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Abstract Meta-QTL (MQTL) analysis for drought toler-

ance was undertaken in bread wheat to identify consensus

and robust MQTLs using 340 known QTLs from 11 earlier

studies; 13 MQTLs located on 6 chromosomes (1D, 3B,

5A, 6D, 7A and 7D) were identified, with maximum of 4

MQTLs on chromosome 5A. Mean confidence intervals for

MQTLs were much narrower (mean, 6.01 cM; range

2.07–19.46 cM), relative to those in original QTLs (mean,

13.6 cM; range, 1.0–119.1 cM). Two MQTLs, namely

MQTL4 and MQTL12, were major MQTLs with potential

for use in marker-assisting breeding. As many as 228

candidate genes (CGs) were also identified using 6 of the

13 MQTLs. In-silico expression analysis of these 228 CGs

allowed identification of 14 important CGs, with ? 3 to

- 8 fold change in expression under drought (relative to

normal conditions) in a tolerant cv. named TAM107. These

CGs encoded proteins belonging to the following families:

NAD-dependent epimerase/dehydratase, protein kinase,

NAD(P)-binding domain protein, heat shock protein 70

(Hsp70), glycosyltransferase 2-like, etc. Important MQTLs

and CGs identified in the present study should prove useful

for future molecular breeding and for the study of molec-

ular basis of drought tolerance in cereals in general and

wheat in particular.
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Introduction

Wheat is an important staple food crop world-wide with a

history of remarkable success in improvement of produc-

tivity and production. The global bread wheat production

increased steadily from 537.5 mt in 1995/96 (https://apps.

fas.usda.gov/psdonline_legacy/circulars/grain-wheat.pdf) to

* 759 mt in 2018–2019 (https://www.uswheat.org/wheat

letter/first-look-at-2019-20-by-usda-sees-another-record-

world-wheat-crop/). It occupies 17% of crop acreage

globally, feeding about 2.5 billion people (40%) in * 90

countries and provides 20% of total food calories and

protein for human nutrition (Gupta et al. 2008). India is the

third largest producer of wheat (after USA and China) in

the world with an estimated production of about 106.21 mt

during 2019–2020 (Economic Times, India, Jan 17 2020).

According to estimates of FAO, world would require

around 840 mt of wheat by 2050 (* 24% increase over

30 years). This demand excludes the requirement of animal

feed and adverse impacts of climate change on wheat

production.

Drought affects 42% of global wheat area and can reduce

grain yield by 58–92% (Kosina et al. 2007; Farooq et al.

2014). Therefore, drought stress continues to be an impor-

tant challenge to agricultural researchers and plant breeders.

It has also been estimated that drought alone causes more

annual loss in crop yield than all pathogens combined

together and contributes to annual global loss of $30 billion

(Gupta et al. 2020a, b). It is also estimated that by the year

2050, the demand for water will double and the supply of

fresh water will reduce by 50% due to climate change
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(Gupta et al. 2020a, b). Estimates also indicate that by 2025,

as many as 1.8 billion people will face absolute water

shortage and 65% of the world’s population will live under

water-stressed environments (Nezhadahmadi et al. 2013).

Thus, in order to meet the projected demand of wheat to

feed the ever-increasing human population, we need to

mitigate the adverse effects of drought on productivity and

production of wheat. For the sustainable development of

wheat varieties with high genetic yield potential that are

also tolerant to drought stress, we need to identify QTLs for

drought tolerance and also the candidate genes underlying

the QTLs. As many as [ 1200 QTLs have already been

reported for different drought responsive traits in wheat

(Gupta et al. 2020a, b), but the discovery of major robust

QTLs with closely associated markers with a high potential

for molecular breeding still remains a challenge.

Meta-QTL (MQTL) analysis has been used to identify

the consensus and robust QTLs through the use of infor-

mation reported in multiple studies for the reliability of

their location and effect across different genetic back-

grounds and environments, as well as to refine QTL posi-

tions on a consensus map (Goffinet and Gerber 2000).

MQTL analysis is generally conducted using the software

Biomercator V4.2, which is based on the algorithm

developed by Goffinet and Gerber (2000) in which a

maximum likelihood function is used to determine the

following: (1) the number of MQTLs given a set of input

QTLs on a common genetic map; (2) the consensus posi-

tions of detected MQTLs based on the variance in positions

of input QTLs, and (3) 95% confidence interval (CI) for

each MQTL based on the variance in marker intervals of

input QTL (Arcade et al. 2004). More recently, whole

genome sequences (pseudomolecules) have also been uti-

lized for meta-QTL analysis (Xu et al. 2019).

MQTL analysis requires two necessary conditions,

namely a consensus map with high-density markers (Hong

et al. 2010; Shirasawa et al. 2013) and a large number of

independent QTLs for the same trait identified from dif-

ferent genetic backgrounds and environments (Goffinet and

Gerber 2000). Consensus QTLs obtained from meta-anal-

ysis of a number of QTLs related to a target trait at a 95%

confidence interval (CI) are called MQTLs. In the past,

MQTL analysis has been successfully carried out for a

variety of traits in a number of crops including the fol-

lowing: (1) maize (Chardon et al. 2004; Wang et al. 2006;

Coque et al. 2008; Truntzler et al. 2010; Hao et al. 2010; Li

et al. 2011; Chen et al. 2017; Guo et al. 2018; Zhao et al.

2018), (2) rice (Ballini et al. 2008; Norton et al. 2008;

Khowaja et al. 2009; Islam et al. 2019; Khahani et al.

2020), (3) cotton (Rong et al. 2007), (4) rapeseed (Shi et al.

2009), (5) potato (Danan et al. 2011), (6) cocoa (Lanaud

et al. 2009), (7) soybean (Guo et al. 2006; Sun et al. 2012)

and (8) apricot (Marandel et al. 2009).

MQTL analysis in wheat has also been successfully

utilized to detect definitive QTL regions not only for

drought tolerance (20 MQTLs for 502 independent QTLs

from an earlier study; Acuña-Galindo et al. 2015), but also

for several other individual traits including the following:

(1) pre-harvest sprouting tolerance (Tyagi and Gupta

2012), (2) ear emergence (Hanocq et al. 2007; Griffiths

et al. 2009), (3) resistance against Fusarium head blight

(Häberle et al. 2009; Loffler et al. 2009; Liu et al. 2009),

(4) plant height (Griffiths et al. 2012), (5) grain dietary

fiber content (Quraishi et al. 2010), (6) seed size and seed

shape (Gegas et al. 2010), (7) yield contributing traits

(Zhang et al. 2010; Quraishi et al. 2017), (8) resistance to

leaf rust (Soriano and Royo 2015) etc. Since large number

of QTLs for drought tolerance have been reported after the

last report of MQTL analysis for drought tolerance in

wheat, the present study involving MQTL analysis was

conducted (based on QTL studies conducted during

2015–2020) to supplement the list of MQTLs and candi-

date genes reported in the earlier MQTL study for drought

tolerance (Acuña-Galindo et al. 2015).

Materials and methods

In the present study, meta-QTL (MQTL) analysis and

identification of underlying candidate genes was under-

taken utilizing the widely known five steps, which are

briefly described:

Bibliographic review and collection of QTL

information

A thorough bibliographic review was carried out and QTL

information for drought tolerance in wheat was collected

from 14 independent studies. This included information on

chromosome location, most closely linked marker(s), QTL

position, log of odds (LOD) value, confidence intervals

(CIs) and R2 values. Details for individual studies used in

the present study are summarized in Table 1. The MQTL

analysis was conducted using BioMercator v4.2 (Arcade

et al. 2004).

Construction of consensus map

A consensus genetic map was developed using the fol-

lowing two dense composite maps: (1) a map containing

1235 SSR loci with an average distance of 2.2 cM between

two adjacent markers (Somers et al. 2004) and (2) the

composite map with 4506 markers available at Grain Gene

2.0 (https://wheat.pw.usda.gov/GG3/). All markers from

the framework maps used in individual QTL studies were

projected on these reference maps (applying a weighted
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least square method) to construct a consensus genetic map,

following procedure outlined in BioMercator v4.2 (www.

genoplante.org) (Arcade et al. 2004). The two maps were

first integrated to provide a pre-consensus map, which was

then used for developing a consensus map which carried

maximum number of markers and was suitable for QTL

projection to facilitate meta-QTL analysis.

QTL projection

The projection of individual QTLs on consensus map was

based on their LOD score, phenotypic variation explained

(PVE), confidence interval and QTL position. The soft-

ware, BioMercator v4.2 (Arcade et al. 2004) was used for

projection utilizing positions of markers that were common

in more than one study, and following the rule that the

markers flanking the interval of the original QTL should

correspond to the interval on the consensus chromo-

some map. Therefore, finally, out of the 14 studies, infor-

mation from only 11 studies was used by the software for

QTL projection. The remaining three studies were dropped

by the software mainly due to missing essential informa-

tion mentioned above.

Wherever the genetic position of a marker was not

known, the markers closest to the flanking markers from

the reference map were used to project QTL on the con-

sensus map. The 95% confidence intervals (CIs) of original

QTLs on their original maps were estimated using the

following formula provided by Darvasi and Soller (1997):

CI = 530/NR2, where, N is the population size and R2 is

the proportion of the phenotypic variance explained

(PVE) by individual QTL. The QTLs which could not be

mapped onto the consensus map and those mapped at

locations outside the consensus map were discarded.

Analysis for meta-QTL

Meta-QTL (MQTL) analysis was performed on the QTL

clusters on each chromosome using BioMercator v 4.2

(Goffinet and Gerber 2000). This software allows us to find

out the number (n) of MQTL, which is usually less than the

number of total projected QTLs. This is done by selecting

Table 1 Summary of QTL studies used for meta-QTL analysis during the present study

S.

no.

Type of mapping population, cross, and

population size

Type and number of

markers

Method used for QTL analysis (no. of

environments)

References

1 F2, 6544-6 9 Chakwal-86 (180) SSR (425) CIM, IM, SMA Malik and Malik

(2015)

2 RIL, W7984 9 Opata M85 (105) SSR, RFLP (1017) CIM (2) Onyemaobi et al.

(2018)

3 DH, CO940610 9 Platte (185) SSR, DArT, STS,

Protein (250)

CIM (4) El-Feki et al.

(2018)

4 RIL, W7984 9 Opata85 (104) SSR, RFLP (1475) CIM (2) Ayalew et al.

(2018)

5 RIL, Longjian19 9 Q9086 (120) SSR (524) CIM (4) Yang et al. (2016)

6 DH, Excalibur 9 Kukri (192) SSR, DArT (392) CIM (22) Gahlaut et al.

(2017)

7 RIL, Langdon 9 G18-16 (Durum) (152) SSR, DArT (690) IM (2) Peleg et al. (2009)

8 RIL, SeriM82 9 Babax (194) SSR, AFLP, DArT (587) CIM (6) McIntyre et al.

(2010)

9 DH, Arche 9 Recital (222) SSR (182) CIM (12) Zheng et al. (2010)

10 RIL, SeriM82 9 Babax (194) SSR, AFLP, DArT (587) CIM (8) Mathews et al.

(2008)

11 RIL, SeriM82 9 Babax (167) SSR, AFLP, DArT (401) CIM (3) Pinto et al. (2010)

12 DH, Beaver 9 Soissons (34) SSR, AFLP (241) CIM (3) Verma et al.

(2004)

13 DH, RAC875 9 Kukri (260) SSR CIM (6) Bennett et al.

(2012)

14 RIL, C306 9 HUW206 (104) SSR (141) CIM (3) Kumar et al.

(2012)

RIL recombinant inbred line, DH doubled haploid, SSR simple sequence repeat, DArT diversity array technology marker, AFLP amplified

fragment length polymorphism, RFLP restriction fragment length polymorphism, CIM composite interval mapping, IM interval mapping, SMA

single marker analysis
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one of the five models available in the software, one model

for each possibility. A specific model is selected on the

basis of minimum value of Akaike Information Criterion

(AIC); the lower the AIC value, the more appropriate is the

model. The aim of AIC is to estimate the mean log-like-

lihood (MELL) for the number of real positions xi of the

n QTLs (Sakamoto et al. 1986). The AIC value is com-

puted using the following formula: AIC = - 2 9 L(h[k],
X[k], X) ? 2 9 k., where L(h[k], X[k], X) is the log-likeli-

hood of the observed vector X (QTL position), k is the

actual number of parameters (1, 2, 3, 4…n), and X0 the

actual value of the positions of n QTLs. K is an unbiased

estimator of MELL. We have chosen the model with the

minimum AIC value, as recommended.

Identification of candidate genes underlying

the MQTL region and expression analysis

The candidate genes (CGs) are the genes localized within a

MQTL region that is identified based on the positions of

markers flanking the CI of the MQTL (or the marker

closest to the flanking markers). For this purpose, nucleo-

tide sequences of markers were retrieved from GrainGenes

database (https://wheat.pw.usda.gov/GG3) and used for a

search of genes using wheat reference genomic sequence

available in EnsemblPlants database (version 082214v1,

http://plants.ensembl.org/index.html) using BLAST (max-

imum E-value = 1E-100, minimum 95% identity of the

sequence). Gene models found within the physical regions

corresponding to the QTL intervals were retrieved using

BioMart of EnsemblPlant. In silico expression analysis for

the validation of identified CGs was conducted with

WheatExp database using the conserved domain sequences

(CDS) of each individual candidate gene. Heat maps for

expression data were prepared using ClustVis (https://biit.

cs.ut.ee/clustvis/; Metsalu and Vilo 2015).

Results

Bibliography search for QTLs for drought tolerance

Out of 14 studies on QTL analysis for drought tolerance in

wheat, listed in Table 1, in the present study only 11

studies could be used for MQTL analysis. Each study

involved. a separate mapping population (total 11 popula-

tions), leading to detection of as many as * 340 QTLs.

These 340 QTLs were distributed on all the 21 chromo-

somes belonging to 7 homoeologous groups (1–7) and 3

sub-genomes (A, B and D). Significant differences were

observed for the number of QTLs not only among all the

seven homoeologous groups, but also among individual

chromosomes within a homoeologous group (Fig. 1). Each

QTL is characterized by its map position [most likely

position and confidence interval (CI) around this position],

LOD value and the proportion of PVE (estimated through

R2 value). Whenever, the required information about

position and R2 value for the QTLs was not available from

a particular study, the most likely position of QTLs was

determined as the middle point between the two flanking

markers, and the R2 value of closest flanking marker was

taken as the R2 value of the QTL.

Construction of a consensus map and QTL

projection

In bread wheat, a number of framework genetic maps are

available, one each for an individual mapping population

used for QTL interval mapping in a particular study.

However, the number of common markers among the

individual maps that were used in the present study were

not adequate for construction of a consensus map and for

the reliable projection of QTL positions. Therefore, for

developing a consensus map, a pre-consensus map was first

generated from two important available maps (see ‘‘Ma-

terials and methods’’ section for details). The pre-consen-

sus map so developed was used for developing a consensus

map using the framework maps. Following criteria were

used for construction of consensus map using framework

maps from 11 studies: (1) A chromosome in a framework

map having no more than one common marker in the

corresponding chromosome of the pre-consensus map was

excluded. (2) Inversion of marker order was filtered out by

discarding inconsistent loci with the exception of very

closely linked markers. If two or more markers in a map

are available in inverted orientation relative to pre-con-

sensus map, then one of the two closest markers available

in inverted order and separated by a distance of\ 1 cM,

was dropped to retain a maximum number of common

markers. (3) When all the common markers were in reverse

order with respect to the pre-consensus map, we used

inverted genetic map for projection.

Meta-QTL analysis

Only 86 QTLs from the 340 QTLs that were identified

from bibliographic search were initially selected for meta-

QTL analysis, since the remaining 254 QTLs did not have

common flanking markers with the markers in the con-

sensus map. Out of these 86 QTLs, only 42 QTLs could be

projected on to the consensus map based on the lowest AIC

values. Out of these 42 QTLs, maximum number of QTLs

was available on chromosome 5A, followed by QTLs on

chromosomes 7A, 1D, 3B, 6D and 7D in that order.

Remaining 44 QTLs were discarded by the software

probably due to high AIC value as mentioned earlier. Using
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these 42 original QTLs, 13 MQTLs (Table 2; Fig. 2) were

identified on six different chromosomes, namely 1D, 3B,

5A, 6D, 7A and 7D (for details, see Table 3). The confi-

dence intervals (CI) for MQTLs were narrow (mean:

6.01 cM; range 2.07–19.46 cM) relative to those for the

original QTLs (mean: 13.6 cM; range 1.0–119.1 cM; for

details see Table 2). Further, it was observed that 10 of the

13 MQTLs, each controlled more than one trait indicating

their pleiotropic nature. Out of these 13 MQTLs, following

two MQTLs were important: (1) MQTL12, which is the

major MQTL located on chromosome 7D with R2 (PVE %)

of 23.40%, and a confidence interval of 3.18 cM. This

MQTL also had CI that was reduced by 50% (3.18 cM

against original 6.10 cM). (2) MQTL4, which comprised

maximum number of original QTLs (10), each controlling

a separate drought responsive trait (Table 2).

Candidate genes (CGs) identified underlying

the MQTLs region

In the present study, 228 drought responsive CGs were

initially identified, which belonged to the following 6

MQTLs: MQTL2 (34), MQTL4 (30), MQTL5 (31),

MQTL7 (20), MQTL8 (19) MQTL13 (94). No candidate

genes (CGs) could be identified for the remaining 7

MQTLs, since these MQTLs were flanked by markers like

AFLP/RFLP with no sequences data available for BLAST

search.

Expression analysis of CGs under drought

In the database, expression data was available for only 42

of 228 CGs, and that too for a solitary drought tolerant

wheat genotype TAM107. This expression data was uti-

lized for in silico expression analysis of the CGs, and

allowed us to prepare heat maps. Only 14 CGs exhibited

significant changes (FC = ? 3 to - 8) in expression due to

drought stress (1 h and 6 h drought stress at seedling stage

in tolerant cv. TAM107); for the remaining 28 CGs,

although expression data was available, no significant

change in expression due to drought was observed, as

evident from the heat maps presented in Fig. 3. These 14

CGs showing significant changes in expression due to

drought belonged to only 5 of the 6 MQTLs (Table 3); for

the remaining one MQTL (MQTL7), although 20 CGs

were available, but expression data was available for only

three genes, and this was not sufficient for expression

analysis. The 14 CGs encoded a variety of proteins and

under drought stress, 11 of these CGs showed down-reg-

ulation whereas the remaining three genes showed up-

regulation (for details see Table 3). These CGs can be

validated through a study of their expression in seedlings of

drought sensitive and drought tolerant wheat cultivars

grown under moisture stress.

Fig. 1 Distribution of individual QTLs for drought tolerance on 7 homoeologous groups and the A, B and D sub-genomes of wheat
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Discussion

Meta-QTL analysis combines results from multiple QTL

studies, permitting refinement of QTL locations and iden-

tification of closely associated molecular markers for the

traits of interest. In the present study, 13 MQTLs for

drought tolerance were identified in wheat. For this pur-

pose, after thorough bibliographic search, 11 studies

reporting 340 QTLs were selected. However, all the 340

QTLs could not be utilised by the software, mostly due to

the following two reasons: (1) unavailability of complete

information about the QTL (lack of common markers in the

consensus map and those flanking the QTL) and (2) high

AIC value.

A meta-QTL study for drought and heat tolerance in

wheat was also conducted earlier (Acuña-Galindo et al.

2015). In this earlier study, information from 30 studies

(till 2015) reporting 854 QTLs (including 502 QTLs for

drought tolerance) was utilized. The present study was thus

a supplement to this earlier study, and largely reports

MQTLs based on QTLs reported during 2015–2020. The

earlier study reported 20 MQTLs that were specific to

drought stress and 43 MQTLs that were common for both

heat and drought, MQTL analysis for drought tolerance

have also been undertaken in other cereals like rice

(Courtois et al. 2009; Khowaja et al. 2009), maize (Liu

et al. 2019; Hao et al. 2010) and barley (Li et al. 2013).

These MQTLs for drought tolerance reported in rice, maize

and barley along with MQTL reported in two studies

Table 2 Details of meta-QTLs (MQTLs) for drought tolerance identified in present study

Meta-QTL* (chromosome, genetic position in cM/physical

position in Mb, CI (95%) in cM)

No. of QTLs with minimum and

average CI (cM)

Mean R2 % (range

of R2 %)

Markers flanking

MQTL

MQTL1 (1D, 36.3/-, 7.39) 2/9.10 (9.60) 6.79 (6.47–7.12) XKsuE18a-

Xhor12d

MQTL2 (1D, 55.1/219.7, 6.38) 2/9.80 (9.95) 5.45 (4.90–6.00) Xcfd65-

Xbarc169

MQTL3 (3B, 47.9/-, 9.27) 2/4.60 (15.00) 6.35 (5.80–6.90) Xgwm685-

Xgwm376

MQTL4 (5A, 46.5/351.1, 3.1) 10/2.60 (14.26) 6.13 (2.58–13.00) Xwmc489-

Xgwm639

MQTL5 (5A, 65.2/535.1, 2.78) 5/6.68 (11.37) 8.60 (5.40–17.20) Xwmc415-

Xwmc795

MQTL6 (5A, 98.4/-, 2.07) 4/5.20 (11.30) 8.17 (6.32–10.50) Xcdo20-

Xwmc0075

MQTL7 (5A, 148.4/667.9, 2.77) 1/22.20 (22.20) 7.5 (NA) Xwmc577-

Xgwm595

MQTL8 (6D, 108.8/246.1, 19.46) 1/20.10 (20.10) 3.2 (NA) Xcfd1-Xcfd13

MQTL9 (7A, 42.7/-, 3.86) 3/3.90 (31.96) 9.67 (7.30–13.40) XwPt-11547-

Xgwm1083

MQTL10 (7A, 97.4/-, 8.06) 7/13.10 (37.93) 8.90 (2.70–20.43) Xfbb186-

Xbcd100

MQTL11 (7A,140.3/-,2.77) 1/119.10 (119.10) 6.3 (NA) Xgwm10-XP37/

M64-255

MQTL12 (7D, 128.7/-, 3.18) 3/6.10 (6.100) 23.40 (4.80–38.80) Xbarc5-

Xbarc154

MQTL13 (7D, 149.5/139,19) 1/17.2 (17.20) 6.3 (NA) Xwmc42-

Xgdm67

Mean CI: 6.01 Mean of average CI 13.5 Mean R2: 8.21

*For each MQTL, traits for the original QTLs were as follows: MQTL1 days to anthesis, days to maturity, MQTL2 kernel weight, water soluble

carbohydrate concentration, MQTL3 harvest index, culm length, MQTL4 plant height, yield, flag leaf area, flag leaf length, drought susceptibility

index due to spike dry matter, days to maturity, days to anthesis, total dry matter, leaf rolling, chlorophyll content, MQTL5 carbon isotopes

discrimination, canopy temperature during grain filling, days to maturity, germination percentage, harvest index, MQTL6 osmotic potential, days

to anthesis, days to maturity, germination percentage, MQTL7 days to heading, MQTL8 yield, MQTL9 total dry matter, spike dry matter, drought

susceptibility index due to chlorophyll content, MQTL10 culm length, chlorophyll content, test weight, days to anthesis, days to maturity, yield,

harvest index, MQTL11 canopy temperature during grain filling, MQTL12 spike length, days to heading, grain filling duration, MQTL13 leaf

length, NA R2 (%) values not available
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(including the present study) conducted in wheat may be

used in future studies to identify ortho-MQTLs and the

candidate genes (CGs) for drought tolerance in cereals, as

earlier done for nitrogen-use efficiency (NUE) in wheat

(Quraishi et al. 2011) and for yield-related traits in rice

(Khahani et al. 2020).

Drought is a complex quantitative trait involving

numerous physiological processes controlled by a large

number of genes, such as early flowering, plant height and

osmotic adjustment (Cattivelli et al. 2008; Shabala and

Pottosin 2014; Gupta et al. 2020a, b). Therefore, it is

always a challenge for plant breeders to collect data on

phenotype with precision and then select drought-tolerant

genotypes (Hu and Xiong 2014; Tuberosa 2012). In the

present study, QTLs for a fairly large number of drought

responsive ([ 40) traits were utilized. A critical analysis

would suggest that, some individual MQTLs were based

each on QTLs for only one specific trait/parameter, while

others were based on QTLs for more than one traits/pa-

rameters (Table 2).

Each of the 13 MQTLs that were identified during the

present study had a relatively narrow confidence interval

(CI), thus providing markers that are more closely associ-

ated with the corresponding MQTL. Some of the important

features of 13 MQTLs that are relevant for their use in

MAS include the following: (1) Stable MQTLs under dif-

ferent environments: MQTL4 is based on 3 QTLs for days

to maturity (DTM) from three different studies (Peleg et al.

2009; Pinto et al. 2010; Gahlaut et al. 2017) involving three

different environments. Similarly, MQTL10 is based on

two QTLs for DTM from two out of three above studies.

Therefore, MQTL4 and MQTL10 were also stable for the

trait DTM. (2) More than one MQTLs for the same trait:

MQTL1, MQTL4, MQTL6 and MQTL10 were each based

on QTLs for DTA and MQTL1, MQTL4, MQTL5,

MQTL6 and MQTL10 were based each on QTL for DTM;

see Table 2). These MQTLs, each based on more than one

trait seem to be more robust. (3) Pleiotropic MQTL: nine

out of 13 MQTLs each controlled more than one trait. For

instance, MQTL4 was derived from 10 QTLs each for

different traits and MQTL 10 was based on 7 original

QTLs each for a different trait. Interestingly, four QTLs

were common among the QTLs, on which these two

MQTLs are based. Similarly, there were seven other

pleiotropic QTLs (for details see Table 2). These QTLs

may, therefore, each represent a complex locus, each

controlling more than one drought responsive traits. The

above three categories of MQTLs should prove useful not

only for MAS, but also for searching CGs and possible

map-based cloning.

The above 13 MQTLs were also compared with the 20

MQTLs for drought tolerance that were reported earlier by

Acuña-Galindo et al. (2015). Some MQTLs identified in

the present study had markers located close to the markers

flanking the MQTLs reported in this earlier study. There-

fore, these markers can be considered as important for

MAS. Two such MQTLs identified in the present study

include MQTL2 and MQTL12; MQTL2 (chromosome 1D)

was flanked by two SSR markers, Xcfd65 and Xbarc169,

which are respectively located at a distance of 3 cM and

2 cM from the closest markers for MQTL9 reported by

Acuña-Galindo et al. (2015), so that MQTL2 of the present

study may correspond to MQTL9 of this earlier study.

Similarly, MQTL12 (chromosome 7D) of the present study

may correspond to MQTL64 of the earlier study. Since

both these MQTLs are located close to the markers Xbarc5

and Xbarc154, these markers may be important for MAS,

while breeding wheat cultivars for drought tolerance.

Notwithstanding these two seemingly common MQTLs in

two studies, 11 MQTLs identified during the present study

seem to be novel, thus adding to the list of known MQTLs

for drought tolerance.

The present study also supports the view that drought

tolerance is affected by the cumulative effect of several

QTLs for different drought responsive traits. Therefore, a

breeder will have to select appropriate MQTLs for MAS to

improve drought tolerance. For this purpose, a breeder may

select one or more MQTLs (for drought with or without

one or more other associated traits) that comprise a large

number of original QTLs, each having a narrow CI. Thus, a

few MQTLs out of the 13 MQTLs identified in the present

study may prove to be important for the development of

drought tolerant wheat varieties using MAS. We propose

two of the 13 MQTLs to be relatively more important

based on their specific features. These MQTL include the

following: (1) MQTL12 which is the only major effect

QTL with R2/PVE % of 23.4% with a narrow CI of

3.18 cM and controlling three important traits including

spike length, days to heading and grain filling duration, and

(2) MQTL4 (CI = 3.1 cM and average R2/PVE = 6.13%),

which is based on 10 QTLs for 10 different drought

responsive traits. These two MQTLs may be used for

marker-aided introgression of independent QTLs and

MQTLs in any adaptive genetic background for develop-

ment of drought tolerant wheat cultivars.

CGs underlying MQTLs were also identified using

wheat genomic sequences available at EnsemblPlants. Out

of 228 CGs identified by us; 11 CGs were also identified in

two earlier studies; three of these 11 CGs involved in

drought and heat stress in wheat, encoded FAD binding

domain, glycosyl hydrolase and F-box (Acuña-Galindo

et al. 2015). The remaining eight CGs involving tolerance

to drought stress in grasses were identified by (Swamy

et al. 2011); these genes encoded proteins for ABC trans-

porter, cytP50, zinc finger, protein kinase, glutaredoxin,

F-Box, aquaporin, and NAC transcription factor.
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Fourteen other CGs, encoding important proteins, were

identified on the basis of significant change in gene

expression (FC ? 3 to - 8); these genes can be subjected

to further studies for an understanding of the molecular

mechanism of drought tolerance as well as development of

markers for breeding drought tolerant wheat cultivars (for

further details, see Table 3 and Fig. 3). Interestingly some

of these CGs encodintg NAC transcription factors, Zn

finger protein, homeobox domain proteins, protein con-

taining kinase domain and HSP70, were also earlier

reported to play a role during drought stress response in

cereals like rice and wheat (Min et al. 2013; Fang et al.

2014; Wu et al. 2015; Li et al. 2020). For instance, gene

encoding NAC A/B superfamily protein showed down-

regulation due to drought tolerance. A similar gene

encoding NAC protein was earlier shown to be a potential

target of a miRNA in rice where its down-regulation was

shown to enhance drought tolerance (Fang et al. 2014).

Similarly, downregulation of the CG encoding a kinase

domain containing protein was observed in the present

study. The down-regulation of a leucine-rich repeat (LRR)-

RLK gene, namely LP2 (Leaf Panicle2) was also reported

earlier under drought stress in rice (Wu et al. 2015); the

expression of LP2 is regulated by a zink finger transcrip-

tion factor DROUGHT AND SALT TOLERANCE (DST).

In contrast, genes encoding HSP70, Zn finger containing

proteins and homeobox domain containing proteins showed

up-regulation due to drought stress, indicating their role as

positive regulators of drought tolerance. The role of Hsp70

in drought tolerance was reviewed earlier (for details, see

Cho and Choi 2009). Similarly, the overexpression of

wheat genes encoding a Zn finger protein (TaZnFP) and

homeobox domain containing proteins in transgenic Ara-

bidopsis showed enhanced drought tolerance (Min et al.

2013; Li et al. 2020).

bFig. 2 Distribution and location of 13 MQTLs on 6 different

chromosomes in bread wheat. The traits for the original QTLs

associated with each MQTL are indicated in parenthesis against each

MQTL. DTM: Days to maturity; DTA days to anthesis, DTH days to

heading, HI harvest index, SPKL culm length, SKW single kernel

weight, WSC water soluble carbohydrate, PH plant height, GY grain

yield, FLL flag leaf length, FLA flag leaf area, dsSPDM drought

susceptibility index spike dry matter, TDR total dry matter, CID

carbon isotope discrimination, CT canopy temperature, OP osmotic

potential, GP germination percentage, CHL chlorophyll content, LR

leaf rolling, TW test weight, GFD grain filling duration, LL leaf length

Table 3 List of 14 important proteins encoded by candidate genes showing significant change in gene expression (C twofold or B -twofold)

= Down-regulation at 6h;   = Up-regulation at 6h ;   =Down-regulation at 1h;   =Up regulation at 1h. 

MQTL (flanking 
markers/physical 
position in Mb)

Gene IDs (chromosome) Predicted proteins

TraesCS1D02G156900 (1D) NAC A/B domain superfamily
TraesCS1D02G157400 (1D) Pyridoxal phosphate-dependent transferase, major domain
TraesCS1D02G198100 (1D) ATPase, vacuolar ER assembly factor, Vma12

TraesCS1D02G176600 (1D) Zinc finger, FYVE/PHD-type

MQTL2 (Xcfd65-
Xbarc169/219.7)

TraesCS1D02G207100 (1D) Glycoside hydrolase, family 19
TraesCS5A02G038200 (5A) Ribosomal protein L36e
TraesCS5A02G041600 (5A) Pentatricopeptide repeat

MQTL4 
(Xwmc489-
Xgwm639/315.9)

TraesCS5A02G043400 (5A) Homeobox domain

MQTL5 
(wmc415-
Xwmc795/535.1)

TraesCS5A02G268800 (5A)
NAD-dependent epimerase/dehydratase

TraesCS6D02G047800 (6D) Protein kinase domain

TraesCS6D02G051300 (6D) NAD(P)-binding domain superfamilyMQTL8 (Xcfd1-
Xcfd13/246.1)

TraesCS6D02G049100 (6D) Heat shock protein 70 family 

TraesCS7D02G190000 (7D) Glycosyltransferase 2-likeMQTL13 
(Xwmc42-
Xgdm67/139.0) TraesCS7D02G188500 (7D) Peptidase M24
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Conclusion

Thirteen key genomic regions (in the form of MQTLs)

associated with agronomic performance and drought

responsive traits were identified during the present study;

11 of these MQTLs were novel and two were perhaps

common to those identified earlier by Acuña-Galindo et al.

(2015) Two of the 13 MQTLs regions were also recom-

mended for use in MAS for improvement of drought tol-

erance in wheat. Candidate genes were also identified from

six of the 13 MQTL regions. These candidate genes mainly

encoded proteins for ABC transporter, F box domain,

cytP50, zinc finger, protein kinase, glutaredoxin etc. Some

of these proteins were also shown to be involved in drought

tolerance in wheat and other cereals.
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