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Abstract Waterlogging of soils is common in nature. The
low availability of oxygen under these conditions leads to
hypoxia of the root system impairing the development and
productivity of the plant. The presence of nitrate under
flooding conditions is regarded as being beneficial towards
tolerance to this stress. However, it is not known how
nodulated soybean plants, cultivated in the absence of nitrate
and therefore not metabolically adapted to this compound,
would respond to nitrate under root hypoxia in comparison
with non-nodulated plants grown on nitrate. A study was
conducted with 15N labelled nitrate supplied on waterlogging
for a period of 48 h using both nodulated and non-nodulated
plants of different physiological ages. Enrichment of N was
found in roots and leaves with incorporation of the isotope in
amino acids, although to a much smaller degree under hyp-
oxia than normoxia. This demonstrates that nitrate is taken up
under hypoxic conditions and assimilated into amino acids,
although to a much lesser extent than for normoxia. The
similar response obtained with nodulated and non-nodulated
plants indicates the rapid metabolic adaptation of nodulated
plants to the presence of nitrate under hypoxia. Enrichment of
N in nodules was very much weaker with a distinct enrich-
ment pattern of amino acids (especially asparagine) suggest-
ing that labelling arose from a tissue source external to the
nodule rather than through assimilation in the nodule itself.
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Introduction

The production of crops such as soybean can be adversely
affected by waterlogging of the root system following even
moderate rainfall, especially with compacted soils or soils
with poor drainage properties. Waterlogging leads to a stress
denominated hypoxia, a condition where the concentration of
oxygen is insufficient for the roots to maintain their normal
rate of respiration. Root hypoxia results from the extremely
low rate of oxygen diffusion in water which is some 104 times
lower than in air (Armstrong et al. 1994). Hypoxia caused by
waterlogging is a stress that affects growth and survival of
plants and provokes metabolic alterations especially of energy
metabolism with a diversion of glycolysis to fermentation
(Bailey-Serres and Voesenek 2008). Several studies have
shown that the presence of nitrate (NO3

−) under waterlogged
conditions promotes greater tolerance of the plants (including
soybean) to hypoxia (Malavolta 1954; Trought and Drew
1981; Allegre et al. 2004; Thomas and Sodek 2005;
Horchani et al. 2010; Lanza et al. 2013). This beneficial effect
has stimulated research into the uptake and metabolism of
nitrate under hypoxia. There is evidence that hypoxia impairs
both the uptake and assimilation of nitrate (Lee 1978; Trought
and Drew 1981; Buwalda and Greenway 1989; Morard et al.
2004; Brandão and Sodek 2009; Oliveira et al. 2013a) al-
though information on the metabolism of nitrate under such
conditions is still inconclusive. Several studies indicate induc-
tion of the enzyme nitrate reductase under hypoxia (Garcia-
Novo and Crawford 1973; Glaab and Kaiser 1993; Botrel
et al. 1996; Morard et al. 2004; Horchani et al. 2010) but in
other cases a decline in activity was observed (Brandão and
Sodek 2009). Nevertheless, the reduction of nitrite, the
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product of nitrate reductase, appears to be strongly impaired
under hypoxia (Lee 1978; Botrel et al. 1996; Morard et al.
2004) leading to the accumulation of nitrite (Lee 1979;
Libourel et al. 2006; Brandão and Sodek 2009; Horchani
et al. 2010). Part of this nitrite can be reduced to nitric oxide,
a process that may be important for NAD+ regeneration
(Igamberdiev and Hill 2004; Stoimenova et al. 2007;
Oliveira et al. 2013b).

The study of uptake and metabolism of nitrate under hyp-
oxia is quite complex in view of the presence of nitrate in the
vacuole of root cells, a condition prevalent in plants cultivated
with nitrate as N source. During hypoxia this endogenous
nitrate is mobilized and metabolized (Sousa and Sodek
2002; Brandão and Sodek 2009) even when nitrate is present
in the medium. A similar phenomenon occurs under normoxia
when plants are transferred to a medium free of mineral N
(Sprent et al. 1987; Lima and Sodek 2003; Oliveira et al.
2013a), a further indication that the capacity for nitrate uptake
during hypoxia is limited. However, there is no information on
the uptake and metabolism of nitrate after waterlogging of the
root system of nodulated plants which, cultivated in the ab-
sence of mineral N, are naturally free of endogenous nitrate
and therefore not metabolically adapted to its presence. The
objective of the present study was, therefore, to verify whether
the metabolic response to nitrate under root hypoxia of
nodulated plants differs from that observed with non-
nodulated plants grown on nitrate. The study was conducted
with 15N labelled nitrate supplied onwaterlogging for a period
of 48 h using plants of different physiological ages.

Materials and methods

Soybean (Glycine max L. Merr cv IAC-23) seeds were ger-
minated in trays of vermiculite. Seedlings with fully expanded
primary leaves (V1 stage - see Ritchie et al. 1982) were
transferred to 1.4 L pots containing vermiculite, with 1 plant
per pot. For nodulated plants the seedlings were inoculated
with a liquid culture of Bradyrhizobium elkani (SEMIA 5019)
(Norris and Date 1976) on transfer to the pots. The pots
received Hoagland and Arnon’s (1938) nutrient solution at
one-third strength either free of N (0 mMNO3

−) for nodulated
plants or complete (5 mM NO3

−) for non-nodulated plants.
The experiments were set up when plants reached the desired
developmental stage. For this purpose vermiculite was re-
moved from the roots by careful washing with tap water and
the plants transferred to a hydroponic system with one plant
per pot containing 200 mL of nutrient solution. The following
treatments were used: normoxia, with 5 mM 15NO3

− (11 %
atom excess) and aeration; hypoxia, with 5 mM 15NO3

−

without aeration and the solution surface covered with mineral
oil. Each treatment consisted of 3 replicate plants. The pH of
the nutrient solution was 6.5. Similar experiments were

carried out with plants at each developmental stage from V1
(primary leaf stage) to V7 (6th trifoliate leaf stage - for stage
definitions, see Ritchie et al. 1982). After treatment for 48 h
the roots, leaves (youngest fully expanded trifoliate) and nod-
ules (where present) were collected. The first harvest of nod-
ules was possible at the V4 (3rd trifoliate leaf) stage, since at
earlier stages nodules were absent or too small.

The isotopic analysis of plant N was carried out on lyoph-
ilized material by the Stable Isotope Laboratory of the Centro
de Energia Nuclear na Agricultura (CENA/USP), Piracicaba,
SP following the procedures of Barrie and Prosser (1996). The
15N enrichment of amino acids was determined after extrac-
tion, purification by ion-exchange and derivatization with
MTBSTFA as described by Oliveira et al. (2013a) using Gas
Chromatography/Mass Spectroscopy (GC/MS) according to a
protocol adapted from Godber and Parsons (1998).

Results

Uptake of 15NO3
− by soybean plants

The data for 15N enrichment after the 48 h of treatment shows
that 15NO3

− was taken up under conditions of hypoxia with
the distribution of isotope in roots, leaves and nodules of
nodulated plants as well as roots and leaves of non-
nodulated plants, at all the developmental stages investigated
(Figs. 1 and 2).

In the roots of nodulated plants, the enrichment of 15N was
much less under hypoxia relative to normoxia (Fig. 1a). Under
hypoxia the values were below 2 % whereas under normoxia
above 3%. Independent of treatment, there was a tendency for
a decline in enrichment with plant age. In the leaves of
nodulated plants the enrichment of 15N was also lower for
hypoxia relative to the normoxia controls at all stages of
development (Fig. 1b). Under hypoxia the values of 15N
enrichment ranged from 0.2 and 1.6 %, while for normoxia
they varied from 1.1 to 3.5 %. Despite the difference in values,
the pattern was similar between hypoxia and normoxia with
an increase recorded up to stage V3 followed by a decrease. In
the case of nodules enrichment was extremely low for both
hypoxia and normoxia, with values in the range 0.1 and 0.3 %
(Fig. 1c).

The pattern of incorporation of 15N in roots and
leaves of an identical experiment conducted simulta-
neously with non-nodulated plants (Fig. 2) was quite
similar to that observed for nodulated plants (cf.
Fig. 1), as well as in terms of the absolute values
recorded. For roots the enrichment was much lower
under hypoxia with a tendency for a decline with plant
age (Fig. 2a). For leaves 15N enrichment was also lower
under hypoxia for all ages.
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Incorporation of 15N in amino acids

Only data for the amino acids with greater enrichment of 15N
are presented, that is, Gln, Glu, Asn, Asp, Ala and Ser. These

are also the amino acids closest to primary N assimilation. The
data shown are the mean of all plant ages studied (V1 toV7) in
view of the similarity of values between ages. In general, the
incorporation of 15N in these amino acids was observed in
roots, leaves and nodules, both of nodulated (Fig. 3) and non-
nodulated (Fig. 4) plants, although in the case of nodules the
degree of incorporation was very weak and almost absent in
the case of normoxia. For nodulated plants incorporation in all
amino acids was greater under normoxia compared to hypoxia
by a factor of about two, both for roots and leaves (Fig. 3). In
leaves, Asn and Gln presented a greater degree of enrichment
compared to other amino acids, but this is expected in view of
the amides possessing 2 atoms of N which allows enrichment
double that of amino acids with only 1 atom of N. In roots, the
incorporation of 15N in Asn was greater than Gln, both under
normoxia and hypoxia, however in the leaf the opposite was
found. In general, the data indicate that the flux of 15N into
amino acids was close to equilibrium, in view of the
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Fig. 1 Enrichment of N (%) of roots (a), leaves (fully expanded youngest
trefoil) (b) and nodules (c) of nodulated soybean during different stages of
plant development in normoxia (black square) and hypoxia (white
square) 48 h after the application of 15NO3

− isotope. Stage of develop-
ment V1 represents the primary or first pair of fully expanded leaves.
Difference between hypoxia and normoxia (analysis of variance using a
randomized block design): significant for (a) roots (p<0.001) and (b)
leaves (p<0.01 %); not significant for (c) nodules
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Fig. 2 Enrichment of N (%) of roots (a) and leaves (fully expanded
youngest trefoil) (b) of non-nodulated soybean during different stages of
plant development in normoxia (black square) and hypoxia (white
square) 48 h after the application of 15NO3

− isotope. Stage of develop-
ment V1 represents the primary or first pair of fully expanded leaves.
Difference between hypoxia and normoxia (analysis of variance using a
randomized block design): significant for (a) roots (p<0.001) and (b)
leaves (p<0.01)
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enrichment values being generally similar for all reported
amino acids (for this comparison values for amides should
be divided by 2).

In the case of nodules, it is noteworthy that incorporation of
15N in amino acids in the hypoxia treatment was weak, but
even weaker or virtually absent for normoxia. An exception
was Asn where incorporation was more substantial (around
4 %) both under normoxia and hypoxia, and also Gln where
incorporation under normoxia was as high as under hypoxia
(1.6 and 1.12 %, respectively; difference not significant).

In the case of non-nodulated plants substantial incorpora-
tion of 15N into amino acids was found, both for leaves and
roots (Fig. 4), however in general with values somewhat lower
than those registered for nodulated plants. This difference may
possibly result from dilution of the isotope by non-labelled
endogenous nitrate present in non-nodulated plants. In the
leaves incorporation of 15N was lower under hypoxia except
for Asn and Gln. Although Asn and Gln presented values for
normoxia about double those found for hypoxia, the differ-
ence was not significant, due to the high variability between
replicates. In the root, there was no significant difference
between normoxia and hypoxia for all amino acids registered
except for Ser, despite values being superior for normoxia in
all cases. The incorporation of 15N in the amides Asn and Gln
stood out among the amino acids for normoxia in leaves
(Fig. 4) similar to that found for nodulated plants (cf.
Fig. 3), however by contrast to the data for nodulated plants
it did not stand out in roots.

Discussion

The enrichment of the roots and leaves of soybean with 15N
after 48 h of hypoxia in the presence of 15N-nitrate, both for
nodulated and non-nodulated plants, allows two important
conclusions. First, that nitrate is absorbed by roots under
waterlogged (hypoxic) conditions and second that the isotope
is transported to other parts of the plant. In the case of the non-
nodulated plants this confirms a similar conclusion reached by
Oliveira et al. (2013a). The fact that nodulated plants pro-
duced a similar response allows additional conclusions
discussed below. Nevertheless, the enrichment of N under
normoxia was much greater than for hypoxia indicating that
nitrate uptake is much slower when plants are waterlogged.
Therefore hypoxia impairs nitrate uptake but does not totally
inhibit the process. This is in agreement with earlier studies
with cereals (Lee 1978; Trought and Drew 1981; Buwalda and
Greenway 1989) but contrasts data obtained with tomato
where more, not less nitrate was taken up under hypoxia
(Morard et al. 2004; Horchani et al. 2010).

The interpretation of the data obtained with nodulated
plants must take into account that they were grown in the

absence of nitrate and therefore totally dependent on N2

fixation as a source of N. This contrasts with non-nodulated
plants grown on nitrate and therefore dependent on nitrate
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Fig. 3 Incorporation of 15N in amino acids of nodulated soybean (%
labelling of each amino acid). Data for (a) roots, (b) leaves (youngest
fully-expanded) and (c) nodules after supplying plants with nutrient
solution containing 15NO3 (11 % atom excess) for 48 h under normoxia
and hypoxia. Data are the mean for all ages studied (V1 to V7). * =
difference significant (p<0.05) by Student’s t test between means for
hypoxia and normoxia; ns = not significant
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assimilation. The fact that the nodulated plants responded to
hypoxia stress in a similar manner to the non-nodulated plants
after the supply of nitrate-15N indicates a rapid metabolic
adaptation of the plant to the presence of nitrate even under
hypoxic conditions. On waterlogging the process of N2 fixa-
tion of the nodulated plants is suppressed within 1 h
(Amarante and Sodek 2006) so the influence of this process
would be minimal. The simultaneous supply of nitrate-15N
with the application of the hypoxic stress leads to its uptake,
assimilation and transport to other parts of the plant since 15N
was found both in roots and shoots with incorporation in
amino acids. This must involve the induction of NR activity
in the roots, since the enzyme is absent in roots of nodulated
soybean grown in the absence of nitrate, but can be induced
within 24 h after addition of substrate (Antunes and Sodek,
unpublished data). On the other hand, this capacity to take up
and assimilate nitrate under hypoxia, although present, was

strongly reduced in relation to normoxia, in view of the lower
enrichment of roots and leaves under hypoxia. This phenom-
enon was observed both for nodulated and non-nodulated
plants. The reduced capacity under hypoxia was of the same
order of magnitude for nodulated and non-nodulated plants,
consistent with our conclusion that nodulated plants adapt
rapidly to the presence of nitrate even under hypoxia.

The fact that 15N was incorporated efficiently in amino
acids under hypoxia clearly demonstrates that the process of
reduction and assimilation of nitrate does take place under
hypoxia, not only in non-nodulated plants (see also Oliveira
et al. 2013a) but also in nodulated plants. However, for roots
and leaves of nodulated plants (and in the case of some amino
acids of non-nodulated plants), the degree of enrichment was
significantly less under hypoxia, indicating some limitation of
the process of nitrate assimilation under these conditions. This
limitation could be expected to be more severe for nodulated
plants in view of the necessity to adapt their metabolism to the
presence of nitrate. The enrichment of the amino acids was in
general greater than the enrichment of total N, both for
normoxia and hypoxia. This may be explained by the fact that
amino acids are metabolically close to that of nitrate and will
therefore receive the 15N first. As may be expected, the
immediate products and those closest to the assimilation of
nitrate were the most enriched (Asn, Gln, Asp, Glu e Ala).

With regard to the nodules the data show that they too were
enriched, though to a much lesser extent than in the roots or
leaves, both under normoxia and hypoxia. The presence of
labelled amino acids in the nodule is especially interesting,
since the capacity of the nodule to reduce and assimilate
nitrate is regarded as being very limited, although the subject
is controversial (Sprent et al. 1987; Becana et al. 1989;
Izmailov et al. 2003). Two aspects concerning the nodule data
are noteworthy since they contrast the situation found for
leaves and roots. First, the degree of enrichment of the amino
acids was in general greater under hypoxia than normoxia.
Second, Asn stood out among the amino acids in terms of
enrichment level, both under normoxia and hypoxia. As such,
the profile of 15N incorporation in the amino acids analysed
was different from that found in roots and leaves. It is possible,
therefore, that the 15N present in the amino acids was not
assimilated in the nodule, but in a different location and some
of these labelled amino acids translocated to the nodule. In this
respect, it is pertinent to observe that in other studies it was
suggested that at least part of the Asn of the nodule came from
a different source and not from assimilation in the nodule itself
(Atkins et al. 1988, 1990).

The only studies found in the literature that have used
15NO3 under conditions of hypoxia were carried out by the
group of Reggiani (Reggiani et al. 1995, 1997) with rice
seedlings and more recently by our own group (Oliveira and
Sodek 2013; Oliveira et al. 2013a) with root segments and
intact plants of non-nodulated soybean. These investigations
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Fig. 4 Incorporation of 15N in amino acids of non-nodulated soybean (%
labelling of each amino acid). Data for (a) roots, (b) leaves (youngest
fully-expanded) after supplying plants with nutrient solution containing
15NO3 (11% atom excess) for 48 h under normoxia and hypoxia. Data are
the mean for all ages studied (V1 to V7). * = difference significant
(p<0.05) by Student’s t test between means for hypoxia and normoxia;
ns = not significant
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demonstrated the incorporation of 15N in several amino acids
and Reggiani et al. (1997) concluded that there was no block-
age of the nitrate assimilatory pathway under oxygen defi-
ciency in rice. However, with regard to anoxia or hypoxia, rice
is considered a case apart (Reggiani et al. 1993) in view of its
capacity to germinate in anaerobic environments, being fully
adapted to anoxic conditions. Although our own studies with
soybean also demonstrate the operation of the nitrate assimi-
latory pathway during hypoxia, our conclusion is that the
process is quite limited under these conditions. This conclu-
sion is supported by other studies where nitrite was shown to
accumulate under hypoxia (Lee 1979; Morard et al. 2004;
Libourel et al. 2006; Brandão and Sodek 2009; Horchani
et al. 2010). Some of the accumulated nitrite can be reduced
to NO by mitochondrial activity where nitrite substitutes
oxygen as terminal electron acceptor under oxygen deficiency
(Stoimenova et al. 2007; Gupta et al. 2011; Oliveira et al.
2013b, c), thereby producing ATP and regenerating NAD+

which may underlie the beneficial effect of nitrate on plant
tolerance to hypoxia.

We conclude that in soybean plants under hypoxia pro-
voked by waterlogging of the root system, nitrate is taken up
by the roots and assimilated into amino acids, although both
processes are limited in relation to normoxia. Nodulated
plants, grown without nitrate, show a rapid metabolic adapta-
tion to the presence of nitrate under hypoxic conditions in
view of the response being very similar to that of non-
nodulated plants.
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