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Abstract In the present study in wheat, GWAS was con-

ducted for identification of marker trait associations

(MTAs) for the following six grain morphology traits: (1)

grain cross-sectional area (GCSA), (2) grain perimeter

(GP), (3) grain length (GL), (4) grain width (GWid), (5)

grain length–width ratio (GLWR) and (6) grain form-

density (GFD). The data were recorded on a subset of

spring wheat reference set (SWRS) comprising 225 diverse

genotypes, which were genotyped using 10,904 SNPs and

phenotyped for two consecutive years (2017–2018,

2018–2019). GWAS was conducted using five different

models including two single-locus models (CMLM,

SUPER), one multi-locus model (FarmCPU), one multi-

trait model (mvLMM) and a model for Q x Q epistatic

interactions. False discovery rate (FDR) [P value -

log10(p) C 5] and Bonferroni correction [P value -

log10(p) C 6] (corrected p value\ 0.05) were applied to

eliminate false positives due to multiple testing. This

exercise gave 88 main effect and 29 epistatic MTAs after

FDR and 13 main effect and 6 epistatic MTAs after Bon-

ferroni corrections. MTAs obtained after Bonferroni cor-

rections were further utilized for identification of 55

candidate genes (CGs). In silico expression analysis of CGs

in different tissues at different parts of the seed at different

developmental stages was also carried out. MTAs and CGs

identified during the present study are useful addition to

available resources for MAS to supplement wheat breeding

programmes after due validation and also for future

strategic basic research.

Keywords Triticum aestivum L � Grain morphology �
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Introduction

Bread wheat (Triticum aestivum L.) is a major staple crop

all over the world, which provides food for * 36% of the

world’s population involving * 20% calories in human

diet (http://faostat.fao.org; Maulana et al. 2018). In this

crop, as also in other cereals, the grain size is known to be

associated with various characteristics of flour (e.g..

hydrolytic enzymes activity), which in turn control baking

quality and end-use suitability, the protein content and

grain yield (Evers 2000; Breseghello and Sorrells 2007;

Gegas et al. 2010). The larger grains also have a positive

effect on seedling vigour, market preference, grain yield

and flour yield characteristics (Chastain et al. 1995; Gan

and Stobbe 1996). The grain size and shape (including

length, width, perimeter of the grain, etc.) did not receive

the desired attention for the improvement of yield in the

current wheat breeding programmes (Kovach et al. 2007).

However, significant phenotypic and genetic variation for

grain size and grain weight does occur in different Triticum

species and can be exploited for improvement of grain

morphology, indirectly leading to an improvement in grain

yield (Gegas et al. 2010; Jing et al. 2007; Rasheed et al.

2014). However, genetics of grain characteristics in wheat
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did not receive as much attention as it did in case of rice,

where[ 30 genes for grain characteristics have been

cloned and characterized (Zheng et al. 2015; Hu et al.

2015; Yu et al. 2017; Jiang et al. 2019; Yang et al. 2019).

The genetic studies in wheat and other cereals already

undertaken suggest that grain shape and size are complex

quantitative traits (with their component traits), each con-

trolled by a number of major and minor genes. For the

study of genetics of such complex traits, interval mapping

and GWAS are two important approaches, each with its

own merits and demerits. In recent years, GWAS has been

preferred, since it utilize a wide range of genetic variation

generated through hundreds of cycles of recombination. A

beginning of GWAS for the study of genetic architecture of

quantitative traits in animals (mainly humans) and plant

systems was made in early years of the present century,

when relative merits of LD-based association mapping

(AM) over the linkage-based interval mapping was docu-

mented (for reviews, see Huang et al. 2013; Gupta et al.

2014, 2019; Cortes et al. 2021). The major breakthough,

however, took place, when a mixed linear model involving

population structure and relatedness was proposed (Yu

et al. 2006) and the software TASSEL was made available

(Bradbury et al. 2008). This was soon followed by further

improvement of GWAS through a series of models pro-

posed during 2010–2020, a process that still continues.

A number of studies involving interval mapping and

GWAS are available for genetics of traits related to grain

shape and size (Breseghello and Sorrels 2007; Sun et al.

2009; Okamoto et al. 2013; Rasheed et al. 2014; Li et al.

2015; Yan et al. 2017; Kumari et al. 2018; Ma et al. 2019;

Wang et al. 2019; Yu et al. 2019; Alemu et al. 2020; Sun

et al. 2020; Xin et al. 2020). In most of these genetic

studies, a limited number of mapping populations and

association panels have been used (Breseghello and Sorrels

2007; Sun et al. 2009; Rasheed et al. 2014). Also, a

majority of QTLs that have been reported for grain weight

are not suitable for breeding purpose, since these are not

stable across environments, explain limited phenotypic

variability, and are involved in epistatic interactions

(Campbell et al. 2003; Gupta et al. 2007; Prashant et al.

2012; Patil et al. 2013; Cabral et al. 2018). This warrants

further studies for detection of additional MTAs using

novel germplasm, which has not so far been used for the

study of grain morphology traits in wheat.

Most early GWA studies including the above studies,

conducted in a number of crops, involved only single locus,

single trait analysis and did not involve analysis of epistatic

interactions. Although occurrence of epistasis was initially

recognized in early years of the last century (Bateson

1909), its importance and methods for detection and esti-

mation, particularly for quantitative traits, have largely

been recognized in the present century (Holland 2001; Lu

et al. 2011; Ritchie and Van Steen 2018). It is now known

that both MTAs/QTLs with main effect and those with no

main effect are generally involved in epistatic interactions

(Niel et al. 2015; Ritchie and Van Steen 2018; Slim et al.

2020). In some GWA studies also, epistatic interactions

have been examined, and significant epistatic interactions

have been reported for several traits in different crops

including wheat (Mackay 2014; Moellers et al. 2017;

Sehgal et al. 2017, 2020).

Keeping the above in view, the present study was

planned, which involved the use of the following four

improved mixed linear models: (1) Compressed Mixed

Linear Model (CMLM;Zhang et al. 2010), (2) Fixed and

random model Circulating Probability Unification (Farm-

CPU; Liu et al. 2016), (3) Settlement of MLM Under

Progressively Exclusive Relationship (SUPER; Wang et al.

2014), and (4) Multi-trait analysis matrix variate linear

mixed model (mvLMM; Korte et al. 2012). These models

allowed multi-locus and multi-trait analysis and also

allowed identification and measurements of epistatic

interactions. Hopefully, the results of the present study will

prove useful for developing wheat cultivars, through MAS/

MARS, with improved grain/flour quality, high market

value and grain yield.

Materials and methods

GWAS panel and genotyping details

Originally, 330 spring wheat genotypes belonging to spring

wheat reference set (SWRS) were obtained from CIM-

MYT, Mexico. However, in the present study on GWAS a

subset comprising only 225 diverse wheat genotypes was

used. The geographical distribution of these genotypes is

shown in Fig. 1 and pedigree information for each geno-

type is available in Table S1. Genotyping data was

retrieved from the original data on the entire set of 330

SWRS genotypes that were genotyped using DArT-seq

(outsourced by CIMMYT to Diversity Array Technology

Pvt. Ltd, Australia, under their ‘‘Seed for Discovery’’

project). The genotypic data for 10,904 SNPs out of 17,937

SNP markers for the whole set of 330 genotypes was

available for the subset of 225 genotypes used during the

present study, as also in a previous study (Kumar et al.

2018).

The GWAS panel of 225 genotypes was raised during

rabi-season in a simple lattice design with two replications

at the Research Farm of the Department of Genetics and

Plant Breeding, Ch. Charan Singh University, Meerut (lo-

cation coordinates: 28.984644�N and 77.705956�E) over

two consecutive years representing two different environ-

ments (E1; 2017–18 and E2; 2018–19). Each genotype was
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represented by a plot of 3 rows of 1.5 m each, with a row to

row distance of 0.25 m. The total number of blocks were

15 with each block containing 45 rows i.e. three rows of

each genotype. Normal cultural practices including fertil-

izer application (i.e., 200 kg/ha fertilizer; N:P:K = 8:8:8)

and irrigation were followed.

Data on grain morphology traits

The data on six grain morphology traits were collected

using 24 grains (picked up randomly) for each of the 225

genotypes per replication using SmartGrain software ver.

1.2 (Tanabata et al. 2012). SmartGrain software makes use

of grain images to record data on grain morphology, using

all the grains within a digital image; it detects outlines, and

then estimates all grain size parameters viz, cross-sectional

area (CSA), grain perimeter (GP), grain length (GL), grain

width (GWid), grain length–width ratio (GLWR) (Fig. 2).

Thousand grain weight (TGW) in grams (g) was also

measured by weighing 1000-grains of each of the 225

genotypes in each replication. Another parameter (grain

form-density; GFD) was calculated with the help of three

different parameters (TGW, GL & GWid) using the fol-

lowing formula: GFD = TGW
GL�GWid , which determines vari-

ation in grain weight that is not accounted for by the

differences in grain length and weight (Giura and Saulescu

1996). For each trait, average values obtained for all 24

grains were utilized for further analysis.

Statistical analysis

The violin plots were prepared to depict the distribution of

phenotypic data for all the six traits for each of the two

individual environments (E1 and E2) and also using BLUP

values (B). The BLUP values were generated using the

‘lme4’ package in the R programme (Bates et al. 2015).

Pearson’s correlation coefficients were estimated using R

package Performance Analytics (Peterson et al. 2018) and

ANOVA was conducted using AMMI (additive main

effects and multiplicative interactions) available in Agri-

colae R package (Mendiburu and Yaseen 2020). Broad

sense heritability (H2) was calculated as the ratio between

genotypic variance (r2
g) and phenotypic variance (r2

p)

using mathematical formula; H2 ¼ r2g
r2p � 100 by Microsoft

Excel 2010 (Allard 1999).

Fig. 1 Country of origin of the

wheat genotypes comprising

association mapping panel used

during the present study
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Population structure using principal component

(PC) analysis and, kinship matrix

The Q matrix based on PCs and kinship matrix based on

relatedness among markers were automatically generated

using default set of parameters in GWAS models (Van-

Raden 2008; Lipka et al. 2012). These were used to per-

form GWAS using software for CMLM, FarmCPU and

SUPER available in the package ‘Genomic Association

and Prediction Integrated Tool (GAPIT version 2.0; Tang

et al 2016) in R programme; mvLMM for multi-trait

analysis was perormed using the software GEMMA (Zhou

and Stephens 2012).

Marker-trait association (MTAs)

Main effect MTAs were identified using three different

models, namely CMLM, FarmCPU and SUPER using

software available in GAPIT version 2.0 using R pro-

gramme (Tang et al. 2016). Matrix variate linear mixed

model (mvLMM) for multi-trait analysis was used for the

identification of SNPs associated with more than two traits

(Furlotte and Eskin 2015). The epistatic interactions were

identified using R package SNPassoc, where the function

interactionPval was executed for computing the statistical

significance of paired SNP–SNP interactions (Gonzalez

et al. 2007). Main effect MTAs and those involved in

epistatic interactions, identified by different methods, were

independently subjected to FDR (- log p value = 5.0) and

Bonferroni correction to address the problem of multiple

testing; very few MTAs were obtained using Bonferroni

correction (- log p value = 6.0); therefore, MTAs after

applying FDR were used for further analysis. MTAs

obtained after Bonferroni correction, were also used for

identification of candidate genes (CGs) (see later). The

chromosomal locations and positions of unmapped markers

associated with traits were identified using BLASTn from

IWGSC RefSeq v1.0 Ensembl Plants using nucleotide

sequences (SNP tags) of SNPs with 100% identities

(https://plants.ensembl.org/Triticum_aestivum/Info/Index).

Comparison of MTAs with known QTLs

The MTAs obtained in the present study were compared

with known QTLs/MTAs of each trait. For this purpose,

physical positions of known MTAs were obtained utilizing

the data available in Ensemble Plant (version 50; https://

plants.ensembl.org/Triticum_aestivum/Info/Index).

Identification of putativeCGs and their in silico

expression analysis

For identification of CGs, only the MTAs which qualified

Bonferroni correction, were utilized. For this purpose, SNP

tags associated with MTAs were aligned with reference

genome version IWGSC1.0 (IWGSC 2018), available at

Ensembl Plants (http://www.ensembl.org/info/docs/tools/

vep/index.html) and 200 kb window (100 kb on either side

of SNP) was obtained for identification of CGs. The gene

ontology (GO) annotation information of all these CGs was

extracted from the IWGSC website (http://www.wheatgen

ome.org/). The RNA-seq expression data from Wheat

Expression Browser was used for in-silico gene expression

analysis (http://www.wheat-expression.com/). The expres-

sion of each CGs in different parts of the seed and at dif-

ferent developmental stages was examined and presented

in the form of a heatmap.

Fig. 2 Images of seeds showing

method of recording phenotypic

data: (1) 24 seeds (left panel)

from one genotype, (2) single

whole wheat seed (middle

panel), and (3) flowchart for

estimation of seed morphology

(right panel) using SmartGrain
software. Grain morphological

traits in the middle panel: (1)

GCSA = grain cross-sectional

area; shaded region of grain; (2)

GP = grain perimeter in red

line; (3) GL = grain length

as yellow line, (4) Gwid = grain

width as green line
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Homology-based mining of genes

Protein sequences of known rice genes, for the traits of

interest, were retrieved from NCBI database (https://www.

ncbi.nlm.nih.gov/), and used against wheat genome

sequences (IWGSC RefSeq v1.0) available at Ensembl

Plants. Orthologous wheat genome sequences were iden-

tified using BLASTx search. From these wheat genome

sequences, the sequences which were located within the

CGs were used for further study. The rice genes and their

functions were identified using oryzabase database of rice

(https://shigen.nig.ac.jp/rice/oryzabase/).

Results

Frequency distribution, ANOVA, heritability

and correlations

The frequency distributions of phenotypic data for all the

six traits based on BLUP values (Fig. 3) and for each of the

two environments are presented in the form of violin plots

(Fig. S1). The results of ANOVA for all the six traits are

presented in Table 1. Genotypic differences were signifi-

cant for all the six traits, but G X E interactions were

significant for only four (GCSA, GP, GL, and GFD) of the

six traits. Broad sense heritability (H2) ranged from 41%

(GWid) to 89% (GCSA) (Table 1). All 21 pairwise Pear-

son’s correlations involving all six grain morphology traits

and TGW for all the three sets of data including BLUP and

two environments are provided in Fig S2. Significant cor-

relations included 12 positive and 7 negative correlations in

E1 (Fig. S2), 8 positive and 4 negative correlations in E2

(Fig. S3), and 11 positive and 7 negative correlations using

BLUP values (Fig. 4). Significant positive correlations

were also available between TGW andGCSA in all the

three sets of data (Fig. 4, Fig. S2 & S3).

Population structure using principal component

analysis (PCA)

Population structure was worked out using principle com-

ponent analysis (PCA), where the first three PCs produced

a 3D scatter plot showing distribution of genotypes into

sub-groups. The PCs divided the whole association panel

into three sub-groups with variation within sub-groups

ranging from 3.44% (PCA3) to 6% (PCA 1) (Malik et al.

2021). These three subgroups represented the population

structure and were used for development of Q matrix for

GWAS.

Fig. 3 Violin plots showing the

frequency distribution of BLUP

values for six traits of grain

morphology. Shaded regions of

the violin plots represent the

frequency distribution of data,

in each case, the vertical solid

bar indicates range of average

values, and median is shown as

white circle, depicting the

lower, medium and upper

quartile
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MTAs for two individual environments and BLUP

values

The results of GWAS for individual traits involving two

environments and BLUP and those for multi-traits will be

described separately.

MTAs for two environments

Using data from two environments (E1 and E2), 824 MTAs

for individual traits were identified using three models of

GWAS (CMLM, FarmCPU; and SUPER; Table S2). After

FDR correction, only 21 significant MTAs were identified.

The number of trait-wise MTAs identified using each of the

three models were as follows; (1) CMLM: 11 MTAs for

three trait (Table 2 and Fig. 5), (2) FarmCPU: 9 MTAs for

five traits (Table 3 and Fig. 6) and (3) SUPER: only 1

MTA for GL (SNP_3202: 3A). After Bonferroni

correction, only one significant MTA (SNP_3202) for GL

in E2 was available in each of the following three models:

CMLM, FarmCPU, and SUPER methods; this MTA is

located on chromosome 3A at

593,990,302–593,990,370 bp. Only MTAs obtained using

FDR and Bonferroni correction were used for further study.

MTAs for BLUP data

Using BLUP values, 234 significant MTAs were identified;

the distribution of trait-wise MTAs for three models were

as follows: (1) CMLM: 65 MTAs for six traits; this number

was reduced to 11 MTAs after FDR; only four MTAs

qualified Bonferroni multiple correction for three traits

(Table 2 & Fig. 5), (2) FarmCPU: 93 MTAs for six traits;

only 10 MTAs after FDR for five traits, and only two

MTAs after Bonferroni correction for two traits (Table 3 &

Fig. 6), (3) SUPER: 76 MTAs were found for six traits, but

Table 1 Analysis of variance

(ANOVA) and broad sense

heritability (H2) of wheat

genotypes tested in two

different environments

(E1:2017–18 and E2:2018–19)

with two replications in each

environment

Source of variation DF GCSA GP GL GWid GLWR GFD

Environments 1 15.27 87.66* 8.04*** 1.35 0.05 46.35**

Replication within environments 3 6.66*** 7.69*** 0.03 0.59*** 0.61*** 0.85*

Genotypes 224 12.44*** 4.89*** 0.50*** 0.16*** 0.33*** 2.47***

Environment x genotype 448 0.45** 0.49* 0.16* 0.07 0.06 1.28***

Broad sense heritability (H2) % 89 73 42 41 56 63

***0.1% level of significance; **1% level of significance; *5% level of significance, DF; degrees of

freedom; GCSA; grain cross-sectional area, GP; grain perimeter, GL; grain length, GWid; grain width,

GLWR; grain length–width ratio and GFD; grain form-density

Fig. 4 Pairwise Pearson’s

correlation coefficients among

the six grain morphology traits

and 1000-grain weight

estimated using BLUP values of

each trait
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no MTA was detected after FDR or Bonferroni corrections

for any trait. Two MTAs were also common in each of the

following pairs involving BLUP, environments and mod-

els: BLUP-FarmCPU, E1-FarmCPU and E2-FarmCPU;

these MTAs were also associated with GCSA and GFD,

respectively (Table 3).

MTAs using multi-trait analysis

Multi-trait analysis, using mvLMM, gave 46 MTAs in 16

trait combinations (2–4 correlated traits) in both environ-

ments (E1 and E2) after FDR correction (Table 4), but after

Bonferroni correction only four significant MTAs (out of

514 identified MTAs) for one trait combination (GL-

GWid-GLWR-FFD) were available in each of the two

environments. These four MTAs involved only two SNPs,

one each on 2B and 6B (SNP_9744 on 2B at

800,127,644–800,127,712 bp and SNP_912 on 6B at

674,558,317–674,558,364 bp: Table 4).

MTAs involved in epistasis

MTAs involving 360 pairs of epistatic interactions

involving all the six traits were also identified; after FDR

correction, only MTAs for 29 epistatic interactions

involving 47 markers (11 markers were common among

the interactions) were available. The trait-wise interactions

included a number of interactions for individual traits

ranging from a minimum of one for GP to a maximum of

12 interactions for GFD (Table S3). After Bonferroni

corrections, only three epistatic interactions remained sig-

nificant, which involved two of the six traits (Table S3).

Comparison of MTAs with QTLs reported earlier

A total of 116 significant MTAs (21 CMLM ? 19 Farm-

CPU ? 1 SUPER ? 46 mvLMM ? 29 epistasis) were

available for all the six traits after applying FDR. These

significant MTAs were compared with the previously

reported QTLs/MTAs for same traits. Only two MTAs one

each for GP and GWid were detected in the flanking region

Table 2 Summary of

significant MTAs detected in

the two environments (E1,

2017–18 and E2, 2018–19) and

BLUP values after false

discovery rate (FDR) correction

using CMLM

Trait SNP Allele Chr Pos. of SNP tag (bp) R2 Effect

E1

GLWR SNP_13927 G/A# 2B 658,485,687–658,485,737 0.12 -0.09

E2

GL SNP_3202* A/G 3A 593,990,302–593,990,370 0.14 -0.28

SNP_1476 A/C 6B 19,922,669–19,922,737 0.12 -0.22

SNP_8572 A/G 5B 4,832,008–4,832,050 0.12 -0.13

SNP_10532 G/C 4A 603,050,386–603,050,443 0.12 -0.23

SNP_1716 C/T 2B 41,473,091–41,473,159 0.11 -0.19

SNP_9406 G/A 3B 36,470,465–36,470,533 0.11 0.11

SNP_4632 T/C 7A 44,352,216–44,352,284 0.11 0.21

GWid SNP_2896 G/A 7A 77,195,120–77,195,188 0.1 -0.08

SNP_330 T/A 2B 615,353,108–615,353,155 0.09 -0.1

SNP_3275 T/C 1A 555,132,587–555,132,655 0.09 -0.07

BLUP

GCSA SNP_4563 A/C 2B 571,070,836–571,070,884 0.12 -0.61

GL SNP_7441* A/G 3A 731,844,353–731,844,410 0.12 0.01

SNP_14066 T/C 2B 12,009,346–12,009,414 0.13 0.01

GP SNP_12816 A/G 7B 647,426,653–647,426,721 0.13 -0.29

SNP_13748 C/T 3A 715,576,111–715,576,179 0.13 0.2

SNP_9771 G/T 7B 684,269,233–684,269,301 0.12 0.21

GWid SNP_5401* G/T 2A 79,343,336–79,343,404 0.1 0.05

SNP_4648* G/T 7A 94,143,005–94,143,073 0.1 0.12

GLWR SNP_5518 G/A 1D 225,564,124–225,564,192 0.09 -0.05

SNP_12288* T/C 2B 683,768,477–683,768,545 0.08 -0.03

GFD SNP_15086 G/A 7B 641,807,115–641,807,183 0.11 -0.22

E1; environment 1, E2; environment 2, *; Bonferroni multiple correction passed, #; desirable allele, Chr;

chromosome, Pos; position

Physiol Mol Biol Plants (March 2022) 28(3):651–668 657

123



658 Physiol Mol Biol Plants (March 2022) 28(3):651–668

123



of the reported QTL/MTAs. However, three MTAs were

identified in the vicinity (\ 50 Mb) of the reported QTL

regions (Table 5).

Important MTAs for marker assisted selection

(MAS)

MTAs identified in the present study, were subjected to

further scrutiny in order to identify the most important

MTAs, which could be recommended for MAS. MTAs

were selected, which fulfilled at least one of the following

criteria: (1) highest R2, (2) lowest P-value, (3) availability

in more than one models, (4) stability (identified in all the

environments), (5) availability in earlier studies (including

both interval mapping and GWAS). (6) qualified Bonfer-

roni corrections, including those involved in epistatic

interaction. Using these criteria, only 14 MTAs were short-

listed, which all qualified Bonferroni and included 4 MTAs

from CMLM, 1 MTA from FarmCPU, 2 MTAs from

mvLMM, 6 MTAs from epistasis and 1 common MTA

form CMLM, FarmCPU and SUPER (Table 6).

CGs based on GWAS-MTAs

Using GWAS-MTAs, which qualified Bonferroni correc-

tion, 25 CGs were available for 9 MTAs (all six traits were

represented). Of these 25 CGs, two CGs were available for

a solitary common MTA identified using each of the three

models (CMLM, FarmCPU and SUPER); six CGs were

also available for one MTA detected using mvLMM and 17

CGs were available from 6 MTAs involved in epistatic

interactions. However no hit was detected for two MTAs

(one each from mvLMM, and epistatic interaction;

Table S4). Similarly, 30 CGs were identified using six

MTAs obtained using BLUP values for the four traits

(Table S4). CGs so detected were found to be involved in

different biological (including grain related traits) and

molecular functions. Some CGs encoded important pro-

teins such as sucrose synthase (TraesCS7B02G482200:

Table S4). These protein domains were associated either

directly or indirectly with grain traits in wheat.

bFig. 5 Manhattan plots (left side) showing significant marker-trait

associations (MTAs) on 21 chromosomes and ump (represents

unmapped MTAs) using CMLM with corrected P-value after FDR

(blue line) and Bonferroni (red line) corrections in each case. Q-Q

plots (right side) represent distribution of observed and expected

P values for the same traits using environment 1 & 2 (E1 and E2) and

BLUP values

Table 3 A list of significant

MTAs that qualify FDR

correction detected in each of

the two the environments (E1-

2017–18 and E2-2018–19)

using FarmCPU

Trait SNP Allele Chr Pos. of SNP tag (bp) Effect

E1

GCSA SNP_2665 C/T# 7A 611,728,422–611,728,490 0.75

GP SNP_4263 C/G 2B 215,951,648–215,951,716 - 0.65

GWid SNP_7518 G/C 5D 368,249,809–368,249,877 - 0.09

E2

GCSA SNP_1597 C/T 1D 67,863,683–67,863,742 - 1.12

GL SNP_3202* A/G 3A 593,990,302–593,990,370 - 0.28

GP SNP_4865 T/C 5A 10,724,684–10,724,752 0.76

SNP_9771 T/G 7B 684,269,233–684,269,301 0.38

GFD SNP_6775 T/A 2B 436,016,073–436,016,141 - 0.42

SNP_10672 T/C 6A 602,752,656–602,752,703 0.42

BLUP

GCSA SNP_4563* C/A# 2B 571,070,836–571,070,884 - 0.61

SNP_2665 T/C 7D 531,439,752–531,439,820 0.57

GP SNP_4865 T/C 5B 547,290,640–547,290,708 0.01

SNP_13730 T/C 3B 70,909,819–70,909,887 0.01

GL SNP_7441* G/A 3B 809,510,260–809,510,317 0.2

SNP_8141 C/T 4A 702,149,172–702,149,240 0.05

GLWR SNP_5518 G/A 1D 225,564,124–225,564,192 0.12

GFD SNP_15086 A/G 7B 641,807,115–641,807,183 - 0.22

SNP_1653 G/T 1A 550,948,719–550,948,771 - 0.24

SNP_6775 A/T 2B 436,016,073–436,016,141 0.51

E1; environment 1, E2; environment 2, *; Bonferroni multiple correction passed, #; desirable allele, Chr;

chromosome and Pos; position
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Expression analysis of CGs

In silico expression analysis suggested that CGs differed in

their level of expression in different tissues of the seed (e.g.

embryo, endosperm, aleurone, seed coat) and at different

stages of development (Fig. 7). It is apparent from the

figure that most genes have tissue-specific expression and

that many more genes have high expression only in embryo

proper and seed coat.

Wheat orthologues of rice genes for grain

morphology

Wheat orthologs of known rice genes for grain morphology

traits were also identified (Table S5). For this purpose,

eight rice genes were selected on the basis of their func-

tions relevant to the traits of our interest and location

within the regions of corresponding wheat CGs. Each of

bFig. 6 Manhattan plots (left side) showing significant marker-trait

associations (MTAs) on 21 chromosomes and ump (represents

unmapped MTAs) using FarmCPU with corrected P-value\ 0.05

after FDR (blue line) and Bonferroni (red line) corrections in each

case. Q-Q plots (right side) represent distribution of observed and

expected P-values for the same traits using environment 1 & 2 (E1

and E2) and BLUP values

Table 4 A summary of significant MTAs for 2–4 traits that qualify FDR correction and detected in both the environments (E1-2017–18 and E2-

2018–19) using mvLMM

Trait

combination

SNP Allele# Chr Pos. of SNP tag (bp) Trait

combination

SNP Allele# Chr Pos. of SNP tag (bp)

E1

GL-GWid-

GLWR-

GFD

SNP_912* C/G# 6B 674,558,317–674,558,364 GP-GWid-

GLWR-

GFD

SNP_8616 C/A 7A 41,428,595–41,428,650

SNP_9744* G/C 2B 800,127,644–800,127,712 SNP_9656 T/A 1A 351,340,404–351,340,472

SNP_17773 G/C 3B 819,747,424–819,747,492 GCSA-GL-

GLWR-

GFD

SNP_8616 C/A 7A 41,428,595–41,428,650

GCSA-

GWID-

GLWR-

GFD

SNP_8616 A/A 7A 41,428,595–41,428,650 GP-GL-

GWLR-

GFD

SNP_12761 T/G 6B 20,093,212–20,093,280

E2

GCSA-GP-

GL

SNP_8221 T/C 1D 408,525,725–408,525,793 GCSA-

GWid-

GLWR-

GFD

SNP_912* C/G 6B 674,558,317–674,558,364

SNP_3393 A/T 5A 536,221,003–536,221,071 SNP_9744* G/C 2B 800,127,644–800,127,712

SNP_16292 C/T 5B 697,526,371–697,526,439 SNP_7751 T/C 2A 51,261,956–51,262,014

GP-GL-

GWid

SNP_8221 T/C 1D 408,525,725–408,525,793 SNP_3393 A/T 5A 536,221,003–536,221,071

SNP_3393 T/A 5A 536,221,003–536,221,071 SNP_11003 C/A 6A 584,705,543–584,705,611

GL-GWid-

GLWR

SNP_7751 T/C 2A 51,261,956–51,262,014 SNP_259 G/A 2B 703,904,164–703,904,221

SNP_11003 A/C 6A 584,705,543–584,705,611 SNP_6171 G/C 7A 681,786,065–681,786,132

SNP_3968 C/T 6A 583,269,004–583,269,072 SNP_3968 C/T 6A 583,269,004–583,269,072

SNP_3393 T/A 5A 536,221,003–536,221,071 SNP_3393 A/T 5A 536,221,003–536,221,071

GWid-

GLWR-

GFD

SNP_3915 C/T 3A 502,497,785–502,497,853 GP-GWid-

GLWR-

GFD

SNP_3915 T/C 3A 502,497,785–502,497,853

SNP_373 G/T 1A 573,920,780–573,920,835 SNP_2735 T/C 6A 69,057,764–69,057,802

SNP_259 A/G 2B 703,904,164–703,904,221 SNP_373 T/G 1A 573,920,780–573,920,835

GCSA-GP-

GL-GWid

SNP_3393 T/A 5A 536,221,003–536,221,071 SNP_3915 T/C 3A 502,497,785–502,497,853

SNP_16292 C/T 5B 697,526,371–697,526,439 SNP_8221 C/T 1D 408,525,725–408,525,793

GP-GL-

GWid-

GLWR

SNP_7751 C/T 2A 51,261,956–51,262,014 GCSA-GL-

GLWR-

GFD

SNP_3393 A/T 5A 536,221,003–536,221,071

SNP_11003 A/C 6A 584,705,543–584,705,611 SNP_373 T/G 1A 573,920,780–573,920,835

SNP_3968 C/T 6A 583,269,004–583,269,072 GP-GL-

GLWR-

FFD

SNP_373 T/G 1A 573,920,780–573,920,835

GL-GWid-

GLWR-

GFD

SNP_373 T/G 1A 573,920,780–573,920,835 SNP_688 A/G 4A 692,758,028–692,758,090

SNP_3915 T/C 3A 502,497,785–502,497,853 SNP_3915 T/C 3A 502,497,785–502,497,853

*; Bonferroni multiple correction passed, Chr; chromosome, Pos; position and # desirable allele
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these rice genes is known to play an important role in seed

morphology and reproductive organ development. The

results of this exercise are summarised in Table 7. Among

these eight rice genes, following two genes deserved spe-

cial attention. (1) The wheat gene TraesCS7B02G409000

(associated with GLWR of wheat) corresponded to the rice

gene OsGW2, which is known to play an important role in

in grain width/weight in rice. This gene is highly expressed

in seed development stages and the encoded protein is

localized in the nucleus and cytoplasm. (2) The wheat gene

TraesCS2B02G487800 (associated with GLWR) corre-

sponded rice gene OsVP1, which is known to play an

important role in seed maturation and dormancy.

Discussion

Grain morphology is an important complex quantitative

trait, which includes a number of component traits

including six traits that were utilized for GWAS in the

present study. It is known that a long tiny primitive grain of

the progenitors of wheat was transformed during domes-

tication into the present-day much bigger round grain of

wheat (Gegas et al. 2010). Among the three progenitors of

wheat sub-genomes, the progenitor of sub-genome A,

namely T. urartu, is known to be the major determinant of

grain shape (Feldman et al. 2012). Among other alien

species, the sub-genome D progenitor, namely Ae. tauschii

is also known to affect grain morphology of wheat (Röder

et al. 2008; Okamoto et al. 2013; Rasheed et al. 2014).

Table 5 MTAs for six traits identified during the present study that correspond to known QTLs (either overlapping known QTLs or located in

the vicinity of known QTLs) in wheat

MTAs QTL reported earlier

Trait SNP (MTA) Chromosome Position (Mb) Reported region (Mb) References for QTL in earlier study

Associated SNP identified within flanking region of the reported QTL

GP SNP_9771 7B 684.27 136.1–740.72 Kumari et al. (2018)

GWid SNP_5401 2A 79.34 59.55–112.75 Williams et al. (2013)

Associated SNP identified in the vicinity (\ 50 Mb) to reported QTL regions

GWid SNP_8883 3A 510.68 528.21 Gao et al. (2021)

GLWR SNP_12288 2B 683.77 718.96

GFD SNP_2816 1A 549.31 511.45 Kumari et al. (2018)

Table 6 Summary of most important MTAs for MAS

SNP Chr Pos. of SNP tags Allele# Description

SNP_3202 3A 593,990,302–593,990,370 A/G# Detected using CMLM, FarmCPU and SUPER: associated with GL

SNP_9744 2B 800,127,644–800,127,712 G/C Detected using mvLMM and identified in the both environments: associated with GL-

GWid-GLWR-GFD

SNP_912 6B 674,558,317–674,558,364 C/G Same as above

SNP_7441 3A 731,844,353–731,844,410 A/G Detected using CMLM: associated with GL

SNP_5401 2A 79,343,336–79,343,404 G/T Detected using CMLM: associated with Gwid

SNP_4648 7A 94,143,005–94,143,073 G/T Same as above

SNP_12288 2B 683,768,477–683,768,545 T/C Detected using CMLM: associated with GLWR

SNP_4563 2B 571,070,836–571,070,884 C/A Detected using FarmCPU: associated with GCSA

SNP_11360 1A 6,341,227–6,341,295 T/G Detected using epistasis: associated with GLWR

SNP_11245 7B 739,999,777–739,999,837 C/G Same as above

SNP_12855 5B 43,824,419–43,824,487 G/A Same as above

SNP_2977 7B 678,267,823–678,267,891 T/G Same as above

SNP_5634 2D 82,867,198–82,867,237 G/A Detected using epistasis: associated with GFD

SNP_1974 5A 480,099,548–480,099,616 T/G Same as above

Chr; chromosome, Pos; position (base pair) and #; desirable allele
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The objective of the present study was to investigate the

genetic architecture of six grain morphology traits utilizing

a set of 225 wheat genotypes comprising an association

panel. The genotypes in the above panel were also a part of

the association panels used in three of our earlier studies

(Kumar et al. 2018; Gahlaut et al. 2019, 2021). Several

studies involving interval mapping or association mapping

have been conducted earlier to study the genetic architec-

ture of the grain weight in wheat (Ain et al. 2015; Sun et al.

2017; Kumar et al. 2018; Singh et al. 2021). Some of these

studies also involved grain morphology traits, including the

following traits used in the present study: GCSA, GWid,

GLWR, GP, GL and GFD (Ramya et al. 2010; Gegas et al.

2010; Prashant et al. 2012; Williams et al. 2013; Okamoto

et al. 2013; Williams and Sorrells 2014; Tyagi et al. 2014;

Rasheed et al. 2014; Zhang et al. 2015; Wu et al. 2016;

Arora et al. 2017; Yan et al. 2017; Kumari et al. 2018;

Yoshioka et al. 2019; Alemu et al. 2020; Gao et al. 2021;

Schierenbeck et al. 2021). The present study is yet another

study, which added a number of novel MTAs to the ever-

growing list of markers associated with grain morphology

traits. In the present study, three sets of data (E1, E2 and

BLUP) were utilized. Majority of MTAs were unique in

these three sets with only 4 MTAs that were common in

two of the three sets. This suggested that majority of MTAs

were environment specific and that there were strong QT L

x Environment interactions, making it difficult to use the

same MTAs for MAS under different environment. This is

in agreement with the results of some earlier studies

(Gahlaut et al. 2020; Alemu et al., 2021; Thudi et al. 2021).

The four models and another model for epistatic inter-

actions were used in the present study. Software for these

models (except mvLMM) are available in the package

GAPIT version 2.0, made available in 2016 (Tang et al.

2016), although now GAPIT version 3 is also available

(Wang and Zhang 2021); GAPIT version 1.0 was devel-

oped earlier (Lipka et al. 2012). Each of these four models

have their own merits over initial MLM proposed by Ed

Buckler’s group at Cornell University (Yu et al. 2006). For

instance, CMLM overcomes the computational problem

associated with large datasets by decreasing the effective

sample size by clustering individuals into groups.

Fig. 7 In-silico expression analysis of CGs in different tissues in wheat; columns represent 10 different development stages/tissues of grain and

rows represent 26 different proteins encoded by candidate genes (CGs)
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FarmCPU eliminates confounding problems arising due to

kinship, population structure, multiple testing, etc. through

the use of Fixed Effect Model (FEM) and a Random Effect

Model (REM) iteratively. SUPER solves the computational

burden problem, and overcomes the limitation, where

number of SNPs should be less than the number of indi-

viduals through extracting a small subset of SNPs, thus

increasing the statistical power without reducing the

number of SNPs. The mvLMM allows use of two or more

correlated traits for multi-trait analysis.

In the present study, different models gave different

results suggesting that different models differ in their

superiority over TASSEL. Only a solitary MTA

(SNP_3202) was identified using three different models

(Table 2). Similar results have been reported in several

recent GWAS studies involving multiple models (Alemu

et al. 2021; Thudi et al. 2021). This feature alone shows the

utility of multiple models for GWAS. The results of the

present study also support the general conclusion that till

recently, FarmCPU has been the best model for GWAS.

However, FarmCPU is a bin method under the unrealistic

assumption that quantitative trait nucleotides (QTNs) are

evenly distributed throughout the genome. In FarmCPU we

use REM which is computationally expensive. In the

recently developed tool named BLINK, REM is replaced

with FEM in order to eliminate the requirement that QTNs

are evenly distributed throughout the genome, which fur-

ther improved the statistical power of FarmCPU, in addi-

tion to reduced computing time, so that a large dataset with

one million individuals and one-half million markers can

be analyzed within three hours, instead of one week using

FarmCPU (Huang et al. 2018). Therefore, we anticipate

that BLINK will be increasingly used in future replacing

FarmCPU, particularly, when large association panels with

millions of markers are used for GWAS.

Correlations between different traits including SA, GP,

GL and GWid also suggested that there may be QTLs

which contribute each to more than one trait involved in

grain size (Fig. 4, Figs. S2 & S3; Okamoto et al. 2013;

Kumari et al. 2018; Yoshioka et al. 2019; Alemu et al.

2020; Mérida-Garcı́a et al. 2020; Gao et al. 2021). Sig-

nificant negative correlation of GFD with all the traits

except GLWR is also in agreement with earlier reports

(Dholakia et al. 2003; Kumari et al. 2018). A significant

negative correlation between GLWR and GWid observed

in the present study in both the environments (Figs. S2 &

S3) may be the result of positive selection for round grains

(Okamoto et al. 2013; Kumari et al. 2018; Gao et al. 2021).

The association panel used during the present study

exhibited a low level of population structure containing

only three sub-populations, as was also reported in two of

our earlier GWA studies, where association panels inclu-

ded the genotypes used during the present study (Kumar

et al. 2018; Gahlaut et al. 2019, 2021). However, the

number of sub-populations in some other previous GWA

studies ranged from three (Wang et al. 2017; Rahimi et al.

2019) to five (Qaseem et al. 2018; Jamil et al. 2019). Low

level of population structure, as observed in the present

study and in our earlier GWA studies is a desirable feature

for conducting GWAS.

Table 7 List of selected homology-based mining of candidate genes

Methods Trait (Env.);

Associated SNP:

Chr

Wheat candidate genes Rice gene id Rice gene Function

CLMM,

FarmCPU,

SUPER

GL (E2);

SNP_3202: 3A

TraesCS3A02G344400 Os01t0822200-01 OsRLCK47 Panicle and seed development

Epistasis

interaction

GLWR (E1);

SNP_11245:

7B & GLWR

(E1);

SNP_2977: 7B

TraesCS7B02G482200
TraesCS7B02G482400
TraesCS7B02G409000
TraesCS7B02G409200

Os04t0309600-01
Os06t0102800-01
& Os06t0652550-
00 Os03t0325900-
00

OsSUS5
Osenl1 &

OsGW2
OsEnS-8

Seed—Morphological traits character as

QTL—Yield and productivity Seed—

Morphological traits – Endosperm

Seed—Morphological traits—Grain

shape Seed—Morphological traits—

Grain shape

BLUP GLWR;

SNP_12288:

2B

TraesCS2B02G487800 Os03t0212300-01 OsVp1 Seed—Physiological traits—Dormancy

GWid;

SNP_5401: 2A

TraesCS2A02G132300 Os06t0552900-00 OsFTL12 Reproductive organ—Heading date

GWid;

SNP_4648: 7A

TraesCS7A02G142600 Os01t0213300-00 OsMADS91 Reproductive organ—Spikelet, flower,

glume, awn, panicle

Env; environment, Chr; chromosome, E1; environment 1 and E2; environment 2
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The availability of a large number of MTAs identified

during the present study suggested that multiple loci are

involved in controlling each of the six traits (Fig. 3 and

Table 1). A comparison of the results of the present study

with those reported earlier suggested that 14 of the novel 112

MTAs identified in the present study (Tables 5, 6) may be

useful for MAS. The multi-locus analysis (allowed by

FarmCPU) and multi-trait analysis also allowed identifica-

tion of MTAs, each controlling more than one trait. This

feature of mvLMM provides an additional advantage over

multi-trait mixed model (MTMM) initially developed by

Korte et al. (2012), which permits detection ofMTAs for not

more than two traits at a time (Jaiswal et al. 2016; Kumar

et al. 2018). Although multi-trait analysis usingMTMM and

involving only two traits has been used in earlier GWA

studies, more recently mvLMM permitting identification of

MTAs involving more than two traits has been used in sev-

eral studies (Furlotte and Eskin 2015; Kumar et al. 2018;

Deng et al. 2018; Gao et al. 2021; Chen et al. 2021; Malik

et al. 2021). Availability of 46 MTAs, each involving more

than one trait (Table 4), suggest a significant role of pleio-

tropy or close linkage in controlling the grain morphology

traits in wheat. TheseMTAs included four significant MTAs

for GL-GWid-GLWR-GFD that qualified Bonferroni cor-

rection (Table 4). These four MTAs were common among

both the environments and should prove useful for simulta-

neous improvement of more than one trait using MAS.

Earlier reports on multi-trait association analysis reported 6

to 38 MTAs involving up to five traits for a variety of grain

quality and yield traits inwheat (Kumar et al. 2018;Gao et al.

2021; Malik et al. 2021). However, specifically for grain

morphology traits, only six MTAs involving two to four

traits were reported by Gao et al. (2021), which agrees with

the results of the present investigation.

The availability of 29 first order epistatic interactions,

which qualified FDR correction (Table S3) also suggested

that epistatic interactions were not uncommon. However,

epistatic MTAs have been sparingly used in MAS for crop

improvement (Reif et al. 2011; Kao et al. 1999; Langer

et al. 2014; Jaiswal et al. 2016; Sehgal et al. 2017; Kumar

et al. 2018). Therefore, on the basis of the present study, it

is recommended that MTAs involved in epistatic interac-

tions, which significantly contribute to the available

genetic variation for the traits under study, should also be

used for MAS. Epistatic interactions in wheat using GWAS

have been reported in several earlier studies involving a

number of traits, which include the following: (1) flowering

time (Reif et al. 2011; Langer et al. 2014), (2) stem rust

resistance (Yu et al. 2011), and (3) agronomic traits

(Sehgal et al. 2017). Epistatic interactions were also earlier

identified in several studies from our own laboratory,

where 63 epistatic interactions for 13 different yield traits

were identified in one study and 73 epistatic interactions

for three micronutrients were identified in the other study

(Jaiswal et al. 2016); Kumar et al. 2018). Similarly, epi-

static interactions were also detected using bi-parental

populations through interval mapping (Li et al. 2011; Xu

et al. 2012; Rouse et al. 2014; Boeven et al. 2020).

Therefore, the results of epistatic interactions from earlier

studies and the present study may be useful for MAS to

supplement conventional wheat breeding.

MTAs were also used for identification of CGs for each

individual trait; this gave 55 CGs (Table S4). The in silico

expression analysis for 26 of the above CGs showed variable

expression in grain and related tissues. The CGs which

showed very high expression in one or more of the different

tissues of grain encode the following different proteins:

(i) Zinc finger, ZPR1-type, (ii) Neprosin, (iii) Protein kinase

domain, (iv) WD40 repeat, (v) Helicase, (vi) Protein kinase

domain.1, (vii) F-box like domain superfamily, (viii) K

homology domain, type,1 superfamily, (ix) B3DNA binding

domain, (x) HhH GPD domain, (xi) DNA glycolase, (xii)

Glycosyltransferase 61, (xiii) Protein JASON, (xiv) Zinc

finger, RINGFYV/PHD-type1, and (xv) F-box like domain

superfamily.1 (Fig. 7). The CGs encoding these proteins are

the targets of future functional genomics research aimed at

determining the role of these CGs in controlling the grain

morphology traits examined during the present study.

Some other important CGs includes the following; (1)

The gene TaFBA1 encoding F-box protein and its function

was confirmed through overexpression in tobacco, sug-

gesting its involvement in plant growth and development

including seed germination (An et al. 2019). (2) A sucrose

synthase gene, which is a key enzyme of starch biosyn-

thesis, thus affecting contents of starch affecting grain

morphology and weight (Dai et al. 2009). (3) Glycoside

hydrolase (a superfamily protein) is involved in different

processes such as seed development and endosperm cell

wall degradation during germination (Dong et al. 2019).

Another exercise in the present study involved identifi-

cation of eight important CG-based wheat genomic regions

carrying orthologues of rice genes for grain morphology.

These CGs, were associated with reproduction and regu-

lation of seed morphology and should be the target for

future studies in wheat (Table 7). For example, the gene

TraesCS3A02G344400, which is orthologous to the rice

gene OsRLCK47, is associated with GL of wheat. Shubha

et al. (2008), functionally characterized RLCKs from sev-

eral crops including rice, where it was shown to play roles

in development (panicle and seed development) and stress

responses. Similarly, TraesCS7B02G482200 (associated

with GLWR of wheat) is orthologue of the gene OsSUS5,

which plays an important role in seed development and was

shown to express in sink tissues like root, flower and

immature seed (Cho et al. 2011).
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Conclusions

The MTAs for six grain morphology traits, identified in

present study, may be useful for MAS for development of

wheat cultivars with high grain yield associated with high

quality. These MTAs may be validated and may also be

used for post-GWAS or joint linkage and association

mapping (JLAM; Gupta et al. 2019; Gahlaut et al. 2019).

The information of the CGs may also be useful for the

development of CG-based functional markers. These

markers may also be useful for MAS to facilitate breeding

for improvement of grain morphology traits. The CGs

identified in the present study may also be used for CG-

based association mapping and functional genomics in

future research.
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supplementary material available at https://doi.org/10.1007/s12298-
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