rate is increased in centromeric region of the mutant

Mutants Pericentromeres Distal region References

ddm1 Same Rise Bessudo and Levy (2012)
met1 (CG methylation) Fall* Rise Yelina et al. (2012), 

Yelina et al. (2015a, b)
cmt3 (non-CG methylation) Rise Fall Underwood et al. (2018)
kyp/suvh4/5/6 (H3K9me2) Rise Underwood et al. (2018)
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chromosomes appear as X-shaped structures. But the chro-
matin is packed into various kinds of loops to serve differ-
ent functions. Larger loops form shorter axes, thus leading 
to fewer COs and vice-versa (Wang et al. 2019) (Fig. 5). 
Anchor regions of long-range cis chromatin loops are asso-
ciated with H3K27me3 and maintain chromatin organisa-
tion in Arabidopsis (Sun et al. 2023). H3K27me3 deposition 
also influences chromatin compartmentalisation and gene 
co-regulation (Huang et al. 2021). There is a need to verify 
the role of the dynamic chromatin loops in choosing and 
initiating crossovers.

Abiotic stress

Meiotic crossover frequency is plastic and modulated by 
different factors like age, temperature, nutrient availabil-
ity, developmental stage, and behaviour (Modliszewski and 
Copenhaver 2017; see the review). Crossover rate in Arabi-
dopsis male meiosis follows a U-shaped trend in response to 
temperature range between 5 and 28 °C. CO rate is highest 
at 5 °C and 28 °C but the lowest at its optimal growth tem-
perature 20 °C (Lloyd et al. 2018). The observed high mei-
otic crossover frequency at elevated temperature (28 °C) is 
derived from only the type I pathway. There is no increase in 
ds breaks, just the non-crossovers are converted into crosso-
vers in this scenario (Modliszewski et al. 2018). Heat stress 
can also induce altered transposon activation, leading to the 
rearrangement of chromatin organisation (Sun et al. 2020). 
This can lead to chromatin decondensation and the activa-
tion of heterochromatin transcription (Tittel-Elmer et al. 
2010).

Sudden exposure to temperature stress severely decreases 
the duration of early prophase stages, but the crossover 
maturation phases got prolonged. Mutants related to the 
recombination pathway like spo11-1, dmc1, msh4 did not 
show this pattern, implying that prolong maturation phase 
is recombination-dependent (Braet et al. 2022). Heavy stress 
inhibits meiotic recombination via reduced ds breaks and 
homolog asynapsis. In barley, the distribution of recombina-
tion events is shifted to centromere under high temperature 
(Philips et al. 2015). The same shifting pattern is noticed in 

wheat under temperature stress, but it’s not as significant as 
in the case of Barley (Coulton et al. 2020). In crop plants, 
many of the essential genes lie in recombination cold spots. 
Heat treatment can give different combinations of progeny 
due to the change in crossover distribution. Although the 
mechanisms are unknown, the mild heat stress can be tested 
in heterosis programmes.

Conclusion and future perspective

Meiotic recombination in plants is tightly regulated at dif-
ferent levels. It’s maintained by various genetic, epigenetic, 
genome structure and environmental factors. Epigenetic fac-
tors influence the recombination landscape directly as well 
as indirectly through meiotic gene expression (overall model 
is shown in Fig. 6). On a local scale, crossover positioning 
is majorly done by histone marks, DNA methylation and 
structural variants. On a broad scale, the spatiotemporal 
asymmetry model and diffusion mediated ZMM proteins 
coarsening model are perfectly explaining the distal region 
preference in crossovers and crossover interference. Only 
grasses have shown additional factors like time of meiotic 
events, pre-meiotic DNA replication along with usual chro-
matin features and pro CO genes (Higgins et al. 2022). Pro 
crossover enzymes like HEI10 and anti-crossover factors 
like RECQ4 control the crossover positioning at the genome 

Fig. 5  A model explaining 
relationship between chromatin 
loops and crossover number: 
length of loops determines the 
axes length thereafter crossover 
number. CO sites are repre-
sented with red dots on axes
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Fig. 6  Overall model showing the crossover regulation in Arabidopsis
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level (Morgan et al. 2021). Positioning is initially deter-
mined by DSB sites and pro-crossover enzymes like HEI10 
in a suitable chromatin environment do the next layer of 
selection. The accumulation of HEI10 determines the loca-
tion of crossovers. The factors determining the location of 
HEI10 accumulation and coarsening are unknown.

Chromatin features can influence DSB proteins, recombi-
nation machinery and meiotic genes. The number of DSBs 
influences the total number of crossovers (Xue et al. 2018). 
Through this web of interactions, chromatin features con-
trol crossing over in one way or the other. Deciphering the 
chromatin features and mechanisms involved in crossover 
mechanisms will ease breeding programmes and help us to 
make smart crops. Increasing crossovers in pericentromeric 
regions has been achieved through various heterochromatin 
mutants in Arabidopsis. The heterochromatin marks (like 
H3K9me2) are also responsible for heterochromatin stabil-
ity, so transferring these results into food crops has to be 
done in a careful manner (Peng and Karpen 2009). There is 
also a great variation in epigenetic control of meiosis among 
the model organisms. Only yeast has shown great similarity 
with recombination control as in plant systems. Undoubt-
edly, open chromatin is required for cross overs but the pre-
sent data shows that all the euchromatin features are not 
positively correlated with crossovers and vice-versa. Most 
of our food crops are polyploids and the data availability is 
very limited (Bomblies 2023). So, it’s a field waiting to be  
explored. Research on holocentric plants can give insights 
into chromatin features and their relation to recombination 
(Hofstatter et al. 2021). Studies with heterochromatin marks 
have been extensive and there are many euchromatin marks 
waiting for us to study their role in meiosis.
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