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Abstract Auxin response factor (ARF) acts as a vital

component of auxin signaling and participates in growth,

development, and stress responses in plants. In the present

study, we comprehensively analyzed kiwifruit’s (Actinidia

chinensis) ARF genes (AcARFs) and their involvement in

abiotic stress response. We identified a total of 41 AcARFs

encoding ARFs in the A. chinensis genome. AcARF genes

were characterized by the classic ARF_resp and a B3

domain and primarily localized on the cytoplasm and

nucleus. AcARFs were categorized into eight subgroups as

per the phylogenetic analysis. Synteny analysis showed

that 35 gene pairs in AcARF family underwent segmental

and whole genome duplication events. Promoter cis-ele-

ment prediction revealed that AcARFs might be involved

in abiotic factors related to stress response, which was later

assessed and validated by qRT-PCR based expression

analysis. Additionally, AcARFs showed tissue-specific

expression. These findings extend our understanding of the

functional roles of AcARFs in stress responses. Taken

together, the systematic annotation of the AcARF family

genes provides a platform for the functional and

evolutionary study, which might help in elucidating the

precise roles of the AcARFs in stress responses.

Introduction

Auxin is a plant hormone of utmost significance as it plays

crucial roles in the course of plant growth and develop-

ment, such as embryogenesis, flower and fruit develop-

ment, apical dominance, tropic response, root architecture,

and vascular development (Aloni et al. 2006; Esmon et al.

2006; Kazan 2013; Mattsson et al. 2003; Woodward and

Bartel 2005). Auxin exerts its effects via the modulation of

gene expression of a myriad of gene families, such as small

auxin up RNA (SAUR), gretchen hagen 3 (GH3), indole-3-

acetic acid (Aux/IAA) and auxin response factor (ARF)

(Wang et al. 2018; Yuan et al. 2019; Zhou et al. 2019).

ARFs function as transcription factors and are crucial

components of the auxin signalling pathway. They modu-

late auxin-regulated genes (ARGs) by binding explicitly to

the auxin response elements (AuxRE, 5’ TGTCTC 3’) in

the promoter of ARGs (Berendzen et al. 2012). ARFs

contain a conserved N-terminal DNA-binding domain

(DBD) and a C-terminal dimerization domain (CTD) (Ti-

wari et al. 2003). The DBD of ARFs binds to AuxRE in

ARG promoter regions. The C-terminal dimerization

domain is identical to that of Aux/IAA proteins appor-

tioned to domains III and IV; besides, it facilitates

homodimerization or heterodimerization of the ARFs or

numerous other Aux/IAA proteins (Ulmasov et al. 1999).

ARFs also encompass a non-conserved middle region

(MR), present between DBD and CTD. The ARFs medi-

ated transcriptional activation or repression is based on the

amino acid composition. The activator function is imparted
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by the QSL-rich (glutamine (Q), serine (S), leucine

(L) amino acids) and repressor activity by the S-rich (ser-

ine), SPL-rich (serine, proline, leucine), and SL / G-rich

(serine, leucine and/or glycine) MR in ARFs (Ulmasov

et al. 1999).

Multiple members of the ARF family have been iden-

tified and well-characterized in numerous plant species

subsequent to the cloning of the Arabidopsis thaliana’ first

ARF gene, AtARF1. As per the genomic analyses, a total of

23 ARF members in A.thaliana, 39 in Populus trichocarpa,

25 in rice (Oryza sativa), 17 in Eucalyptus grandis, 22 in

tomato (Solanum lycopersicon), 19 in sweet orange (Citrus

sinensis), and 31 in maize and Brassica rapa have been

identified so far (Bouzroud et al. 2018; Kalluri et al. 2007;

Li et al. 2015a; Mun et al. 2012; Overvoorde et al. 2005;

Wang et al. 2007; Xing et al. 2011; Yu et al. 2014).

Besides, the functional significance of ARFs in various

plant growth and development processes has been well

elucidated. For instance, the functional role of AtARF3 and

AtARF4 in leaf and floral organ patterning coincides

(Pekker et al. 2005; Sessions et al. 1997), AtARF5 /

MONOPTEROS (MP) participates in embryonic develop-

ment and vascular tissue formation (Hardtke and Berleth

1998), AtARF7 and AtARF19 both control lateral root

formation (Okushima et al. 2007; Wilmoth et al. 2005), and

AtARF6 and AtARF8 both regulate flowering process

(coordinating stamen development, petal expansion, anther

dehiscence, and gynoecium maturation) (Nagpal et al.

2005). As per the recent studies, tomatoes have multiple

ARF genes, such as SlARF2, SlARF7, SlARF9, which are

involved in leaf morphogenesis, development of flowers

and fruits and fruit ripening (de Jong et al. 2009; Hao et al.

2015; Wilmoth et al. 2005). As per the previous reports, as

transcriptional regulators, ARFs directly contribute to

auxin signal transposition (Guilfoyle and Hagen 2007;

Ljung 2013) and are involved in other many stress

responses and hormonal cross-talks (Guilfoyle and Hagen

2007; McAtee et al. 2013) in Arabidopsis (Kalve et al.

2020; Okushima et al. 2005), rice (Jain and Khurana 2009),

citrus (Li et al. 2015a), strawberry (Wang et al. 2019),

banana (Hu et al. 2015b), tomato (Bouzroud et al. 2018),

and chickpea (Singh et al. 2017). In Arabidopsis, multiple

ARF genes participate in abiotic stress responses (Ji and

Jiang 2015; Kalve et al. 2020; Okushima et al. 2005). In

tomatoes, the SlARF gene mediates salt, drought, and

flooding stress response, and the SlARF7 gene mediates

cross-talks between auxin and GA signaling during the fruit

and plant development in tomatoes (Bouzroud et al. 2018;

de Jong et al. 2011; Kumar et al. 2011). Similarly, multiple

ARF genes mediate abiotic stress responses against desic-

cation, salt, and cold stresses (Jain and Khurana 2009;

Wang et al. 2007). In chickpea, CaARF genes significantly

regulate abiotic stress (Singh et al. 2017).

Kiwifruit is a widely consumed and health-promoting

fruit, and one of the most important fruit crops globally.

The cultivated kiwifruit, Hongyang, is a heteroploid hybrid

variety (2n = 2x = 58) derived from wild A. chinensis

(Huang et al. 2013). Kiwifruits are frequently exposed to

different abiotic stresses, such as drought, cold, salinity,

and hormonal stress. In this study, we used the data from

open-access databases for genome-wide identification and

characterization of the ARF family of A. chinensis. We

performed comparative phylogenetic analysis, gene struc-

ture and conservative motifs prediction, gene duplication

events analysis, promoter cis-elements, and subcellular

location prediction. Besides, we employed quantitative

real-time PCR (qRT-PCR) to assess the expression profiles

of the 12 AcARF genes in different stress conditions such

as stress signalling induced by different phytohormones

(IAA; abscisic acid, ABA; gibberellins, GA; salicylic acid,

SA; jasmonic acid, JA), along with drought and salt

stresses. The outcomes of our current study provide a

platform for future research and highlight the importance

of targeting ARF genes to obtain stress-resistant kiwifruit

varieties.

Materials and methods

Identification and annotation of ARF genes

in kiwifruit

The kiwifruit genome and proteome datasets were down-

loaded from Ensembl Plants (http://plants.ensembl.org/

index.html). The A. thaliana ARF protein data set were

downloaded from TAIR (https://www.arabidopsis.org/)

(Swarbreck et al. 2008). The Hidden Markov Model

(HMM) profiles of the ARF family were employed with

default parameters and a cutoff value of 0.01 to identify the

ARF genes from the A. chinensis genome. All candidate

ARF genes containing ARF conserved domains were fur-

ther examined via the Pfam (http://pfam.wustl.edu) and

SMART (http://smart.embl-heidelberg.de) databases

(Schultz et al. 1998). All the AcARF sequences were val-

idated as a member of the ARF family by using the NCBI

conserved domain database (http://www.omicsclass.com/

article/310). Physical and chemical (molecular weight,

MW, and the isoelectric point, pI) characterization of

AcARF proteins was done using an online tool, ProtParam

(http://web.expasy.org/protparam/) (Wilkins et al. 1999).

The subcellular loci were predicted with WoLF PSORT

(Horton et al. 2007).
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Phylogenic analysis of AcARFs and AtARFs

The full-length ARF proteins were aligned using Clustal X

(Chenna et al. 2003) and visually adjusted using BioEdit

V7.2 (Tippmann 2004). The Neighbor-Joining (NJ) phy-

logenetic trees (Silva et al. 2005) were constructed using

Mega V7.0 with 1000 as the bootstrap replicates (Kumar

et al. 2016).

In silico characterization of AcARFs

The chromosomal location of genes was retrieved from the

A. chinensis genome browser by Scipio (Keller et al. 2008).

The chromosomal location of the AcARF genes was visu-

alized by MapChart V2.1 (Voorrips 2002). MCScan X with

default parameters was employed to examine the gene

duplication events in the AcARF genes (Wang et al. 2012).

To study the relationship between the orthologous ARF

genes obtained from kiwifruit and A. thaliana, a syntenic

analysis map was constructed using DSP software. The

AcARF gene structure was extracted from Ensembl Plants

and visualized using GSDS V2.0 (http://gsds.cbi.pku.edu.

cn) (Hu et al. 2015a). The Pfam (Finn et al. 2016) and

MEME suite (Bailey et al. 2009) were used to reveal and

visualize conserved motifs. The promoters (1500 bp before

ATG) of the AcARF genes were obtained from the Ensembl

Plants, and the cis-elements were predicted by PlantCARE

(Lescot et al. 2002).

Plant materials

Kiwifruit ‘Hongyang’ (A. chinensis) plants were cultivated

in Bairui Kiwifruit Research Institute located at Shaanxi,

China (33� 42’N, 107� 39’E) from 2017 to 2019. Different

tissues, including roots, stems, leaves (the fourth young

leaves from the shoot), flowers, small green fruit (ap-

proximately 30 days after flower), and ripe fruit (approxi-

mately 120 days after flower) were collected from

‘‘Hongyang’’ trees (aged 5 years) during the 2020 growing

season. The 2-year-old ‘Hongyang’ kiwifruit seedlings

were used for hormonal treatments. All these seedlings

were planted in 25 cm diameter pots in the greenhouse set

to the temperature of 28 �C. The branch containing three to

six pieces of leaves were treated with phytohormones.

Leaves were sprayed with 100 lM�L-1 of phytohormones.

The leaves sprayed with plain double distilled water

(ddH2O) were treated as the controls, and the leaf samples

were collected at 0, 1, 6, and 12 h post-treatment (hpt). The

salty stress was induced by irrigating each seedling with 2

L of 200 mM�L-1 NaCl solution, and seedlings irrigated

with ddH2O were treated as controls. The leaves were

collected at 1, 6, 12, 24, and 48 hpt. Drought stress was

induced by halting water supply to seedlings, and the

leaves were collected at 48, 96, 144, and 168 hpt; these

seedlings were re-watered after leaves collection, i.e., 48

hpt, in accordance with the previous study (Jing and Liu

2018). All the leaf samples were flash-frozen in liquid

nitrogen and stored at - 80 �C for RNA extraction. For

each treatment, six different leaves were sampled from six

different seedlings.

RNA extraction and qRT-PCR

Total RNAs were extracted from around 100–200 mg of

frozen leaf samples using a TRIZOL Reagent (Invitrogen)

according to the manufacturer’s instructions. Genomic

DBA contamination was removed by using the Turbo

DNA-freeTM kit (Ambion). The total RNA was reverse

transcribed into cDNA by the Invitrogen reverse tran-

scription kit (SuperScript III Reverse Transcriptase). The

primers were designed using NCBI’s primer design tool

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Supplementary

Table 5). qRT-PCR was performed using ABI Quant Stu-

dio tm 6 Flex Real-Time PCR System with SYBR-Green

PCR Master Mix. The reaction mixture (20 lL) contained

10 lL SYBR Green Master Mix (ROX), 1 lL forward

specific primer (10 lM), 1 lL reverse specific primer

(10 lM), 1 lL cDNA (30 ng � lL-1) template, and 7 lL

ddH2O. DNA amplification was performed by using the

following thermocycling program: 95 �C for 3 min, 40

cycles of 95 �C for 20 s, 60 �C for 30 s, and 72 �C for 30 s,

followed by 71 cycles with an increasing temperature

gradient of 0.5 �C per cycle from 60 to 95 �C for 30 s.

ACT2 gene (GenBank: EF063571) was used as an internal

standard to calculate the relative fold change as per the

comparative cycle threshold (2-DDCt) method (Livak and

Schmittgen 2001) with three biological and technical

replicates. P value\ 0.05 was treated as statistically

significant.

Results

ARF annotation in kiwifruit genome

To identify potential ARF genes in kiwifruit genome, 23

Arabidopsis ARF protein sequences were queried against

the annotated A. chinensis genome in Ensembl Plants

database (http://plants.ensembl.org/index.html). After

manual curations, a total of 41 A. chinensis ARFs were

identified and named as per their respective chromosomal

locations (Table 1). In instances where one chromosome

contained two or more than two AcARF genes, chromo-

some number was used to name the genes, such as

AcARFxa and xb, where x represents chromosome num-

ber. The number of amino acids (aa) in AcARF proteins
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ranged from 448 (AcARF28a) to 1115 (AcARF29) with

49.72 to 123.53 kDa MWs, respectively. The PI values

ranged from 5.53 (AcARF21c) to 8.1 (AcARF28a), which

indicates that different AcARF proteins might work in

different microenvironments. All the AcARF proteins were

located in the nucleus except AcARF10 and AcARF28a

proteins, which were located in the cytosol (Table 1).

Alignment and phylogeny of the AcARFs

All the 41 predicted AcARFs proteins demonstrated

characteristic ARF family structure, including a highly

conserved B3-like DNA-binding and ARF_resp domain in

the N-terminal region as per the sequence alignment and

Pfam based protein motif analysis of the predicted proteins

(Supplementary Fig. 1). ARFs can function as activators or

repressors depending upon the amino acid composition of

the MR. Also, according to the previous functional studies

on Arabidopsis, ARF proteins containing glutamine (Q)-

rich MR function as activators and rest of the ARF proteins

function as repressors. Out of the 41 AcARF proteins,

AcARF5, 12, 20b, and 29 showed Q-rich MR, which

suggests that these proteins might function as transcrip-

tional activators. In contrast, the other 37 AcARF proteins

might function as repressors (Supplementary Fig. 1).

To characterize the evolutionary relationships between

kiwifruit and Arabidopsis ARF family members, we car-

ried out an NJ phylogenetic analysis of all the proteins of

41 AcARFs and 23 AtARFs (Fig. 1). As per the phyloge-

netic analysis, the ARFs were categorized into eight major

groups (group 1–8) with well-supported bootstrap values.

However, we found only one organism-specific group

(group 4) from the phylogenetic analysis. In the common

clades, we observed that IAAs were distributed unequally

between two organisms. For instance, group 1 contained 11

and 3 members from kiwifruit and Arabidopsis, respec-

tively, and group 2 contained 3 and 11 members from

kiwifruit and Arabidopsis, respectively. The Arabidopsis

ARF family was overrepresented in this class due to seven

genes with tandem duplication, which encodes AtARF12-

15 and AtARF20-22 proteins whose orthologous proteins

were not found in kiwifruit. All transcriptional activators

of AcARF genes were clustered in groups 6 and 7.

Chromosomal distribution of AcARF genes

The 41 AcARF genes were distributed across 23 chromo-

somes as per the in silico chromosomal mapping of the

gene loci with 1–4 AcARF genes per chromosome (Fig. 2).

These genes were primarily located on chromosomes 1,

4–14, 18–26, 28, and 29, whereas none of the AcARF genes

were located on chromosomes 2, 3, 15–17, and 27.
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Gene duplication and synteny analyses

of the AcARF genes

To determine potential gene duplication within the kiwi-

fruit genome, the duplication events including segmental

and whole genome duplications throughout the evolution-

ary process of ARF gene family were analyzed. A total of

35 duplicated AcARF gene pairs were observed in A. chi-

nensis genome (Fig. 3 and Supplementary Table 1). Out of

35 duplicated gene pairs, 33 were located on different

chromosomes, which might be due to whole-genome

duplication events, whereas two pairs (AcARF23b &

AcARF23c, AcARF8a & AcARF8b) were located on the

same chromosomes, which might be due to segmental

duplication events. To gain a detailed understanding of the

evolutionary constraints on ARF gene family, the Ka/Ks

ratios of the AcARF gene pairs were analyzed (Table 2).

The outcomes showed Ka/Ks\ 1 for 15 duplicated AcARF

gene pairs, which suggests that the kiwifruit ARF gene

family had undergone selective pressure during evolution.

Thus, we hypothesized that these gene duplication events

in kiwifruit led to an increase in the AcARF gene family

members with higher functional diversity. To further infer

the phylogenetic mechanisms of A. chinensis ARF genes

family, we constructed a comparative syntenic map of A.

chinensis and A. thaliana (Fig. 4). It showed that a total of

18 AcARF genes have a syntenic relationship with ARF

genes of Arabidopsis (Supplementary Table 2). It suggests

that these genes may have played a crucial role in the

evolution of the ARF gene family.

Conserved motifs and exon-intronic structures

Phylogeny and conserved motif analysis of AcARFs were

performed to identify conserved regions (Fig. 5a). A total

of 41 AcARFs with 8–15 conserved motifs were detected
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Fig. 1 Phylogenetic analysis of A. thaliana and A. chinensis ARFs.

MEGA V7.0 software was employed to construct the NJ phylogenetic

tree with 1000 bootstrap replicates based on the ARF amino acid

sequences of A. chinensis and A. thaliana. Different colors represent

different AcARFs and AtARFs groups. Black colored dots and stars

indicate A. chinensis and A. thaliana, respectively. Branches are

drawn to scale; the length of the branch represents the number of

substitutions per site
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through this analysis (Fig. 5b and Supplementary Table 3).

As per the conserved domains (Supplementary Fig. 1),

motif 1 and 3 were identified as B3 conserved domain,

motif 6 and motif 7 as Auxin_resp domain, and motif 10 as

PB1 domain. Moreover, all the 41 AcARFs contain motifs

1, 3, 6, and 7. And, most of the AcARFs (30 / 41) proteins

contain PB1 (AUX_IAA) domain except AcARF8b, 10,

11, 18a, 21a, 22a, 22b, 23c, 26b, 26c, and 28a. The

structural analysis demonstrated that AcARFs contain 2–14

exons and 1–13 introns (Fig. 5c). Notably, the number of

introns between the AcARF genes was different; however,

the genes present in one cluster showed highly identical

distributions of exons and introns. Motif composition,

arrangements, and gene structures were in line with the

phylogenetic tree (Fig. 5a). Furthermore, an in-depth

structural analysis of exon–intron can unravel the evolution

of the AcARFs gene family.

Putative cis-regulatory elements in the promoters

of AcARFs

The interaction between cis-elements and the correspond-

ing trans-acting factors modulates gene regulation. Plant-

CARE was used to predict the cis-regulatory elements in

the promoter region of the AcARF genes to unravel the

AcARFs mediated gene regulation. We found that pro-

moter sequences of all the 41 AcARF genes contain several

light-responsive elements. It indicates that AcARFs play a

crucial role in kiwifruit morphogenesis. Besides, we found

cis-regulatory elements related to hormonal stress (due to

JA, SA, ABA, and GA), stress-responsive elements

(anaerobic induction, defense, drought, and low tempera-

ture) in the promoter regions of the majority of the AcARF

genes (Table 3). However, few AcARF genes showed tis-

sue-specific elements (endosperm, meristem, and cell

cycle), and circadian control elements.

Expression analyses of the ARF Genes in Actinidia

chinensis organs

We investigated the spatial-specific expression pattern of

the 41 AcARFs in six different organs, including roots,

stems, leaves, flowers, small green fruit (SF) and ripe fruits

(RF), to investigate the physiological functions of AcARFs

(Fig. 6). All the AcARFs were detected in different organs

and showed tissue-specific expression patterns in Actinidia

chinensis. Most AcARFs showed higher stem and flower

specific expression compared with other organs, except

Fig. 2 Genomic localization of AcARF genes.The numbers at the

head of each chromosome represent chromosome serial numbers. 41

AcARF genes were unevenly located on the chromosomes, and these

genes were mapped based on the kiwifruit genome database using

MapChart V2.2. The length of chromosomes is on the scale (Mb). The

ARFs gene location is mentioned on the left while name of the right

side
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AcARF7 and AcARF29, whose expression levels were

upregulated in leaf. AcARF10 showed root-specific

expression. AcARF23a and AcARF23b showed SF-specific

expression, while AcARF26d showed RF-specific expres-

sion. Transcriptional analysis of the AcARFs showed tis-

sue-specific expression in Actinidia chinensis, suggesting

that AcARF genes might play distinct roles in different

organs during kiwi fruit development.

The AcARFs expression patterns under various

environmental and hormonal stress

To test the responsiveness of AcARs to exogenous hor-

monal stimuli, we choose 12 ARF genes from different

clusters and no collinear relationship between them as far

as possible for expression profiling. So, we analyzed

expression patterns of AcARF genes such as AcARF1a,

AcARF4, AcARF5, AcARF6a, AcARF7, AcARF10,

AcARF18b, AcARF19a, AcARF23a, AcARF26a,

AcARF28a, AcARF28b in the kiwifruit leaves, 1, 6 and

12 h after IAA, ABA, GA, SA, MeJA treatment using

qRT-PCR (Fig. 7 and Supplementary Fig. 2). The outcome

of this analysis demonstrated that most of these AcARF

genes were responsive to auxin except for AcARF1a and

AcARF23a. Post-IAA treatment, AcARF4, AcARF5,

AcARF6a, AcARF10, AcARF19a, AcARF28a, AcARF28b

genes were down-regulated at different time-points, while

AcARF7, AcARF26a and AcARF18b were up-regulated.

Fig. 3 Duplicated gene pairs in AcARF family. Circos was employed to demonstrate the syntenic relationships between AcARF genes. Colored

bars represent the kiwifruit chromosomes. Pink lines linked the duplicated genes. The length of chromosomes is on the scale (Mb)
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Interestingly, the AcARF7 and AcARF26a were up-regu-

lated by IAA, but they were down-regulated by ABA

treatment. In contrast, the AcARF4 gene was up-regulated

by ABA at all the time-points and down-regulated by IA.

AcARF1a gene was overexpressed 6 h post ABA treat-

ment, and later its expression level decreased to the base-

line level. The transcript levels of most of the genes such as

AcARF6a, AcARF7, AcARF23a and AcARF28b increased

significantly post GA treatment, whereas AcARF26a and

AcARF28a gene expression was first down-regulated and

later reverted to normal. SA treatment induced the down-

regulation of AcARF1a and AcARF10 genes at all time

points. JA treatment induced the upregulation of AcARF6a

and AcARF28a after 6 h post treatment, while AcARF18b

was up-regulated at all time points. The diverse AcARF

gene expression pattern in response to different hormonal

treatments indicates the complexity of auxin-regulated

gene expression.

To explore the expression patterns of AcARF genes in

kiwifruit under drought and salt stress, the expression

pattern of 12 AcARF genes was investigated through qRT-

PCR (Fig. 8 and Supplementary Figs. 3 and 4). The out-

come of this analysis showed that drought stress induces

the upregulation of AcARF1a, AcARF5, AcARF7,

Table 2 Ka, Ks, and Ka/Ks calculation and divergent time of the duplicated AcARF gene pairs

Duplicated Gene Pairs Ka Ks Ka/Ks P-Value D-Time (MYA) Duplication Type

AcARF1a&AcARF9a 0.0387122 0.110494 0.350357 3.59E-12 3.68 WGD

AcARF1b&AcARF9b 0.0317694 0.0846606 0.375256 5.99 E-07 2.82 WGD

AcARF1b&AcARF21b 0.074508 0.41973 0.177514 4.80 E-61 13.99 WGD

AcARF1b&AcARF5 0.0750642 0.422097 0.177836 1.26 E-60 14.07 WGD

AcARF5&AcARF9b 0.0850916 0.402738 0.211283 4.73 E-51 13.42 WGD

AcARF13&AcARF23a 0.0504375 0.136242 0.370205 4.63 E-09 4.54 WGD

AcARF18a&AcARF22b 0.0419214 0.176157 0.237978 1.57 E-19 5.87 WGD

AcARF18b&AcARF22c 0.0411156 0.115764 0.355169 1.69 E-10 3.86 WGD

AcARF19b&AcARF6b 0.0274147 0.106419 0.257612 5.51 E-11 3.55 WGD

AcARF20a&AcARF29 0.0414775 0.118124 0.351135 2.03 E-13 3.94 WGD

AcARF21b&AcARF5 0.0209461 0.0947506 0.221066 1.95 E-13 3.16 WGD

AcARF21b&AcARF9b 0.0846204 0.402476 0.210249 1.68 E-50 13.42 WGD

AcARF21c&AcARF4 0.0399383 0.141847 0.281559 3.14 E-17 4.73 WGD

AcARF26d&AcARF28b 0.0338359 0.140912 0.240121 2.78 E-17 4.70 WGD

AcARF8a&AcARF8b 0.0323226 0.185864 0.173904 3.78 E-25 6.20 SD

The Ka/Ks Calculator V2.0 was used to determine Ka/Ks. D-Time: divergence time (million years ago); WGD: whole genome duplication; SD:

segmental duplication

Fig. 4 The collinear correlation of the Aux/IAA between A. thaliana
and A. chinensis. The green color represents 29 A. chinensis
chromosomes, and the red color represents 5 A. thaliana chromo-

somes. Gray lines in the background indicate the collinear blocks

between A. thaliana and A. chinensis, whereas the red lines indicate

the syntenic ARF gene pairs between A. thaliana and A. chinensis
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AcARF19a, AcARF26a, AcARF28a, and AcARF28b genes.

As demonstrated in Fig. 8 and Supplementary Fig. 3,

AcARF1a, AcARF19a, AcARF26a, AcARF28a, and

AcARF28b genes were up-regulated throughout different

time points, while the transcription levels of AcARF5 and

AcARF7 increased only after 168 h post-drought stress

induction. Besides, once the water supply was restored, the

expression level of these genes reverted to normal. Under

salt stress, the AcARF26a gene was up-regulated across all

the time-points, while AcARF4, AcARF5, AcARF23a, and

AcARF28a genes were up-regulated 12 h, 24 h and 48 h

post salt stress induction (Fig. 8 and Supplementary

Fig. 4).

Discussion

Auxin plays a crucial role in the growth and development

of plants. ARFs are vital components of the auxin signaling

pathway; thus, they can regulate the transcription of auxin-

responsive genes involved in the majority of plant-growth

stages, development, and stress responses (Tiryaki 2009).

Thus, to elucidate the role of kiwifruit’ ARFs in specific

auxin responses, we used A. chinensis genome and per-

formed a genome-wide comprehensive survey of ARF gene

family in kiwifruit. In this study, 41 kiwifruit ARF genes

were identified and designated as per their respective

chromosomal location (Fig. 2). The number of AcARF

genes in kiwifruit was more as compared to other species,

such as Arabidopsis (23), tomato (22), and rice (25) due to

a higher number of gene duplication events (Supplemen-

tary Tables 4). Synteny analysis showed that 35 AcARF

gene pairs underwent gene duplication events via the seg-

ment and whole genome duplication mechanism (Fig. 3),

and 15 duplicated AcARF gene pairs had Ka/Ks\ 1.

Comparative genomic analysis of the kiwifruit and Ara-

bidopsis AcARF genes validated gene duplication events

(whole genome duplication) in at least 18 orthologous

AcARF genes (Fig. 4). Segmental and whole-genome

duplication events are vital for the gene family’s expan-

sion (Li et al. 2015b). The phylogenetic analysis of kiwi-

fruit and Arabidopsis showed that kiwifruit AcARFs have

orthologs in Arabidopsis except for two specific genes,

AcARF13 and AcARF23a, in Group 4 (Fig. 1).

In this study, protein domain analysis revealed that

kiwifruit AcARFs contain highly conserved DNA binding
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Fig. 5 Phylogeny, motifs, and exon-intronic structures of AcARFs.

(a) Unrooted NJ phylogeny of AcARFs. MEGA V7.0 was employed

to construct the phylogenetic tree based on full-length AcARFs amino

acid sequences (bootstrap = 1000, Poisson model) with a length

corresponding to the number of substitutions per site. (b) MEME was

used to determine the conserved motifs of AcARFs. Motifs and their

positions (1–15) are represented by the colored boxes at the bottom.

The scale bar denotes the length of the amino acid sequence

(Supplementary Table 1). (c) GSDS was used to depict the structure

of AcARF genes. Exons (yellow box); UTR (green); scale bar

represents the length of the respective DNA sequences
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domain along with plant-specific B3-type and an ARF

subdomain, which binds explicitly to auxin response ele-

ments (AuxRE: TGTCTC) in the promoter region of auxin

response genes (Fig. 5). ARFs were categorized into two

groups: transcriptional activators and repressors, as per the

amino acid composition of MR. The average activator/

repressor ratio of AcARFs was 0.1, which was less than

that of Arabidopsis (0.59), rice (0.56), tomato (0.27). The

CTD showed the presence of two motifs, domains III and

IV, which are also found in Aux/IAA. These motifs

facilitate the formation of homodimers and heterodimers

between ARFs and Aux/IAAs. The percentage of CTD-

truncated AcARF (13.67%) was similar to that of Ara-

bidopsis (17.39%), but it was lower than other species,

such as tomato (28.57%), rice (24%), and sweet orange

(21.05%). The AcARFs without CTD suggest that some

auxin-responsive genes in kiwifruit are regulated in an

auxin independent manner. Also, the cis-element analysis

confirmed that most of the ARF gene promoter sequences

contain hormonal stress response-related cis-regulatory

elements, tissue-specific, and stress response elements

(Table 3).

Expression patterns of AcARFs were analysed in dif-

ferent organs using qRT-PCR to study their physiological

functions (Fig. 6). Most AcARFs showed higher expres-

sion levels in the leaf and stem, which indicated their

differential roles during kiwifruit development. AcARF23a

and AcARF23b showed preferential expression in small

fruit, suggesting their important roles during early fruit

development. Also, we observed higher transcription levels

of AcARF26b from the small fruit to the ripe fruit stage and

higher expression throughout the fruit ripening. This study

showed AcARFs have organ-specific expression patterns,

and the function of them also needs to be further studied.

Kiwifruits are recurrently exposed to abiotic stresses,

such as drought, cold, salinity, defense, and hormonal

stimulation during the fruiting and various developmental

stages. Previous studies have reported that ARF as tran-

scriptional regulators are directly involved in Auxin signal

transposition (Ljung 2013; Guilfoyle and Hagen 2007), and

stress response, and hormonal cross-talks (Guilfoyle and

Hagen 2007; McAtee et al. 2013). In the current study, we

selected 12 AcARF candidate genes to determine their

response in stresses induced by five distinct phytohor-

mones along with salt and drought stress. In the present

study, we found that all the 12 candidate ARF genes were

responsive to exogenous hormone and abiotic stresses in a

time-dependent manner. According to the cis-elements, we

found that some ARF-induced expression results con-

firmed the results of promoter element analysis, for

example, AcARF1a, 5, 7,10, 28b, induced by exogenous

hormones. However, some ARF-induced expression pat-

terns were in line with promoter element analysis; forT
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instance, AcARF4, 28a, lacking IAA promoter response

elements were significantly down-regulated by IAA; 18b,

19a, 23a promoters containing ABA elements were not

affected by the ABA treatment. The differential expression

patterns of 12 AcARF genes indicated that all these genes

respond to abiotic stress, which suggests their distinct

functions during the kiwi fruit development as far as the

stress response is concerned. The current study provides a

foundation for an in-depth investigation of ARF functions,

specifically the ARF-mediated hormonal cross-talks during

the fruit growth, development, and stress responses.

Conclusions

This is the first study of which we are aware to have

comprehensively profiled and annotated ARF expression

profiles in kiwifruit in response to different stresses.

Herein, we were able to identify a total of 41 AcARFs in

the kiwifruit genome, which allowed us to explore the

functional significance and evolutionary development of

this gene family. Notably, the AcARFs expression patterns

suggested organ-specific expression patterns and the com-

plex inducible involvements of these genes in abiotic

stresses and signaling. These findings present new pro-

spects for a detailed study of the precise functions of

AcARFs. It highlights the correlations between the

AcARFs expression and stress response; besides, the data

could facilitate the screening of ARFs for in-depth
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Fig. 6 Heatmap of AcARFs’ transcriptional profiles in different

organs. The log2 values of the relative expression data were used for

the heatmap visualization. The relative expressions of individual

AcARFs were normalized to ACT 2 gene in different tissues,

including root, stem, leaf, flower, small green fruit (SF, approximately

30 days after flower), and ripe fruit (RF, approximately 120 days after

flower). Green blocks and red blocks represent downregulated and

upregulated transcription levels, respectively
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functional characterization and genetic improvement of

kiwifruit’s agronomic traits.
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