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Abstract The K?, Na?/H? antiporter LeNHX2 and the

regulatory kinase SlSOS2 are important determinants of

salt tolerance in tomato plants and their fruit produc-

tion ability. In this work, we have analyzed the effects of

LeNHX2 and SlSOS2 co-overexpression on fruit produc-

tion, quality in tomato plants (Solanum lycopersicum L. cv.

MicroTom), and analyzed physiological parameters related

to salt tolerance. Plants overexpressing LeNHX2, SlSOS2 or

both were grown in greenhouse. They were treated with

125 mM NaCl or left untreated and their salt tolerance was

analyzed in terms of plant biomass and fruit yield. Under

NaCl cultivation conditions, transgenic tomato plants

overexpressing either SlSOS2 or LeNHX2 or both grew

better and showed a higher biomass compared to their

wild-type plants. Proline, glucose and protein content in

leaves as well as pH and total soluble solid (TSS) in fruits

were analyzed. Our results indicate that salinity tolerance

of transgenic lines is associated with an increased proline,

glucose and protein content in leaves of plants grown either

with or without NaCl. Salt treatment significantly reduced

yield, pH and TSS in fruits of WT plants but increased

yield, pH and TSS in fruits of transgenic plants, especially

those overexpressing both LeNHX2 and SlSOS2. All these

results indicate that the co-overexpression of LeNHX2 and

SlSOS2 improve yield and fruit quality of tomato grown

under saline conditions.
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Introduction

Salt stress is one of the major factors that limit plant growth

and crop productivity, especially in the arid and semi-arid

regions where soil salinity poses a severe threat to food

security. Plants respond to salt stress by osmotic adjust-

ment, generally by increasing the concentrations of solutes

such as proline and soluble sugars in order to adjust

osmotic potential for a better uptake of water (Li et al.

2014; Wu et al. 2016). Proline is accumulated in leaves in

order to maintain chlorophyll level and cell turgor to pro-

tect photosynthesis activity under salt stress (Silva-Ortega

et al. 2008). The soluble sugars are highly accumulated in

vacuoles and produce high turgor pressure that are

involved in response to abiotic stresses such as salt stress

by affecting osmotic potentials (Rasheed et al. 2011).

Veeranagamallaiah et al. (2007) reported that plants

respond and adapt to salt stress through the synthesis of

specific proteins, and the synthesis of stress-induced pro-

teins is part of the stress tolerance mechanism.

The overexpression of Na?, K?/H? antiporters and their

regulatory proteins has been evidenced as an important

method to overcome the adverse effects of salt stress on

tomato plants and improve plant growth as well as crop

productivity (Rodrı́guez-Rosales et al. 2008, 2009; Gálvez

et al. 2012; Huertas et al. 2012, 2013; Cagnac et al. 2020;

Maach et al. 2020). The intracellular NHX transporters

constitute the first Cation/Proton exchanger family studied

in plants. It was shown that overexpression of this protein

in various plants improves salt tolerance, indicating a role

of the protein in vacuolar Na? accumulation (Apse et al.
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1999; Zhang and Blumwald 2001; Venema et al. 2002). In

Arabidopsis, the SOS signal transduction pathway is

responsible for Na? homeostasis and salinity tolerance by

maintaining favourable K?/Na? ratios in the cytoplasm

through the action of the plasma membrane Na?/H? anti-

porter SOS1, which mediates Na? extrusion out of the root

cell and long-distance Na? transport from roots to shoots

(Shi et al. 2002; Zhu 2002). In this pathway, a calcium-

binding protein, SOS3, senses cytosolic calcium changes

elicited by salt stress (Ishitani et al. 2000). SOS3 physically

interacts with and activates the serine/threonine protein

kinase, SOS2 (Liu et al. 2000). The SOS3/SOS2 kinase

complex phosphorylates and activates the plasma mem-

brane Na?/H? exchanger encoded by the SOS1 gene (Qiu

et al. 2002; Quintero et al. 2002; Shi et al. 2002; Olı́as et al.

2009). Coordination of the activity between the Na?/H?

exchangers of the tonoplast and plasma membrane were

suggested by Qiu et al. (2004) who observed that the

mRNA levels of NHX genes were up-regulated in the sos1

mutant. Moreover, an increased fruit production under

NaCl conditions was reported in tomato plants co-overex-

pressing the Pennisetum glaucum vacuolar Na?/H? anti-

porter and Arabidopsis H?-pyrophosphatase (Bhaskaran

and Savithramma 2011). Also, in Arabidopsis, the co-

overexpression of NHX1 and SOS3 was demonstrated to

further improve salt tolerance relative to plants overex-

pressing only NHX1 (Yang et al. 2009) and an increased

silique production under salt stress was detected in double

transgenic plants overexpressing AtNHX1 and SOS1

(Pehlivan et al. 2016). Recently, we have also reported that

in tomato that the co-overexpression of LeNHX2 and

SlSOS2 increases salt tolerance and fruit production

(Baghour et al. 2019).

Besides conferring salt tolerance, plant antiporters play an

important role in improving the organoleptic characteristics of

fruits as well as those related to fruit ripening (Hanana et al.

2009; Huertas et al. 2012). Total soluble solid (TSS) and pH

are important fruit quality characteristics for suitability of

tomato in industrial processing (Teka 2013). In this context,

the aim of the present study is to investigate the effects of

LeNHX2 and SlSOS2 co-overexpression on tomato fruit pro-

duction and quality as well as determining the role of sugar,

proline and protein accumulation during salt stress tolerance

of tomato transgenic plants overexpressing LeNHX2, SlSOS2

or both genes.

Materials and methods

Plant Material and growth conditions

Tomato plants (Solanum lycopersicum L. cv. Microtom)

overexpressing LeNHX2, SlSOS2 or both genes were used

in this work. T3 tomato plants homozygous and mono-

locus for the transgenes LeNHX2 (Huertas et al. 2013) and

SlSOS2 (Huertas et al. 2012) were cross-pollinated. After

crossing, plants were grown and seeds were removed from

mature fruits derived from the cross-pollinated flowers.

The flower of the SlSOS2 overexpressing plants from

line L-82 were used as female parents and those from the

LeNHX2 overexpressing from L-932 were used as male

parents. Analysis by real time PCR of F1 plants harbouring

the constructs for SlSOS2 and LeNHX2 co-overexpression

showed a higher expression of both genes compared to

wild-type and single transgenic lines (Baghour et al. 2019).

Seeds from WT and single transgenic plants overex-

pressing LeNHX2 or SlSOS2 as well as seeds derived from

the crosses between the T3 homozygous LeNHX2 and

SlSOS2 transgenic plants were germinated and the resulting

plants were used for experiments. Tomato seeds were sown

in seedbeds containing peat-moss. The seedbeds were kept

in a greenhouse from Mohamed I University in Nador

(Morocco) and irrigated with tap water for 7 weeks, and

then the plants were transferred to 1.2 L pot (1 plant per

pot) containing peat-moss and kept in a greenhouse. These

plants were irrigated with tap water for 1 week and then

with either 100 mL tap water or 100 mL of 125 mM NaCl

three times every week for 16 weeks.

Plant analysis

Plant materials were gently removed from their substrate at

17 weeks after transplanting. The roots, leaflets, stems, and

fruit were rinsed three times in distilled water after

decontamination with nonionic detergent and then blotted

on filter paper (Wolf 1982). Then, samples were dried in a

forced air oven at 70 �C for 48 h.

Glucose and proline determination

Samples of 0.5 g of plant tissues were crushed in 5 mL

95% (v/v) ethanol. The insoluble fraction of the extract was

washed twice with 5 mL of 70% ethanol. All soluble

fractions were centrifuged at 3500 9 g for 10 min. The

supernatants were collected and stored at 4 �C for glucose

and proline determinations (Irigoyen and Emerich 1992).

Glucose concentration was determined spectrophotometri-

cally at 650 nm using the colorimetric assay with the

anthrone reagent (Irigoyen and Emerich 1992). The free

proline content was measured spectrophotometrically at

515 nm by the method of Paquin and Lechasseur (1979).

Soluble-protein determination

Fresh plant samples (0.5 g) were crushed with cold phos-

phate buffer (50 mM KH2PO4, pH 7.0) and centrifuged at
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12 000 9 g for 15 min. The resulting supernatant was used

for the determination of soluble proteins using Bradford

G-250 reagent (Bradford 1976). The results are expressed

as mg bovine serum albumin/g of fresh weight.

Fruit yield and quality

At the corresponding ripening stage, 16 weeks after

transplanting (at full maturity stage with an orange-red to

red color), all fruits were collected and weighed to deter-

mine the yield and part of samples was immediately used to

determine Total soluble solid (TSS) and pH (Papadaki

et al., 2017; Baghour et al., 2019; Maach et al., 2020). For

these determinations, we used 5 repetitions with two plants

for each treatment (10 plants for each treatment).

TSS was measured in fruits at full maturity stage with an

organe-red to red color as oBrix in a few drops of the juice

of mature fruit using a digital refractometers (ATAGO Co.,

Ltd., Tokoyo, Japan). Tests for pH were performed on

homogenate of fully mature fruit using a portable pH

meter.

Statistics

All data in this report were obtained from an experiment

with three to five repetition for each parameter. Statistical

analyses were performed with Statgraphics Plus (Statistical

Graphics Corp, StatPoint Inc., Herndon, VA). Analysis of

variance (ANOVA) was used to assess difference between

treatments and significance level was determined at P

B 0.05. Significant differences according to the Duncan’s

multiple range test (DMRT) are indicated with different

letters in the figures and tables.

Results

To study the effects of the co-overexpression of SlSOS2

and LeNHX2 on the plant tolerance towards NaCl, we

measured the fresh weights of roots, stems and leaves of

wild type and transgenic plants grown under control con-

ditions (0 mM NaCl) and in the presence of 125 mM NaCl

(Fig. 1a, b). Under control conditions (no NaCl added to

the culture), our data demonstrate that plants co-overex-

pressing SlSOS2 and LeNHX2 had significantly higher

fresh weights of roots, stems and leaves (P\ 0.01).

Treatments with 125 mM NaCl reduced roots, stems and

leaves fresh weight of wild-type, while transgenic plants

expressing either LeNHX2 or SlSOS2 or both significantly

showed significant increase in roots, stems and leaves fresh

weight (P\ 0.001; Fig. 1a, b). Phenotypic evaluation of

transgenic lines co-expressing either LeNHX2 or SlSOS2

was also performed in plants grown in the absence

(Fig. 1b) or the presence (Fig. 1c) of 125 mM NaCl. Under

saline conditions, all transgenic plants, especially those co-

expressing LeNHX2 and SlSOS2, showed a better growth

compared to untransformed plants.

The glucose contents were measured in leaves of WT

and transgenic lines overexpressing either LeNHX2 or

SlSOS2 or both grown in the presence or in the absence of

NaCl (Fig. 2a). Our results showed that under the normal

conditions, plants co-overexpressing LeNHX2 and SlOS2

accumulated 80% more glucose in leaves compared to the

WT and single transgenic lines (P\ 0.001). However,

under saline condition, all transgenic plants showed an

increased level of this carbohydrate. Interestingly, plants

simultaneously overexpressing LeNHX2 and SlOS2 accu-

mulated almost three times more glucose compared to wild

type plants under NaCl treatment.

In relation to the proline accumulation, our data

demonstrate that NaCl treatments significantly increased

proline levels in wild-type and transgenic lines (P\ 0.001;

Fig. 2b). Furthermore, all transgenic plants, especially

those overexpressing LeNHX2, accumulated higher con-

tents of proline in either normal or saline conditions.

Regarding the effect of LeNHX2 and SlSOS2 co-over-

expression on protein content in tomato leaves, our results

showed that under normal conditions single transgenic

plants that overexpress LeNHX2 present the highest protein

levels (P\ 0.01; Fig. 2c). Nonetheless, under NaCl stress,

increase in protein content was detected in plants overex-

pressing LeNHX2 alone or in double transgenic lines,

compared with wild-type and single transgenic plants

overexpressing SlSOS2.

We have measured fruit production (Fig. 3a), total sol-

uble solids (Fig. 3b) and pH (Fig. 3c) in NaCl-treated and

untreated wild-type and transgenic plants. Interestingly, the

effect of LeNHX2 and SlSOS2 co-overexpression on fruit

yield (g/plant) is particularly evident under salt treatment

(P\ 0.001).

Under control conditions, (no NaCl added), the highest

TSS levels were observed in wild-type plants (Fig. 3b).

Treatment with NaCl stimulated an increase of TSS values

in all transgenic plants (P\ 0.001), reaching the highest

value in fruits of double transgenic plants with an increase

of 39% relative to WT fruits.

In relation to fruit pH, our results showed no significant

differences between NaCl-untreated wild-type and trans-

genic plants (Fig. 3c). Relative to the fruit pH of untreated

tomato plants, NaCl application significantly increased the

pH of fruits from LeNHX2, SlSOS2 and LeNXH2SlSOS

transgenic plants while decreased the pH of fruits of wild-

type plants (P\ 0.001).
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Discussion

The effect of overexpression of ion transport genes on

plant’s salt tolerance could be further enhanced when more

than one of these genes was overexpressed. It has been

reported in Arabidopsis that overexpression of the vacuolar

Na?/H? antiporter AtNHX1 or the plasma membrane Na?/

H? antiporter SOS1 improve salt tolerance in transgenic

plants, but the improved salt tolerance is limited to NaCl

concentrations lower than 200 mM (Pehlivan et al. 2016).

LeNHX2 is a K?, Na?/H? antiporter and therefore par-

ticipates in Na? accumulation in cell compartments when
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Fig. 1 a Fresh Weight of wild-type, single and double transgenic

plants overexpressing LeNHX2 and SlSOS2 grown either under the

absence (empty bars) or the presence of NaCl (black bars) of 125 mM

NaCl. Representative images of WT, single and double transgenic

plants grown in the absence (b) or the presence (c) of under 125 mM
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plants are grown under saline conditions. Intracellular Na?

and K? accumulation could promote water influx to cell

compartments and thus contribute to the increased fresh

weight of transgenic plants grown in the presence of NaCl.

Plants co-overexpressing the LeNHX2 and SlSOS2 genes

showed an improved growth performance with higher root,

stem, and leaf fresh weights under salt stress compared to

WT and single transgenic plants (Fig. 1a–c). These results
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are in accordance with previous studies on the effects of

co-overexpression of several ion transport genes on salt

tolerance and biomass production in Arabidopsis, cotton

and tomato (Zhao et al. 2006; Shen et al. 2015). Shen et al.

(2015) have reported that transgenic cotton plants

expressing the Arabidopsis vacuolar Na?/H? antiporter

gene AtNHX1 and AVP1 produced significantly higher

biomass compared to WT and single transgenic plants

under salt stress conditions. Gouiaa et al. (2012) showed

that tobacco plants co-expressing the wheat Na?/H? anti-

porter TNHXS1 and H?-pyrophosphatase TVP1 produced

significantly higher number of leaves compared to mono-

transgenic lines and the WT plants. Moreover, a possible

explanation of the increased fresh weight of double trans-

genic plants under control (no NaCl added) conditions

could be related to a better K? nutrition of double trans-

genic plants allowing for a better plant growth. All these

reports indicate that expression of multiple salt-related

genes could further improve salt tolerance and enhance

biomass production.

Soluble sugars have been reported to increase in leaves

under salinity conditions in order to maintain the osmotic

adjustment in the plant (Yu et al. 2015; Pérez-Jiménez and

Pérez-Tornero 2020; Shafiq et al. 2020). Our data indicate

that salinity stress enhances leaf glucose accumulation both

in WT and transgenic plants (Fig. 2a), and this increase is

more pronounced in the transgenic lines. These results are

in agreement with those reported in sugarcane by Gan-

donou et al. (2011) and in Populus by Watanabe et al.

(2000) showing an increased level of soluble sugars as a

result of salt stress enhances the plant tolerance to salt

stress.

Proline is an osmoprotective agent and an important

compatible solute that accumulates in plants under differ-

ent types of stresses such as drought, cold, heat and salinity

(Maach et al. 2020). The accumulation of this amino acid

under salinity stress is an important mechanism in main-

tenance of the osmotic adjustment and salt tolerance

(Kahlaoui et al. 2018; Ahanger et al. 2020). The higher

accumulation of proline in all transgenic tomato plants

analyzed in this work (Fig. 2b), especially in plants over-

expressing LeNHX2 together with SlSOS2 could represent

an adaptive mechanism to salt stress. Our results shows

agreement with Bhaskaran and Savithramma (2011) who

observed a significant increase in proline content in trans-

genic tomato plants co-expressing Pennisetum glaucum

PgNHX1 and Arabidopsis AVP1 compared to WT and

single transgenic lines expressing either PgNHX1 or AVP1.

Contrary to what was expected, proline and protein content

in the co-overexpressing plants are lower compared to

those overexpressing LeNHX2, under both normal and

saline conditions. These results could be explained by the

interaction between SlSOS2 and LeNHX2 proteins. More

recently, Dong et al (2021) have reported that PgNHX

proteins shared the same putatively interactive protein

AVP1, HKT1, SOS2 and SOS3. Similarly, Pehlivan et al.

(2016) have reported that although the SOS2 can regulate

AtNHX1’s activity, there does not appear to be a synergy

between overexpression of AtNHX1 and SOS3.

Protein accumulation has been reported to play an

important role for cell survival and membrane stabilization

under saline conditions (Goudarzi and Pakniyat 2009). The

increase in the soluble protein content can be the result of

the enhanced de novo synthesis of proteins for cell pro-

tection (Teixeira et al. 2005). In our study, the soluble

proteins significantly increased in single and double

transgenic plants overexpressing LeNHX2 alone or together

with SlSOS2 (Fig. 2c). Previously, Gandonou et al. (2011)

and Kahlaoui et al. (2018) showed that the content of

soluble proteins increases in leaves and roots of salt tol-

erant cultivars whereas it decreases in the sensitive ones,

suggesting that these components could play a key role in

sugarcane and tomato salt tolerance. All these results are

consistent with the previous findings that salt resistant

plants are able to respond and adapt to salt stress through

the synthesis of stress-induced proteins as a tolerance

mechanism (Veeranagamallaiah et al. 2007; Maach et al.

2020).

The high expression level of some NHX isoforms in

known sinks for potassium like fruits or flowers, where

growth is dependent on cell expansion, point to a role of

these isoforms in vacuolar K? accumulation (Rodrı́guez-

Rosales et al. 2009). Silencing of the gene in tomato has a

severe effect on growth and fruit and seed Production

(Rodrı́guez-Rosales et al. 2008). It has been shown that

potassium plays a vital role in photoassimilate transport

from source to sink (Schobert and Tschesche 1978;

Lalonde et al. 2003) and thus improved potassium home-

ostasis could enhance fruit production. In this study,

tomato plants overexpressing both LeNHX2 and SlSOS2

showed a better yield compared to plants overexpressing

only one gene (Fig. 3a). Our results have been supported

by the observations of Pehlivan et al. (2016) who reported

that co-overexpression of AtNHX1 and SOS1 could sig-

nificantly reduce yield loss in Arabidopsis plants grown

under 250 mM NaCl. Moreover, Shen et al. (2015)

observed an increase in yield of transgenic cotton plants

co-expressing the Arabidopsis vacuolar Na?/H? antiporter

gene AtNHX1 and H?-pyrophosphatase gene AVP1 when

cultivated under salt stress. Our results clearly show that

plants ovexpressing LeNHX2, SlSOS2 or both genes grow

better and produce more fruits than WT plants both under

control and NaCl irrigation conditions (Fig. 1a, 3a). In

addition, results in Figs. 1a and 3a show that compared to

plants irrigated with water, adding 125 mM NaCl to the

irrigation water improves growth of single and double
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transgenic plants without affecting fruit yield. Furthermore,

the co-overexpression of LeNHX2 and SlSOS2 improves

fruit quality of tomato plants grown under saline condi-

tions. All these results support the potential biotechnolog-

ical interest of overexpressing LeNHX2, SlSOS2 or both to

enhance tomato fruit yield by plants cultivated either under

saline or not saline irrigation conditions. In addition, TSS is

an important quality criterion reflecting concentration of

sugars in fruits (Flores et al. 2010). Shabani et al. (2013)

have reported in tomato that salt treatment decreased fruit

juice pH and increased TSS concentrations. We have

observed that high level of NaCl treatment reduced TSS

and pH value in WT plants (Fig. 3b, c), while transgenic

plants, especially those co-overexpressing LeNHX2 and

SlSOS2 reached higher levels of these two parameters

suggesting that the co-expression of these two genes have

improved fruit quality. The high levels of TSS observed in

fruits of transgenic lines co-overexpressing LeNHX2 and

SlSOS2 is probably due to a high transport of sugars from

leaves to fruits. In this respect, Yin et al. (2010) reported

that salinity stress enhances carbohydrates accumulation

from the source leaves to the fruit of tomato plants. In

relation to the pH of fruit juice, as reported by Mitchell

et al. (1991) and Coban et al. (2020), we have observed

that salinity significantly reduced the pH of fruits from

wild-type plants. However, transgenic plants, especially

those co-overexpressing LeNHX2 and SlSOS2, showed an

increase in pH values of fruits in plants cultivated under

NaCl stress. Similarly, Maach et al. (2020) have reported

that the overexpression of LeNHX4 antiporter improved

the fruit quality in tomato by TSS and pH under salt stress.

Conclusions

In this work, we have demonstrated that co-overexpression

of the antiporter LeNHX2 and the regulatory kinase SlSOS2

confer salt tolerance and improves fruit yield and quality

by increasing fruit pH and total soluble solid. Proline,

glucose and protein accumulation in leaves of transgenic

plants under either normal or stress conditions could be

related to the better salt tolerance of these plants relative to

WT tomato. Finally, our results suggest that multiple-gene

co-expression results in higher salt tolerance.
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Cagnac O, Baghour M, Jaime-Pérez N, Aranda-Sicilia MN, Sánchez-

Romero ME, Rodrı́guez-Rosales MP, Venema K (2020) Dele-

tion of the N-terminal domain of the yeast vacuolar (Na?, K?)/

H?antiporter Vnx1p improves salt tolerance in yeast and

transgenic Arabidopsis. Yeast 37:173–185. https://doi.org/10.

1002/yea.3450

Coban A, Akhoundnejad Y, Dere S, Dasgan HY (2020) Impact of

salt-tolerant rootstock on the enhancement of sensitive tomato

plant responses to salinity. HortScience 55:1–5. https://doi.org/

10.21273/HORTSCI14476-19

Dong J, Liu C, Wang Y, Zhao Y, Ge D, Yuan Z (2021) Genome-wide

identification of the NHX gene family in Punica granatum L.

and their expressional patterns under salt stress. Agronomy

11:264. https://doi.org/10.3390/agronomy11020264

Flores FB, Sanchez-Bel P, Estan MT, Martinez-Rodriguez MM,

Elena Moyano E, Morales B, Campos JF, Garcia-Abellan JO,

Egea MI, Fernandez-Garcia N, Romojaro F, Boları́n MC (2010)

The effectiveness of grafting to improve tomato fruit quality.

SciHortic 125:211–217. https://doi.org/10.1016/j.scienta.2010.

03.026

Gálvez FJ, Baghour M, Hao G, Cagnac O, Rodrı́guez-Rosales MP,

Venema K (2012) Expression of LeNHX isoforms in response to

salt stress in salt sensitive and salt tolerant tomato species. Plant

PhysiolBiochem 51:109–115. https://doi.org/10.1016/j.plaphy.

2011.10.012

710 Physiol Mol Biol Plants (April 2021) 27(4):703–712

123

https://doi.org/10.1016/j.plaphy.2019.12.007
https://doi.org/10.1016/j.plaphy.2019.12.007
https://doi.org/10.1016/j.plaphy.2018.11.028
https://doi.org/10.1002/yea.3450
https://doi.org/10.1016/0003-2697(76)90527-3
https://doi.org/10.1016/0003-2697(76)90527-3
https://doi.org/10.1002/yea.3450
https://doi.org/10.1002/yea.3450
https://doi.org/10.21273/HORTSCI14476-19
https://doi.org/10.21273/HORTSCI14476-19
https://doi.org/10.3390/agronomy11020264
https://doi.org/10.1016/j.scienta.2010.03.026
https://doi.org/10.1016/j.scienta.2010.03.026
https://doi.org/10.1016/j.plaphy.2011.10.012
https://doi.org/10.1016/j.plaphy.2011.10.012


Gandonou CB, Bada F, Abrini J, Skali-Senhaji N (2011) Free proline,

soluble sugars and soluble proteins concentration as affected by

salt stress in two sugarcane (Saccharum sp.) cultivars differing in

their salt tolerance. Int J BiolChemSci 5:2441–2453. https://doi.

org/10.4314/ijbcs.v5i6.23

Goudarzi M, Pakniyat H (2009) Salinity causes increase in proline

and protein contents and peroxidase activity in wheat cultivars.

J ApplSci 9:348–353. https://doi.org/10.3923/jas.2009.348.353

Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K (2012)

Expression of wheat Na?/H?antiporter TNHXS1 and H?-

pyrophosphataseTVP1 genes in tobacco from a bicistronic

transcriptional unit improves salt tolerance. Plant MolBiol

79:137–155. https://doi.org/10.1007/s11103-012-9901-6

Hanana M, Cagnac O, Zarrouk M, Blumwald E (2009) Rôlesbi-
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