
RESEARCH ARTICLE

Adenine type and diphenyl urea derived cytokinins improve
the postharvest performance of Iris germanica L. cut scapes

Syed Sabhi Ahmad1 • Inayatullah Tahir1 • Arif Shafi Wani1 • Riyaz Ahmad Dar1 •

Shaziya Nisar1

Received: 21 April 2017 / Revised: 21 April 2018 / Accepted: 21 May 2018 / Published online: 3 June 2018

� Prof. H.S. Srivastava Foundation for Science and Society 2018

Abstract An experiment was designed to evaluate the

effect of various adenine derived cytokinins (kinetin and

6-benzylaminopurine) and diphenyl urea cytokinin (thidi-

azuron) on the postharvest performance of cut scapes of

Iris germanica. Flower scapes were harvested with the

oldest bud at ‘1 day before anthesis stage’, brought to

laboratory under water, cut to a uniform length of 35 cm,

divided into three sets viz., kinetin (KIN), 6-benzyl

aminopurine (BAP) and thidiazuron (TDZ). Each set of

scapes was treated with a particular cytokinin alone or in

combination with 0.1 M sucrose. TDZ was effective than

KIN and BAP in improving the postharvest life of the I.

germanica scapes by 5.4 days as compared to the control

(untreated scapes held in distilled water). This was because

of the minimum percentage of bud abortion by TDZ

application. Cytokinin application resulted in increased

antioxidant activity, higher protein and phenolic content,

besides a decrease in specific protease activity and a-amino

acids in the tepal tissues. Application of TDZ resulted in

the maximum increase in the superoxide dismutase, cata-

lase and ascorbate peroxidase activity in the tepal tissues.

The scapes treated with BAP and KIN maintained higher

carbohydrate content in the tissue samples as compared to

control and TDZ treated scapes. TDZ and BAP application

resulted in increased membrane stability because of the

decreased lipoxygenase activity which prevented mem-

brane lipid peroxidation. Among the cytokinins tested,

TDZ proved to be the promising cytokinin in improving the

postharvest performance of beautiful flowers of I. ger-

manica scapes.
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Introduction

Studies on flower senescence have always fascinated plant

biologists because of its complexity in terms of involve-

ment of various biomolecules. Flower senescence is char-

acterized by the sequential changes that start at the

molecular level, involve physiological and biochemical

changes which are ultimately visible at the organism level

(Ichimura et al. 2009; Trivellini et al. 2014; Saeed et al.

2014). Flower senescence is influenced by a turnover in the

synthesis and expression of various endogenous phyto-

hormones like ethylene, abscisic acid, cytokinins, auxins

and gibberellins. In some flowers, ethylene plays the main

role in flower senescence (ethylene sensitive flower

senescence) while as in others, ethylene has a little or no

role to play (ethylene insensitive flower senescence) (van

Doorn and Woltering 2008; Shahri and Tahir 2014; Ahmad

and Tahir 2016a; Iqbal et al. 2017). Although ethylene and

abscisic acid promote flower senescence, yet cytokinins are

known to delay senescence (Hunter et al. 2004; Arrom and

Munne-Bosch 2012). The inhibitory effect of cytokinins on

flower senescence makes it a hormone of choice in

extending the postharvest performance of various cut

flowers. It has been shown that young buds contain high

cytokinin levels which decline sharply towards senescence

(Xu et al. 2007; van Doorn et al. 2013; Rogers 2013; Dar

et al. 2014a). During the recent advances about the appli-

cation of cytokinins in postharvest technology, researchers
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have tried both adenine type cytokinins such as benzyl

adenine, zeatin, and kinetin or diphenyl urea derived non-

metabolizable cytokinins such as thidiazuron (N-phenyl-N-

1,2,3-thiadiazol-5-ylurea) (van Doorn 2004; Sankhla et al.

2005; Mortazavi et al. 2011). These studies have revealed

that exogenous application of cytokinins improve the

postharvest life of various cut flowers like Lilium, Dia-

nthus, Nelumbo, Gerbera, Iris, Hemerocallis (Macnish

et al. 2010a; Imsabai and van Doorn 2013; Reid and Wu

2018). The role of endogenous and exogenously applied

cytokinins has been studied at transgenic level in some

flowers like Petunia, Nicotiana, Chimonanthus, Rosa and

Dianthus (Mor et al. 1983; Trivellini et al. 2014; Sui et al.

2015). Although both classes of cytokinins (adenine type

and phenyl urea derivatives) proved effective in improving

postharvest performance of cut flowers, yet the effect of

thidiazuron was more promising. Cytokinins delay flower

senescence by promoting transport, accumulation and

retention of metabolites in flower petals, besides preventing

membrane degradation (Imsabai and van Doorn 2013;

Shahri and Tahir 2014; Radio et al. 2017; Iqbal et al. 2017).

Alternatively, cytokinins may result in delay of senescence

by influencing cytokinin/auxin activity or by causing

a decrease in sensitivity of flowers to ethylene in ethylene

dependent flowers (Macnish et al. 2010a; Ferrante et al.

2009; Liu et al. 2016a).

During our earlier studies, a simulated transportation

protocol was proposed for long term transportation of the

cut scapes of Iris germanica, an ethylene insensitive flower

system (Ahmad et al. 2013). The present investigation was

carried out to increase the vase life and improve the

postharvest quality of cut scapes of I. germanica by the

application of various cytokinins and thidiazuron. The

effect of these chemicals on the vase life and postharvest

performance was analyzed at biochemical level to assess

the various physiological and biochemical changes during

senescence.

Materials and methods

Plant material

Uniform and healthy scapes of I. germanica grown in the

Kashmir University Botanic Garden (KUBG) were utilized

in this study. The scapes were collected at 8:00 h with their

oldest bud at pencil stage (1 day before anthesis) (Fig. 1),

brought to laboratory, cut to identical size of 35 cm. The

scapes were then held in 170 ml of 75 lM KIN, 75 lM

BAP and 50 lM TDZ separately, alone or in combination

with 0.1 M sucrose in 250 ml flasks. Each treatment had 10

replicates (flasks) and each flask contained two scapes. A

separate set of scapes were held either in distilled water or

sucrose without the cytokinin treatment, designated the

control. In all the flasks, 0.1 mM 8-HQS (8-hydroxy

quinoline sulfate) was added to prevent microbial growth

in the vase solutions. All the biochemical parameters were

analyzed from the tepal tissues on day 4 of transfer to the

respective vase solutions. The oldest bud present on the

scape was used for the biochemical analysis. The experi-

ment was conducted under controlled conditions with rel-

ative humidity (RH) of 60 ± 10% and 12 h light period a

day.

Assessment of vase life and floral diameter

The average vase life of the cut scapes was counted from

the day of transfer of scapes to holding solutions and

assessed to be terminated when the last flower lost its

ornamental/display value. The floral diameter was mea-

sured on day 2 and 6 as the mean of two perpendicular

measurements across the flower.

Membrane stability index (MSI)

Solute leakage of the tepal tissues was calculated by

incubating 100 mg tepal tissue in 5 ml deionized water at

25 �C for 30 min and 100 �C for 15 min (Sairam 1994).

The conductivity of the samples incubated at 25 �C was

designated as C1 and those incubated at 100 �C was des-

ignated as C2 after recording the values on Elico CM180

Conductivity meter. MSI was computed as:

MSI ¼ 1 � C1

C2

� �
� 100

Lipid peroxidation (LPO)

Lipid peroxidation was determined by the method of Heath

and Packer (1968). 0.5 g of tepal tissue was macerated in

15 ml of 0.1% trichloroacetic acid (TCA) and centrifuged

at 15,0009g for 10 min under refrigeration. 1 ml of

supernatant was taken and mixed with 4 ml of 0.5% TBA

diluted in TCA (20%). The reaction was started by incu-

bating the mixture at 95 �C in water bath for 25 min and

reaction was ended by placing it in ice. Absorbance was

taken at 532 and 600 nm. Non-specific absorbance at

600 nm was subtracted from the value at 532 nm.

Estimation of sugar fractions, amino acids

and phenols

1 g chopped tepal tissue from each treatment was fixed in

hot 70% ethanol, macerated and centrifuged thrice. Total

phenols, a-amino acids, reducing, non-reducing and total
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sugars were estimated from a suitable aliquot taken from

the supernatant. Rosen’s method (1957) was employed for

a-amino acid quantification with glycine as standard. Total

phenolics were quantified by Swain and Hillis method

(1959) using gallic acid as standard. Nelson’s method

(1944) was used for determining reducing sugars with

glucose acting as standard. Non-reducing sugars were

converted to reducing sugars by invertase for the estima-

tion of total sugars. Difference between total and reducing

sugars revealed the amount of non-reducing sugars.

Protein estimation and specific protease activity

For protein estimation, 1 g of tepal tissue was macerated in

100 mM (pH 7.2) phosphate buffer containing 150 mM

NaCl, 1 mM EDTA, 1% Triton X-100, 10% glycerol, 10%

polyvinyl pyrrolidone (PVP) and 1 mM Dithiothreitol

(DTT). The mixture was centrifuged at 12,0009g at 5 �C
in a refrigerated centrifuge for 15 min. The supernatant

was collected and used for protein estimation. Proteins

were estimated by Lowry et al. method (1951) from a

suitable volume of aliquot taken from the supernatant.

Specific protease activity was determined from 1 g of tepal

tissue by the modified method as described by Tayyab and

Qamar (1992).

Enzyme extraction and assays

Superoxide dismutase (SOD)

1 g of tepal tissue was macerated in a mortar and

homogenized with 0.1 mM potassium phosphate buffer

(pH = 7.8) containing 0.1 mM EDTA, 1% PVP and 0.5%

v=vð Þ Triton X-100. The homogenate was centrifuged at

15000xg for 10 min. The supernatant was filtered through

Mira cloth and used for the enzyme assay.

SOD activity was measured by the method of Dhindsa

et al. (1981) by monitoring the inhibition of photochemical

reduction of nitroblue tetrazolium (NBT). The reaction

mixture contained 50 mM sodium carbonate, 75 lM

nitroblue tetrazolium (NBT), 0.1 mM EDTA, 13 mM

methionine in 50 mM phosphate buffer (pH = 7.8) and

0.1 ml of the enzyme extract in a final volume of 3 ml. The

reaction was started by adding 2 lM riboflavin and placing

the test tubes in water bath at 25 �C and illuminated with a

30 W fluorescent lamp. The reaction was stopped by

switching off the light and keeping the test tubes in dark-

ness. Identical test tubes which were not illuminated served

as blanks. Absorbance was measured at 560 nm and one

unit of SOD activity was defined as the quantity of the

enzyme which inhibits the photoreduction of NBT to blue

formazan by 50% as compared to the reaction mixture kept

in dark without the enzyme extract. The SOD activity was

expressed as units min-1 mg-1 protein.

Catalase (CAT)

Catalase activity was estimated by the method of Aebi

(1984). 1 g of tepal tissue was macerated in motor and

homogenized in 100 mM potassium phosphate buffer

(pH = 7.0) containing 1 mM EDTA. The reaction mixture

contained 50 mM potassium phosphate buffer (pH = 7.0),

12.5 mM H2O2, 50 ll enzyme extract and distilled water to

make the volume to 3 ml. Reaction was started by adding

H2O2 and the catalase activity was determined by the

consumption of H2O2 for 3 min at 240 nm and was

expressed as lmol H2O2 red. min-1 mg-1.

Ascorbate peroxidase (APX)

For the determination of APX activity, flower petals were

macerated in 100 mM sodium phosphate buffer containing

5 mM Ascorbate, 10% glycerol and 1 mM EDTA. The

APX activity was determined in 1 ml reaction mixture

containing 50 mM potassium phosphate buffer (pH = 7.0),

0.1 mM Ascorbate, 0.3 mM H2O2. The decrease in the

absorbance was recorded for 3 min at 290 nm (Chen and

Asada 1989).

Fig. 1 Stages of flower development and senescence in Iris germanica. Scapes with the oldest buds at stage III (1 day before anthesis) were used

for the present study
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Lipoxygenase (LOX)

LOX activity was determined by the method of Axerold

et al. (1981). 1 g tepal tissue was macerated in 1 ml

extraction buffer containing 50 mM potassium phosphate

buffer (pH = 6.5), 10% polyvinyl pyrrolidone (PVP),

0.25% Triton X-100 and 1 mM phenyl methyl sulfonyl

fluoride (PMSF). The reaction mixture (1 ml) contained

50 mM Tris–HCl buffer (pH = 6.5) and 0.4 mM linoleic

acid. The reaction was started by adding 10 ll crude tepal

extract to the reaction mixture and absorbance was recor-

ded at 234 nm for 5 min.

All the biochemical parameters studied were analyzed

from the tepal tissues which were last to open on the scape.

Statistical analysis

Completely randomized experimental design was followed

during the experiment. Each treatment was represented by

ten replicates (flasks) and each flask contained two scapes.

Each value represents the mean of ten replicates. Treatment

means were compared by analysis of variance using SPSS�

(SPSS version 16; Chicago, USA). Least significant dif-

ference (LSD) was calculated at the 5% level of proba-

bility. Standard error between the replicates was also

calculated. The Duncan’s multiple range test (DMRT) has

been applied to the data to separate the means.

Results

Just prior to this experiment, normalization/standardization

of the concentrations of 6-benzyl aminopurine, kinetin and

thidiazuron on the postharvest performance of cut scapes of

I. germanica was carried out. Concentrations ranging from

25 to 150 lM through 50, 75, 100, 125 lM were used.

Application of BAP (75 lM) and KIN (75 lM) individu-

ally resulted in the maximum enhancement of vase life of

cut scapes held in various test concentrations (25, 50, 75,

100, 125, and 150 lM). The increase in the vase life was

commensurate with the increase in various biochemical

parameters like membrane stability index, soluble proteins,

total phenols, sugar fractions and antioxidant enzymes;

besides a decrease in lipid peroxidation, specific protease

activity, a-amino acids and lipoxygenase activity was

recorded in the tissue samples from tepals. The concen-

trations of BAP and Kin higher than 75 lM showed a

significant decrease in all the biochemical parameters

studied except lipid peroxidation, specific protease activity,

a-amino acids and lipoxygenase activity. Among the var-

ious concentration of TDZ (25, 50, 75, 100, 125, and

150 lM) tested, maximum vase life was recorded in the

scapes treated with 50 lM concentration. Moreover, these

scapes showed the highest values for membrane stability

index, soluble proteins, total phenols, sugars fractions and

antioxidant enzymes; besides maintaining the lower values

for lipid peroxidation, specific protease activity, a-amino

acids and lipoxygenase activity. The concentrations (75,

100, 125, and 150 lM) above 50 lM showed a significant

decrease in membrane stability index, soluble proteins,

total phenols, sugars fractions and antioxidant enzymes;

besides an increase in lipid peroxidation, specific protease

activity, a-amino acids and lipoxygenase activity. Among

all the cytokinins (BAP, KIN and TDZ) tested, TDZ

proved to be the most effective in increasing vase life and

postharvest performance of the cut scapes of I. germanica.

Vase life, % blooms per scape and floral diameter

The scapes of I. germanica bear 4–5 buds with the oldest

bud at the top. The individual flowers remain open for

2 days in the field as also under laboratory conditions.

Flower senescence is marked by turgor loss in the tepals

followed by inrolling of the distal ends of the tepals and the

blue color of the tepals intensifies and ultimately the

flowers turn pale towards the peak of senescence. Among

the cytokinins tested, TDZ was the most effective in

increasing the vase life of cut scapes of I. germanica by

5.4 days followed by 3.7 days in KIN and 2.8 days in BAP

(Figs. 2, 3) as compared to control. This profound increase

in the vase life by TDZ treatment is due to the normal

opening of all the buds on the scapes (i.e., 100% blooming)

in the treated scapes in comparison to control where only

37% flowers opened. BAP and KIN treatment resulted in

66 and 77% blooms (Fig. 4). Addition of sucrose along

with the cytokinins in the vase showed improved vase life

than the DW. Application of cytokinins resulted in the

increase in floral diameter than the control. TDZ treatment

resulted in an increase in the floral diameter by 11.6%

followed by KIN (6.6%) and BAP (5%). Application of

sucrose further augmented this increase in floral diameter

in all the cytokinins used by 2.8%. Flower diameter

decreased with the progression in time from day 2 to day 6.

Lipid peroxidation and membrane stability index

Lipid peroxidation showed a decrease by 57.9% in the

samples from the scapes treated with TDZ along with

sucrose followed by BAP and KIN which showed a

decrease of 49.1 and 39.6% respectively as compared to

control where lipid peroxidation peaked (Fig. 5). Because

of decreased lipid peroxidation in samples from TDZ

treated scapes, MSI index was found to be highest i.e. 79%.

MSI values of the tissue samples from BAP (76%) and KIN

(63%) treated scapes were marginally lower than TDZ

treated scapes but significantly higher than the control.
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Soluble proteins, specific protease activity and a-
amino acids

Treatment of scapes with various cytokinins resulted in the

maintenance of increased soluble protein content in tepal

tissues with a concomitant decrease in the specific protease

activity (Fig. 6). The tepal samples from the scapes treated

with TDZ along with sucrose showed maximum increase in

the protein content by 264.3% and a decrease in the

specific protease activity by 55.6%. Scapes treated with

TDZ showed a decrease in the a-amino acid content by

63% followed by KIN and BAP with a decrease of 49.5 and

47.6% respectively. Maximum a-amino acid content was

registered in the samples taken from the control (Table 1).

Phenols and sugar fractions

The total phenolic content of the tepal tissues showed an

increase with the application of BAP, KIN and TDZ. The

Fig. 2 Effect of benzyl amino purine (BAP), kinetin (KIN) and thidiazuron (TDZ) on the postharvest performance and vase life of cut scapes of

Iris germanica on day 2 and day 8 of transfer of the scapes to the respective vase solutions
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tissue samples from the scapes treated with TDZ showed

an increase in the phenolic content by 88.9% followed by

KIN (71.2%) and BAP (58.9%) (Table 1). Minimum sugar

fractions (reducing, non-reducing and total) were found in

the control and maximum in tissue samples from BAP

treated scapes with an increase by 125% (Fig. 7). Appli-

cation of cytokinins resulted in the maintenance of higher

sugar levels in the tepal tissues irrespective of nature of the

vase solution.

Activities of antioxidant and lipoxygenase enzymes

Highest SOD, CAT and APX activity was found in the

scapes treated with TDZ followed by scapes treated with

KIN and BAP (Figs. 8, 9). TDZ treatment resulted in an

increase in the SOD, CAT and APX activity by 170, 295

and 247.8% respectively. Lipoxygenase (LOX) activity

was significantly decreased by 67, 59 and 54.6% in the

samples from the scapes treated with TDZ, BAP and KIN.

Minimum LOX activity was found in the samples from

TDZ treated scapes (Fig. 9).

Discussion

Deterioration of quality and short vase life of various

beautiful ornamental flowers comes in the way of their

marketability in floriculture trade (Rogers 2013; Ahmad

and Tahir 2015). Thus, the techniques to maintain the

quality; besides the means for the extension of vase life are

of immense importance. Several chemical treatments like

silver thiosulphate, aminooxyacetic acid, 1-methylcyclo-

propene, auxins, gibberellins, sugars, sugar alcohols, jas-

monates and polyamines have been tried in various flower

systems like Dianthus, Lilium, Rosa, Hemerocallis, Petu-

nia, Consolida and Narcissus which have proved success-

ful in improving their postharvest performance (Have and

Woltering 1997; van Doorn et al. 2013; Dar et al. 2014a;

Mortazavi et al. 2011; Ahmad et al. 2013; Saeed et al.

2014). The present study was carried on I. germanica

which has a lot of potential in the cut flower business.

Postharvest and senescence modulation studies on this

species are limited but studies have been carried out on Iris

hollandica for the extension of vase life and improving the

postharvest quality (Celikel and van Doorn 1995; van

Doorn et al. 1995, 2003; Lee et al. 2005; Pak and van

Doorn 2005; Macnish et al. 2010a; Celikel and van Doorn

2012; van Doorn et al. 2013). A simulated transportation

protocol was earlier proposed by us for long term transport

of this ornamental flower (Ahmad et al. 2013). In the

present experiment, we have proposed the use of various

cytokinins (as continuous vase treatments) for their ability

to improve vase life and postharvest performance of I.

germanica. Although Macnish et al. (2010a) have recom-

mended 24 h pulse of 1 mM TDZ for improving the vase

life of Iris hollandica, but the effect of continuous TDZ

supply in the vase solution has not been assessed so far.

Moreover, the underlying biochemical changes that result

in the increase of vase life by cytokinin treatment are yet to

be studied. This experiment was aimed to enhance our

knowledge about the role of various cytokinins on vase life

of I. germanica at biochemical level.
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Effect on vase life, percent blooms and floral

diameter

During the present study, TDZ was found to be most

effective in improving the quality as well as vase life of I.

germanica by 5.4 days followed by KIN and BAP. This

increase in the vase life was because of the 100% blooming

that took place in the TDZ treated scapes. Macnish et al.

(2010a) have earlier reported that application of TDZ

resulted in the increase in the number of blooms in I.

hollandica. The effectiveness of TDZ than BAP and KIN

can be attributed to its non-metabolizable nature (Macnish

et al. 2010a). Our results about increase in vase life by

cytokinin treatment on Iris is contrary to the studies on

Hemerocallis where the cytokinins did not manifest the

effect, but are in conformity with the results on carnation

where vase life was considerably increased by cytokinin

application (Lukaszewski and Reid 1989; Ferrante et al.

2009). Treatment of scapes with BAP, KIN and TDZ

resulted in increased floral diameter than the control. This

increased floral diameter by cytokinins is because of the

maintenance of increased carbohydrate levels in the tepal

tissues as is evident from the current investigation. Pres-

ence of more solutes will develop water potential gradient

helping the water to move inside the tepal tissues making

them turgid resulting in the increased floral diameter (van

Doorn 2004; Dar et al. 2014a; Dar et al. 2014b; Iqbal et al.

2017; Reid and Wu 2018).

Table 1 Effect of benzyl amino purine (BAP), kinetin (KIN) and thidiazuron (TDZ) on the floral diameter, a-amino acids and total phenols on

the postharvest performance of cut scapes of Iris germanica

Days after

transfer

Control 6-Benzyl amino purine

(BAP)

Kinetin (KIN) Thidiazuron (TDZ) LSD

P = 0.05

DW ? 8-

HQS

SUC ? 8-

HQS

DW ? 8-

HQS

SUC ? 8-

HQS

DW ? 8-

HQS

SUC ? 8-

HQS

DW ? 8-

HQS

SUC ? 8-

HQS

Floral diameter (cm)

2 8.13a 8.36a 8.34a 8.76b 8.54b 8.91c 8.97c 9.33d 0.09

6 – – 8.12a’ 8.15a’ 8.31b’ 8.27b’ 8.88c’ 8.97c’ 0.04

a-amino acids (mg g-1 fm)

4 11.32a 10.17b 5.71c 5.33d 5.37d 5.13e 4.11f 3.76 g 0.11

Total phenols (mg g-1 fm)

4 3.81a 3.99a 6.61b 6.34b 6.97c 6.83c 7.33d 7.54d 0.08

The letters a–d and a’–c’ (floral diameter); a–g (a-amino acids) and a–d (total phenols) denote the statistical significance (Duncan’s multiple

range test) of the differences between individual treatments (only those marked with different letters differ significantly at P\ 0.05)

The values presented in the table are mean of 10 independent replicates (n = 10)
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Fig. 7 Effect of benzyl amino purine (BAP), kinetin (KIN) and

thidiazuron (TDZ) on the sugar fractions (reducing, non-reducing and

total) of the tepal tissue in cut scapes of Iris germanica. The letters a–

e, a’–c’ and a0’–c0’ above the bars denote the statistical significance

(Duncan’s multiple range test) of the differences between individual

treatments (only those marked with different letter differ significantly

at P\ 0.05)
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Fig. 8 Effect of benzyl amino purine (BAP), kinetin (KIN) and

thidiazuron (TDZ) on the catalase (CAT) and superoxide dismutase

(SOD) activity of the tepal tissue in cut scapes of Iris germanica. The

letters a–e and a0–d0 above the bars denote the statistical significance

(Duncan’s multiple range test) of the differences between individual

treatments (only those marked with different letter differ significantly

at P\ 0.05)
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Changes in lipid peroxidation, lipoxygenase activity

and membrane stability index

Treatment with cytokinins resulted in the decreased lipid

peroxidase activity (LPO) with least in TDZ treated scapes.

This decrease in LPO can be attributed to the decreased

lipoxygenase activity (LOX) of the tepal samples in the

cytokinin treated scapes. Decreased LOX activity resulted

in the decreased lipid peroxidation which can be visualized

by the increased membrane stability index in the tissue

samples from cytokinin treated scapes. This decrease in the

LOX activity and LPO by cytokinin treatment can be

attributed to maintenance of adequate phospholipids, pro-

teins and thiols by preventing the leakage of proteases from

vacuoles into the cytoplasm (Fukuchi-Mizutani et al. 2000;

Pak and van Doorn 2005; Liu et al. 2016b; Dek et al.

2017).

Changes in soluble proteins, specific protease

activity and a-amino acids

Protein levels were maintained with the treatment of scapes

by the cytokinins, with the maximum protein levels in the

tissue samples from TDZ treated scapes. The maintenance

of increased proteins levels was concomitant with the

decreased specific protease activity in the tepal tissues.

Cytokinins have been found to delay senescence in An-

drepogon gerardi and Nicotiana by preventing protein

degradation and inhibiting the activity of proteases (Towne

and Owensby 1983; Macnish et al. 2010b; Nisar et al.

2015). This suggests that cytokinins delay senescence by

limiting programmed cell death due to prevention of an

upsurge in the proteasomes (Pak and van Doorn 2005; van

Doorn et al. 2013). Cytokinin treatment resulted in the

maintenance of lower a-amino acid content as compared to

the control. This decreased quantity of a-amino acids can

be attributed to the lower protein breakdown in the tepal

tissues from cytokinin treated scapes. During senescence

process, proteins are transported as a- amino acid from the

flowers back to the developing organs (Tripathi and Tuteja

2007; Ahmad et al. 2013; Ahmad and Tahir 2016a; Wil-

liamson and Hepwonth 2018). Thus, the treatment of

cytokinins during the present study showed curtailed pro-

tein degradation resulting in the lower a- amino acid

content in the tepal tissues.

Changes in total phenols and sugar fractions

Treatment of I. germanica scapes with cytokinins espe-

cially TDZ, resulted in the accumulation of larger quanti-

ties of phenols in the floral tissues. Cytokinins have the

property to stimulate defense mechanism for prevention of

senescence by enhancing the accumulation of phenols

(Schnablova et al. 2006; Schmitzer et al. 2010; Ahmad and

Tahir 2017). Phenol enrichment has been shown to occur in

the petals of petunia by the application of cytokinins

(Trivellini et al. 2014). Accumulation of phenols has been

shown to help combat endogenous perturbations, biotic and

abiotic stress in various flowers (Cvikrova et al. 1994;

Siranidou et al. 2002; Lattanzio et al. 2006; Ahmad and

Tahir 2017). Higher carbohydrate fractions were main-

tained in the tissue samples by the application of various

cytokinins. Maintenance of higher carbohydrate content

has been shown to be associated with longer vase life in

various flower systems like Dianthus and rose (Hunter

et al. 2002; Dar et al. 2014b; Jones et al. 2005). Cytokinins

have long been implicated in maintaining the sink strength,

thus preventing the movement of sugars from the floral

parts back to ovary during nutrient remobilization (van

Doorn and Woltering 2008; Javid et al. 2011; Ahmad et al.

2013). Moreover, it has been found that TDZ induced delay

in flower senescence was associated with the movement of

sugars from the leaves to the flowers for maintaining flower

metabolism in Iris hollandica (van Doorn 2004; Tassoni

et al. 2006; Macnish et al. 2010a; Shibuya and Ichimura

2016).

Changes in the activity of antioxidant enzymes

During the present investigation, antioxidant enzyme

activities (CAT and SOD) of the tepal tissues were aug-

mented by the application of cytokinins, thus helping to

scavenge toxic and highly unstable reactive oxygen species

(ROS) that otherwise trigger senescence. Maximum

antioxidant activity was maintained in the samples from

TDZ treated scapes. Application of cytokinins especially
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Fig. 9 Effect of benzyl amino purine (BAP), kinetin (KIN) and

thidiazuron (TDZ) on the ascorbate peroxidase (APX) and lipoxyge-

nase (LOX) activity of the tepal tissue in cut scapes of Iris germanica.

The letters a–f and a0–e0 above the bars denote the statistical

significance (Duncan’s multiple range test) of the differences between

individual treatments (only those marked with different letter differ

significantly at P\ 0.05)
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TDZ resulted in increase in the ascorbate peroxidase

(APX) activity. Decreased APX activity has been shown to

trigger senescence by the accumulation of highly reactive

H2O2 in the tepal tissues of various flowers like daylily,

gladiolus and carnation (Panavas and Rubinstein 1998;

Mittler et al. 2004; Saeed et al. 2014). Cytokinins have

been found to delay senescence either by increasing the

production of ROS scavenging enzymes (through its pos-

itive effect on protein synthesis) or directly by scavenging

the free radicals (Synkova et al. 2006; Lattanzio et al.

2006; Liu et al. 2016a). Cytokinins have also been found to

slow down the process of free radical formation during

senescence in tobacco plant (Synkova et al. 2006; Ahmad

and Tahir 2016b; Dek et al. 2017). POD, SOD and CAT

activity was found to be modulated by the application of

cytokinins for efficient scavenging of the reactive oxygen

species (Petit-Paly et al. 1999, Mwangi et al. 2003; Mittler

et al. 2004; Danilova et al. 2017). Application of the

inhibitors of cytokinin oxidase on wall flowers has sub-

stantiated the role of cytokinins in maintaining the levels of

antioxidant enzymes for longer vase life of the flowers

(Price et al. 2008; Bartrina et al. 2017).

Conclusions and future prospects

The present investigation revealed that cytokinins, prefer-

ably TDZ, improve postharvest performance of I. ger-

manica by maintaining a striking balance between various

biochemical parameters. Cytokinins resulted in mainte-

nance of higher proteins, carbohydrates, phenols and

antioxidant enzymes; besides, maintaining lower specific

protease activity, lipid peroxidation and a-amino acids.

The possible mechanism of the involvement of cytokinins

in regulating these processes is still unknown to a larger

account. Detailed studies on the pathways of cytokinin

action in delaying flower senescence and improving

postharvest performance of cut scapes need to be taken at

biochemical level. Understanding of the pathway by which

cytokinins and thidiazuron regulate flower senescence at

molecular level could help in gaining further insights. The

understanding can greatly help us to delay senescence and

devise more precise techniques for improving the

postharvest performance of various cut flowers. Further-

more, the mode of action of the diphenyl urea derived

cytokinin (TDZ) should be studied, as it has been showing

promising results in the regulation of senescence in various

flowers at relatively lower concentrations.
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