
Memetic Computing (2024) 16:491–503
https://doi.org/10.1007/s12293-024-00423-5

REGULAR RESEARCH PAPER

ResGAT: Residual Graph Attention Networks for molecular property
prediction

Thanh-Hoang Nguyen-Vo1 · Trang T. T. Do1 · Binh P. Nguyen2

Received: 20 May 2024 / Accepted: 24 July 2024 / Published online: 3 September 2024
© The Author(s) 2024

Abstract
Molecular property prediction is an important step in the drug discovery pipeline. Numerous computationalmethods have been
developed to predict a wide range of molecular properties. While recent approaches have shown promising results, no single
architecture can comprehensively address all tasks,making this area persistently challenging and requiring substantial time and
effort. Beyond traditionalmachine learning and deep learning architectures for regular data, several deep learning architectures
have been designed for graph-structured data to overcome the limitations of conventional methods. Utilizing graph-structured
data in quantitative structure–activity relationship (QSAR) modeling allows models to effectively extract unique features,
especiallywhere connectivity information is crucial. In our study, we developed residual graph attention networks (ResGAT), a
deep learning architecture for molecular graph-structured data. This architecture is a combination of graph attention networks
and shortcut connections to address both regression and classification problems. It is also customizable to adapt to various
dataset sizes, enhancing the learning process based on molecular patterns. When tested multiple times with both random and
scaffold sampling strategies on nine benchmark molecular datasets, QSAR models developed using ResGAT demonstrated
stability and competitive performance compared to state-of-the-art methods.

Keywords Graph attention network · Graph convolutional network · Residual · Shortcut connection · Molecular property
prediction

1 Introduction

Property prediction is an important step in modern drug
discovery, and it continues to capture researchers’ atten-
tion [1]. Accurate molecular property determination speeds
up screening processes for potential drug candidates, result-
ing in cost and time savings [2]. Becausemolecular structures
and biological activities (or properties) are closely related,
many computational approaches have been developed to pre-

B Trang T. T. Do
trang.dtt@ou.edu.vn

B Binh P. Nguyen
binh.p.nguyen@vuw.ac.nz

Thanh-Hoang Nguyen-Vo
thanhhoang.nguyenvo@ou.edu.vn

1 Faculty of Information Technology, Ho Chi Minh City Open
University, 97 Vo Van Tan, District 3, Ho Chi Minh City
70000, Vietnam

2 School of Mathematics and Statistics, Victoria University of
Wellington, Kelburn Parade, Wellington 6012, New Zealand

dict these properties using structural information. Among
these approaches, quantitative structure–activity relation-
ship (QSAR) modeling is a low-cost computational method
commonly used to predict a wide range of molecular proper-
ties (e.g., lipophilicity, hydrophobicity, solubility) [3]. These
QSAR models are flexible in design and optimized for effi-
cient learning of complex structural patterns. Despite initial
successes, these modeling tasks remain difficult due to the
complexity of chemical structures, class imbalance, high-
dimensional data representation, and limited data volume.
To address these challenges, robust computational methods
and interdisciplinary collaboration are critical.

The graph neural network (GNN) [4], which was specif-
ically designed to handle molecular graphs [5–9], has made
a breakthrough over the last two decades. The development
of efficient GNN variants allows for the emergence of graph-
based representation learning [10–13]. For years, numerous
studies have used GNN and its variants to predict molecular
properties. Scarselli et al. [4] proposed the first version of
GNN in 2009. Although GNN can handle graph-structured
data, their applications have not been widespread due to their

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-024-00423-5&domain=pdf

492 Memetic Computing (2024) 16:491–503

relatively low learning efficiency until the graph convolu-
tional network (GCN) was presented [14]. The introduction
of GNN has sparked a large number of further research and
extensive practice in graph-based deep learning (DL) archi-
tectures. Wieder et al. [15] conducted a critical review to
summarize DL architectures used for molecular property
prediction. Gilmer et al. [16] developed neural fingerprints
using CNN customized for graph-structured data. After criti-
cally surveying various GNN-based models, Yang et al. [17]
introduced and conceptualized the Message Passing Neu-
ral Network (MPNN), characterized by two distinct phases:
Message passing and Readout. Yang et al. [18] presented
the Directed MPNN (D-MPNN) as an upgraded version of
MPNN that prioritizes updating information specifically on
directed bonds instead of atoms. Xiong et al. [10] introduced
AttentiveFP, an attention-based network that achieved robust
performance on multiple benchmark datasets. HRGCN+, by
Wu et al. [11], combines molecular graphs and descrip-
tors (physicochemical features) to boost prediction efficiency
with excellent performance compared to existing methods.
Li et al. [8] proposed the TripletMessageNetwork (TrimNet)
for processing molecular graphs, an architecture designed to
significantly reduce the number of parameters and enhance
the capacity to extract bonding information. The GraphMul-
tiset Transformer (GMT), developed by Baek et al. [19], is
a Transformer-based architecture adapting to multiset pool-
ing on graphs. Most recently, the Hierarchical Informative
Graph Neural Network (HiGNN), by Zhu et al. [9], is one of
the most competitive DL architectures. HiGNN comprises
two main blocks: atom–atom interaction and feature-wise
attention. The atom–atom interaction block is based on neu-
ral tensor networks for knowledge graph reasoning [20],
while the feature-wise attention block recalibrates an atom’s
representations after themessage passing phase, thus enhanc-
ing the selective extraction of important features. Initially,
the model’s input, the molecular structure, is fragmented
into substructures using the BRICS algorithm [21], creating
global and hierarchical molecular representations. Since the
implementation ofHiGNNrequires high computational costs
to process graph-structured data, it may not be cost- or time-
effective for prediction tasks on large datasets. Moreover, the
effectiveness of using complex attention mechanisms might
not always alignwith expectations. The performance ofmod-
els is influenced by various factors, including the complexity
of the tasks, data quality, and volume. In such scenarios,
architectures with simpler attention mechanisms could offer
a more appropriate alternative.

Although many models have been developed for predict-
ing molecular properties, there is still a lot of room for
improvement. The availability of high-quality data, chemi-
cal diversity in datasets, and data curation processes all have
a significant impact on prediction efficiency. Insufficient or
biased data can limit the model’s ability to learn molecular

patterns and make accurate predictions. Furthermore, com-
putational cost is an important consideration when dealing
with a large number of molecules. Computationally expen-
sive methods may be impractical for upscaling models. On
the other hand, generalizability is one of the issues encoun-
tered in most computational methods. Models developed or
evaluated on specific sets of molecules for specific properties
may perform poorly on other datasets or entirely new data,
especially if the training data are not good representatives.
Despite being tested against multiple benchmark datasets,
all known state-of-the-art methods may fail to show good
performance on when applied to a new prediction task. As
a result, developing novel methods for molecular property
prediction is always one of the key topics in modern drug
discovery in order to address various future prediction tasks.

In this study, we introduce the residual graph atten-
tion Network (ResGAT), a novel graph-based deep learning
architecture for molecular property prediction tasks. This
architecture is built on two key insights: (1) the use of reg-
ular shortcut connections between blocks, and (2) shortcut
connections integrated with a graph attention layer. Incor-
porating these types of shortcut connections into ResGAT
enhances the model’s learning capacity by stabilizing the
training process and improving generalization. Our archi-
tecture is versatile, capable of handling both regression and
classification problems, and allows flexible customization of
the number of blocks per block set to accommodate various
dataset sizes.

2 Proposed architecture

2.1 Residual graph attention network

We introduce the Residual Graph Attention Network (Res-
GAT), as described in Algorithm 1, a unique DL architec-
ture designed to process graph-structured data and capable
of addressing a variety of molecular property prediction
tasks. The ResGAT architecture is constructed using Graph
Attention (GAT) layers [22] and two types of shortcut
connections [23]. GAT, a masked self-attention layer, is
demonstrated to outperform the GCN layer in terms of com-
puting speed and efficiency (see Sect. 2.2). The shortcut
connection is a crucial component of the Residual Neural
Network (ResNet) [23]. This architecture is designed with
three Block Sets, and each of them is specified by L blocks
(Fig. 1). A single block consists of two GAT layers activated
by the rectified linear unit (ReLU) function. After passing
Block Set 3, the outputs are pooledwith a global max-pooling
layer. Finally, the max-pooled outputs are passed through a
fully connected (FC) block comprising three layers. The first
two layers are activated by the ReLU function, while the final
layer is activated by the Sigmoid function for classification

123

Memetic Computing (2024) 16:491–503 493

Fig. 1 Architecture of residual
graph attention network
(ResGAT). ResGAT is designed
with three Block Sets and each of
them has two GAT layers. Two
types of shortcut connections
are employed: between-block
and graph attention shortcuts

GAT(41, 64)

Block1

+

ReLU

ReLU

ReLU

GAT(D1, D1)

GAT(64, D1)

GAT(D1, D2) Block1

+

ReLU
ReLU

ReLU

GAT(D2, D2)

GAT(D2, D2)

ReLU

Block2

+

Block2

+

ReLU

ReLU

GAT(D2, D3) Block1

+

ReLU
ReLU

ReLU

GAT(D3, D3)

GAT(D3, D3)

Block2

+

ReLU

B
lo

ck
 s

et
 1

B
lo

ck
 s

et
 2

B
lo

ck
 s

et
 3

Global
Max-pooling

FC Block

FC(D3, D3)

FC(D3, D3/2)

FC(D3/2, 1)

Sigmoid
Prediction

Atom matrix
(VN×41)

Bonding matrix
(E2×M)

node featuresedge indices
node features

(VN×in_channels)

GAT
(in_channels, out_channels)

new node features
(VN×out_channels)

ReLU

ReLU

123

494 Memetic Computing (2024) 16:491–503

tasks or by the ReLU function for regression tasks. In com-
parison with ResNet, ResGAT architectures have a smaller
number of layers in each block. In ResNet, each block com-
prises a minimum of four CNN layers, whereas in ResGAT,
each block consists of just two GAT layers. Furthermore, we
employed another shortcut connection impeded by a graph
attention layer, referred to as the ‘graph attention shortcut’.
This concept is inspiredbya critical analysis conductedbyHe
et al. [23] about the propagation formulations used in residual
building blocks with diverse types of shortcut connections.
Integrating these two types of shortcut connections into the
ResGAT enhances the model’s learning capacity by stabi-
lizing the training process and improving generalization. In
addition to themain architecture,ResGAT,we also developed
a generic version named ResGCN, which differs only in that
all GAT layers [22] are replaced with GCN layers [14]. For
model optimization, the number of blocks (num_block)
and the feature embedding size (embed_size) in each
block set can be tuned. The parameters num_block and
embed_size are varied in each block set.

Algorithm 1 ResGAT
1: procedure ResGAT (or ResGCN)(x)
2: Initialize graph attention layer: GAT (or GCN)
3: Initialize basic blocks: basic_block
4: x ← ReLU (GAT(x)) � graph attention layer 1
5: x ← ReLU (GAT(x)) � graph attention layer 2
6: Initialize global max pooling: GMP
7: Initialize fully connected layer: FC
8: x ← GAT(x) � Input graph attention layers
9: for k = 1 to 3 do � No. of block sets
10: for l = 1 to L do � No. of blocks in block set k
11: if l = 1 then
12: x ← x + GAT(x)
13: else if then
14: x ← x + basic_blockl

15: end if
16: end for
17: end for
18: x ← GMP(x) � Global max pooling
19: x ← FC(x) � Fully connected layer
20: return x
21: end procedure

2.2 Graph attention layer

The graph attention (GAT) layer was completely formulated
by Veličković et al. [22] based on a previously published
work done by Bahdanau et al. [24]. A graph G(V, E) with
N nodes (vertices) is defined by a vector of node features
h = { h1, h2, h3, ..., hN } with h ∈ R

F . The vector h is oper-
ated by the GAT layer to return h′ = {h′

1, h′
2, h′

3, ..., h′
N }

with h′ ∈ R
F ′
. The weight matrix W ∈ R

F ′×F is multi-
plied to every node; and F and F ′ are the numbers of input

and output features, respectively. The attention output euv of
nodeu directed from nodev is computed as:

euv = a(Whu,Whv) = ReLU (aT � [Whu ||Whv]), (1)

where a is the self-attention feedforward layer parameterized
by the learnable vector of parameters aT and || denotes the
concatenation operation. The Softmax function is applied to
normalize the attention output. Each normalized attention
output αuv is computed as:

αuv = Sof tmax(euv) = exp(euv)
∑

k∈N (u) exp(euk)
. (2)

The equation for αuv is rewritten as:

αuv = exp(ReLU (aT � [Whu ||Whv])
∑

k∈N (u) exp(ReLU (aT � [Whu ||Whk]) . (3)

Since the layer is designed to force each node to attend
to all other nodes in the network, the output vector of nodeu

(�h′
u) is finally obtained by the summation of all products of

the normalized attention outputs (αuv) and theweighted node
feature vectors (hv) of other neighboring nodes.

h′
u = σ

⎛

⎝
∑

v∈N (u)

αuv � Whv

⎞

⎠ , (4)

where σ is the nonlinearity activation function. Algorithm 2
describes the operation mechanism of the GAT layer.

3 Experiments

3.1 Overview

The major steps in our experiments are presented in Fig. 2.
First, the original benchmark datasets were downloaded
from the MoleculeNet website [25]. To qualify the data for
the modeling experiment, all the benchmark datasets were
curated (see Sect. 3.3) before being encoded (see Sect. 3.4).
Then, each refined dataset was divided into two parts: a train-
val set and a test set with a ratio of 90:10. The train-val data
was then split into a new training set and a validation set
with a ratio of 90:10. The validation setwas used for hyperpa-
rameter tuning. Once hyperparameter tuning was completed,
the model was retrained using the best hyperparameters, and
then it was evaluated using the test set for benchmarking (see
Sect. 3.6).

123

Memetic Computing (2024) 16:491–503 495

Original datasets

Data curation

Refined datasets

Test (10%)

Val (10%) Training (90%)

Train-Val (90%)

Hyperparameter
Tuning

Best
hyperparameters

Archtiectures

Training

Trained models

Evaluation

Prediction

Sample

Predicted outcomes

Fig. 2 Flowchart of our experiments

3.2 Benchmark datasets

To investigate the performance of ResGAT, we conducted a
large number of modeling experiments on nine benchmark
molecular datasets, including ESOL, FreeSolv, Lipo, BACE,
BBBP, HIV, ClinTox, SIDER, and Tox21. These datasets
were collected from MoleculeNet [25], an online source
containing molecular datasets specially designed to bench-
markmachine learningmethods on property prediction tasks.
Table1 gives information on the datasets used in the study.
After collecting these datasets, we performed data curation to
remove unqualified samples. Generally, the number of sam-
ples from all refined datasets decreased after the data curation
was completed (Table2). The details of data curation are pro-
vided in Sect. 3.3.

3.3 Data curation

Before conducting experiments, we performed data cura-
tion to qualify the chemical data for model development
and evaluation. Our data curation pipeline [26–28] includes
four phases: (1) Validation, (2) Cleaning, (3) Normalization,
and (4) Final verification. Before entering the pipeline, all
chemical data (in the SMILES format) were converted into
their corresponding canonical forms. In phase (1), molecules
whose chemical types belong to one of three classes, includ-

Algorithm 2 GAT
1: Input:
2: Number of nodes: N
3: Number of input features in each node: F
4: Number of output features in each node: F ′
5: Adjacency matrix: A ∈ R

N

6: Initial node features: h = { h1, h2, h3, ..., hN } ∈ R
F

7: Weight matrix:W ∈ R
F ′×F

8: Attention output: e ∈ R
F ′×F ′

9: Output:
10: Updated node features: h′ = {h′

1, h′
2, h′

3, ..., h′
N } ∈ R

F

11: procedure GAT(h)
12: Step 1: Calculate attention coefficients
13: Initialize an empty matrix for attention coefficients:
14: h′ ← Wh
15: Initialize node features with a linear transformation:
16: e ← zeros(N , N)

17: for each node u in N do
18: for each node v in N do
19: if Au,v = 1 then
20: eu,v ← ReLU(aT [W hu‖W hv])
21: end if
22: end for
23: end for
24: Step 2: Apply softmax to get attention weights
25: αuv ← softmax(euv)

26: Step 3: Update node features
27: h′ ← zeros(N , F ′)
28: for each node u in N do
29: for each node v in N do
30: if Au,v = 1 then � Only aggregate from adjacent nodes
31: h′

u ← h′
u + αu,v · hv

32: end if
33: end for
34: end for
35: Step 4: Apply an activation function (optional)
36: h′ ← activation(h′)
37: return h′
38: end procedure

ing inorganics, mixtures, and organometallics, are removed.
In phase (2), salts and manipulating charged molecules are
eliminated. Charged molecules may be formed by metal-
containing structures or polar organic groups. While metal-
containing charged molecules are rejected, organic charged
molecules are converted to non-charged forms. The neu-
tralization of charged organic molecules, however, remains
a controversial topic among scientists, as they face chal-
lenges in precisely determining the experimental conditions
under which these molecules exhibit activities. In phase
(3), detautomerization, destereoisomerization, and removal
of chemotypes are executed to unify tautomers, stereoiso-
mers, or chemotypes of the same molecules into canonical
forms. A molecule possessing unstable substructures often
undergoes interchange among multiple intermediate forms.
When considering a group of tautomers (or chemotypes) for
the same molecule, the intermediate form that exhibits the
highest degree of structural equivalence compared to other
forms is selected as the canonical tautomer (or chemotype).

123

496 Memetic Computing (2024) 16:491–503

Table 1 List of benchmark
datasets

Task type Dataset Number of tasks Evaluation metric

Regression ESOL 1 RMSE

FreeSolv 1 RMSE

Lipo 1 RMSE

Classification BACE 1 AUCROC

BBBP 1 AUCROC

HIV 1 AUCROC

ClinTox 2 AUCROC

SIDER 27 AUCROC

Tox21 12 AUCROC

Table 2 Number of samples in each benchmark dataset after curation

Task type Dataset Number of samples

Original Refined

Regression ESOL 1128 1115

FreeSolv 642 635

Lipo 4200 4100

Classification BACE 1513 1454

BBBP 2050 1760

HIV 41,127 38,094

ClinTox 1484 1349

SIDER 1427 1225

Tox21 7831 7381

At the end of these three first phases, any duplicates found are
discarded. In phase (4), samples (molecules) whose labels
conflict with each other are manually processed. Conflict-
ing samples can arise in any of the three situations outlined
below: (a) a group of identical molecules with different
labels; (b) a group of identical molecules with duplicated
labels; and (c) a group of different molecules identified by
the same CAS registry number. Samples in situations (a) or
(c) are excluded, whereas those in situations (b) are retained
and unified. Finally, structural verification is accomplished
to confirm identity and validity using the two largest chem-
ical databases: PubChem and ChEMBL. Table2 compares
the number of samples in refined datasets with the original
ones.

3.4 Molecular encoding scheme

Figure3 explains the molecular encoding scheme used in
our study. For each molecule constituted by N heavy atoms
(excluding hydrogen) and M bonds connecting these atoms,
its representations are defined with two matrices: an atom
matrix with a dimension of N × 41 and a bonding matrix
with a dimension of M × 2. The values of N and M vary
across molecules.

The atom matrix is created in several steps. The molec-
ular structure is first analyzed to determine the appearance
order of heavy atoms, and these atoms are then assigned
indices. For each atom, a set of 41 features is computed
using the RDKit library [29]. The details of these features
are described in Table3. For a heavy atom, a 41-dimensional
feature vector is organized as a binary vector with a size of
1×41. The feature vector consists of 16 Atomic features, 9
Degree features, 6 Orbital hybridization features, 5 Number
of hydrogens features, 2 Cahn-Ingold-Prelog (CIP) prior-
ity features, 2 IsCharge features, 1 IsAromatic feature, and
1 Chirality feature. The Atomic features determine the atom
based on the atom list. TheDegree features indicate the num-
ber of bonds formed by the atom with neighboring heavy
atoms, ranging from 0 to >= 7. The Orbital Hybridization
features describe the specific type of orbital hybridization of
a heavy atom uses to form its bonds. The Number of Hydro-
gens feature counts the number of hydrogen atoms that have
bonds with a heavy atom. The CIP Priority features iden-
tify the spatial orientation of a chiral center (atom bonding
to four different groups): clockwise (R) or counterclockwise
(S). The IsCharge features present the charge state of an atom
to assign it either the ‘formal charge (FC)’ or ‘radical elec-
tron (RE)’ state. The IsAromatic feature defines whether an
atom is a member of any ring or cyclic structure. The Chi-
rality feature identifies whether a heavy atom has a chiral
center. To create the bond matrix, the connectivity map of
all heavy atoms is computed (as shown in Fig. 3). The atom
matrix carries information on the node features, while the
bond matrix stores information on the edge indices.

3.5 Model development

WhileGAT isflexible in learning graph structureswith highly
varying neighbor relationships, it requires a higher number of
parameters to learn attention coefficients. In contrast, GCN
is parameter-efficient due to shared weights across the graph
but may struggle with generalizability when faced with new
graph patterns. GCN is well-suited for relatively uniform or

123

Memetic Computing (2024) 16:491–503 497

C

0 1 0

Degree features (9)

0 0 0 0
B C N F Si P

0 1 0 0 0
0 1 3 4

10 0 0
sp2 sp3d2

0 0
R S

Orbital Hydridization features (6)

CIP Priority features (2)

C

N

C

0 0
IsCharged features (2)

0
Chirality feature (1)

N-1

N

41

N
2

3

N

1

2

3

Atomu Atomv

List of heavy atoms
Atom matrix

S
lide &

 concatenate

C
N

1C
C

C
[C

@
H

]1
C

1=
C

C
=C

N
=C

1

List of bonds between heavy atoms

)

2Bonding matrix

Index

1

M1 2 3 4
M-1 M

0 0 0 0 0 0 0 0 0
O S Cl As Se Br Te I At #

Atomic features (16)

0 0 0
2 5 6 ≥7

FCRE

sp3

0
sp3d

IsAromatic feature (1)
0

N

C

1

2
3

N

C
1

2

0 00 1 0
Number of Hydrogens features (5)

sp

2 4310

1 (True) - 0 (False) 1 (True) - 0 (False)

N-1

2

3

4

M

1

2

2

2

1

3

6

2

N

)

)

)(

(

(

(

() N-1

1

2

2

2

1

3

6

2

N

6
54

1
Bond No.

0
#

Fig. 3 Molecular encoding scheme. A N -atommolecule with M bonds
is transformed into an atom matrix of size N × 41 and a bond index
matrix of size M × 2. The atom matrix is a column-wise combination

of N vectors of size of 41× 1. The bond index matrix is a combination
of M vectors of size 2×1 indicating connectivity between atom i th and
atom j th

Table 3 Feature encoding of a
heavy atom

Feature type Number of features Details

Atomic 16 B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, I, At, others

Degree 8 0, 1, 2, 3, 4, 5, 6, >= 7

Orbital hybridization 6 sp, sp2, sp3, sp3d, sp3d2, others

Number of hydrogens 5 0, 1, 2, 3, 4

CIP priority 2 R (Clockwise), S (Counter-clockwise)

IsCharge 2 Formal charge, radical electron

IsAromatic 1 Aromaticity, non-aromaticity

Chirality 1 Chiral center, not chiral center

Total 41 A feature vector of a heavy atom

123

498 Memetic Computing (2024) 16:491–503

well-defined graph patterns, while GAT is more appropriate
for handling complex graph structures. To address diverse
scenarios, we introduce another variant of the ResGAT archi-
tecture named ResGCN, wherein all GAT layers are replaced
with GCN layers.

All models constructed with these two architectures were
tuned, trained, and tested under the same conditions and set-
tings. For each dataset, the training and validation sets were
used for model tuning and development, while the test set
was used for model evaluation. Test sets were not involved
in any stage ofmodel selection. Initially, the number of blocks
(num_block) in each block set was fixed at 1 to tune the
feature embedding size (embed_size) of the graph layer
with three values of 64, 128, and 256. After tuning the param-
eter embed_size for a block in each block set, we tuned
the parameter num_block for each block set with three val-
ues of 1, 2, and 3. Finally, the learning rate was tuned with
three values of 1 × 10−4, 5 × 10−4, and 1 × 10−3. Mod-
els implemented for different prediction tasks have different
hyperparameters. The loss functions for regression and clas-
sification tasks are mean squared error (MSE) and binary
cross entropy (BCE), respectively, and are computed as:

LossM SE = 1

n

n∑

i=1

(yi − ŷi)
2, (5)

LossBC E = 1

n

n∑

i=1

yi · log(ŷi) + (1 − yi) · log(1 − ŷi),

(6)

where n is the number of samples; y is the ground truth
(label), and ŷ is the predicted value or probability of the
regression or classification task, respectively.

3.6 Evaluationmetrics

To evaluate all models, we used the Root Mean Squared
Error (RMSE) and the Area Under the Receiver Operating
Characteristic (ROC) curve (AUCROC) for regression tasks
and classification tasks, respectively. For multitask classifi-
cation tasks, the average AUCROC was computed based on
the number of tasks. Our code is made publicly available in
our GitHub repository.1

4 Results and discussion

4.1 Model evaluation

This experiment was conducted to evaluate the performance
of ResGAT (our proposed method) and ResGCN (a generic

1https://github.com/mldlproject/2023-ResGAT

version of ResGAT). The only difference between ResGAT
and ResGCN is the type of graph neural network used. In
ResGAT, the graph layer is a GAT layer, while in Res-
GCN, the graph layer is a GCN layer. Both architectures
were used to develop nine prediction models across three
types of tasks: regression, binary classification, and multi-
task classification. All models were implemented under the
same conditions for a fair assessment.

Experimental results show that ResGAT and ResGCN
have equivalent performance in all classification tasks under
both sampling strategies (Fig. 4). Under the random sam-
pling strategy, ResGCN has slightly lower performance on
the BACE, BBBP, and HIV datasets but higher performance
on the ClinTox dataset compared to ResGAT. The perfor-
mances of both models on the SIDER and Tox21 datasets
are almost similar. For the regression tasks, ResGCN obtains
higher performance on all datasets compared to ResGAT.
Under the scaffold sampling strategy, ResGCN shows greater
efficiency on the ESOL dataset, whereas ResGAT obtains
better performance on the FreeSolve dataset. Their effec-
tiveness on the Lipo dataset is comparable. For classification
tasks, ResGCN achieves higher performance on the BBBP
andClinTox datasets.Meanwhile, ResGATworks effectively
on the BACE dataset only. Both models demonstrate similar
levels of prediction power on the rest of the classification
datasets.

4.2 Model benchmarking

To examine the efficiency of ResGAT, we developed a series
of prediction models using five other state-of-the-art archi-
tectures, includingAttentiveFP [10],GMT [19], TrimNet [8],
D-MPNN [18], andHiGNN [9]. TheGCN [14] andGAT [22]
architectures were also used to develop two baseline graph
models. Models of state-of-the-art architectures were reim-
plemented using source codes provided by their authors. The
parameters of all the reimplemented models were also fairly
tuned. Besides, two sampling methods, random and scaffold,
were employed. For each dataset, the modeling experiment
for a particular architecture was repeated ten times to avoid
sampling bias.

Tables 4, 5, and 6 provide detailed results of model-
ing experiments on nine benchmark datasets of regres-

123

https://github.com/mldlproject/2023-ResGAT

Memetic Computing (2024) 16:491–503 499

A B

C D

Fig. 4 Performance of ResGAT and ResGCN under two sampling strategies (A Regression tasks based on random sampling, B Classification tasks
based on random sampling, C Regression tasks based on scaffold sampling, D Classification tasks based on scaffold sampling)

sion, binary classification, and multitask classification tasks,
respectively. These tables compare the performance of the
models constructed using our proposed architecture with
those constructed using state-of-the-art architectures. The
experimental results show that our models (developed using
ResGAT or ResGCN) are ranked in the top 3 in five out
of the nine datasets and in seven out of the nine datasets
under the random sampling and scaffold sampling strate-
gies, respectively. Under the random sampling strategy, our
models obtain three 1st-ranks on the BACE, HIV, and Clin-
Tox datasets; two 2nd-ranks on the ClinTox and SIDER
datasets; and three 3rd-ranks on the FreeSolve, BACE, and
SIDER datasets. Under the scaffold sampling strategy, our
models achieve two 2nd-ranks (on the FreeSolv and BACE
datasets) and three 3rd-ranks (on the Lipo, BBBP, and HIV
datasets). D-MPNN is a very robust architecture when 13
D-MPNN-based models are ranked in the top-3 of both

sampling strategies. However, most of them obtain only 2nd-
ranks and 3rd-ranks. Also, HiGNN is an efficient architecture
compared to others. Although there are only nine out of
eighteen HiGNN-based models present in the top 3, they
had seven 1st-ranks on the ESOL, Lipo, BACE, BBBP, HIV,
and ClinTox datasets. The TrimNet and GMT architectures
work better on regression tasks while showing low predic-
tive efficiency in classification tasks. Models implemented
using the AttentiveFP architecture achieve competitive per-
formance on classification tasks, especially for those with a
large number of tasks. To rank the overall performance of
all implemented architectures, we create a summary table
describing the performance ranking of the models on the test
sets. For each dataset, the performance of models is ranked
from 1 (highest) to 9 (smallest) scores. Every architecture is
assigned scores from nine datasets. The maximum score is
81, and the minimum score is 9 (Table7). Based on average

123

500 Memetic Computing (2024) 16:491–503

Table 4 Performance of all
models on regression tasks

Sampling Model Dataset

ESOL FreeSolv Lipo

Random GCN 2.0569±0.14 3.6618±0.75 1.1974±0.03

GAT 2.4261±0.16 4.4315±0.87 1.4974±0.06

AttentiveFP 1.5225±0.13 3.5585±0.72 1.1232±0.03

GMT 0.7072±0.08 1.3568±0.16 0.7068±0.03

TrimNet 0.7499±0.04 1.5996±0.16 0.6315±0.03

D-MPNN 0.6930±0.08 1.1394±0.18 0.6148±0.03

HiGNN 0.6029±0.07 1.8917±0.32 0.6033±0.01

ResGCN 0.7683±0.09 1.3687±0.20 0.6721±0.02

ResGAT 0.8125±0.07 1.4734±0.31 0.6833±0.02

Scaffold GCN 3.0413±0.02 1.9055±0.11 1.1347±0.04

GAT 3.6433±0.11 2.7487±0.40 1.3925±0.06

AttentiveFP 2.5073±0.11 2.9627±0.23 1.1516±0.09

GMT 0.9009±0.05 1.6893±0.12 0.7467±0.04

TrimNet 1.1321±0.08 1.5290±0.27 0.6514±0.03

D-MPNN 1.0731±0.01 1.6688±0.01 0.6525±0.07

HiGNN 5.2009±0.01 4.8752±0.01 1.6644±0.01

ResGCN 1.1509±0.09 1.6966±0.12 0.7208±0.05

ResGAT 1.5622±0.12 1.6430±0.22 0.7173±0.04

The highest performance is indicated in bold

Table 5 Performance of all
models on binary classification
tasks

Sampling Model Dataset

BACE BBBP HIV

Random GCN 0.6505±0.03 0.6155±0.06 0.6245±0.04

GAT 0.6316±0.06 0.6338±0.07 0.5310±0.05

AttentiveFP 0.8836±0.04 0.9129±0.04 0.7878±0.01

GMT 0.7859±0.04 0.8752±0.05 0.4106±0.02

TrimNet 0.8054±0.05 0.8275±0.03 0.7333±0.02

D-MPNN 0.8788±0.04 0.9197±0.03 0.5134±0.09

HiGNN 0.8656±0.04 0.9249±0.03 0.7891±0.02

ResGCN 0.8752±0.03 0.8959±0.05 0.7786±0.01

ResGAT 0.8840±0.03 0.9077±0.02 0.7995±0.01

Scaffold GCN 0.6150±0.05 0.5914±0.06 0.6143±0.05

GAT 0.6053±0.11 0.6331±0.05 0.5626±0.04

AttentiveFP 0.8108±0.05 0.8816±0.04 0.7800±0.04

GMT 0.7739±0.05 0.8519±0.06 0.4153±0.06

TrimNet 0.7071±0.05 0.8694±0.03 0.7563±0.03

D-MPNN 0.8191±0.02 0.8784±0.04 0.4425±0.03

HiGNN 0.8312±0.01 0.9121±0.01 0.7813±0.02

ResGCN 0.8040±0.03 0.8813±0.03 0.7555±0.04

ResGAT 0.8227±0.03 0.8757±0.04 0.7573±0.06

The highest performance is indicated in bold

ranking scores, the ResGAT and ResGCN are in the top 3.
Under the random sampling strategy, D-MPNN and HiGNN
have the smallest average ranking scores of 3.22, followed by
ResGAT (3.33), ResGCN (3.89), and others. Under the scaf-

fold sampling strategy, D-MPNN achieves average ranking
scores of 3.22, followed by ResGAT (3.44), ResGCN (3.89),
and others.

123

Memetic Computing (2024) 16:491–503 501

Table 6 Performance of all
models on multitask
classification tasks

Sampling Model Dataset

ClinTox SIDER Tox21

Random GCN 0.4668±0.03 0.5392±0.04 0.6078±0.04

GAT 0.5329±0.07 0.5618±0.05 0.4828±0.04

AttentiveFP 0.8459±0.02 0.6409±0.06 0.8600±0.05

GMT 0.8701±0.01 0.5825±0.10 0.5000±0.01

TrimNet 0.6970±0.06 0.5456±0.07 0.8451±0.04

D-MPNN 0.8531±0.01 0.5921±0.05 0.8479±0.05

HiGNN 0.8503±0.02 0.6165±0.05 0.8431±0.05

ResGCN 0.8944±0.01 0.6290±0.05 0.8361±0.05

ResGAT 0.8881±0.01 0.6300±0.05 0.8397±0.05

Scaffold GCN 0.5123±0.08 0.5106±0.04 0.5911±0.04

GAT 0.5473±0.02 0.5328±0.05 0.4760±0.07

AttentiveFP 0.8505±0.01 0.5710±0.06 0.8492±0.05

GMT 0.8505±0.01 0.5443±0.04 0.5000±0.01

TrimNet 0.7076±0.05 0.5995±0.08 0.8140±0.06

D-MPNN 0.8726±0.05 0.6095±0.07 0.8455±0.05

HiGNN 0.9212±0.04 0.5892±0.05 0.8446±0.05

ResGCN 0.8835±0.03 0.6075±0.06 0.8272±0.06

ResGAT 0.8661±0.01 0.6000±0.06 0.8273±0.06

The highest performance is indicated in bold

Table 7 Performance ranking of different models on different datasets

Sampling Model Dataset Average rank

ESOL FreeSolv Lipo BACE BBBP HIV ClinTox SIDER Tox21

Random GCN 8 8 8 8 9 6 9 9 7 8.00

GAT 9 9 9 9 8 7 8 7 9 8.33

AttentiveFP 7 7 7 2 3 3 6 1 1 4.11

GMT 3 2 6 7 6 9 3 6 8 5.56

TrimNet 4 5 3 6 7 5 7 8 3 5.33

D-MPNN 2 1 2 3 2 8 4 5 2 3.22

HiGNN 1 6 1 5 1 2 5 4 4 3.22

ResGCN 5 3 4 4 5 4 1 3 6 3.89

ResGAT 6 4 5 1 4 1 2 2 5 3.33

Scaffold GCN 7 6 6 8 9 6 9 9 7 7.44

GAT 8 7 8 9 8 7 8 8 9 8.00

AttentiveFP 6 8 7 4 2 2 5 6 1 4.56

GMT 1 4 5 6 7 9 5 7 8 5.78

TrimNet 3 1 1 7 6 4 7 4 6 4.33

D-MPNN 2 3 2 3 4 8 3 1 2 3.22

HiGNN 9 9 9 1 1 1 1 5 3 4.33

ResGCN 4 5 4 5 3 5 2 2 5 3.89

ResGAT 5 2 3 2 5 3 4 3 4 3.44

The highest performance is indicated in bold

In our experiments, we implemented all DL models
using PyTorch 1.12.0 and PyTorch Geometric 2.0.4, train-
ing them on an i9-13900K with 64 GB of RAM and one

NVIDIA GTX 3060. The training process time (seconds per
epoch), recorded in Table8, reflects the computing resources
required. Our models demonstrate superior time and cost

123

502 Memetic Computing (2024) 16:491–503

Table 8 Training time (in
seconds) for different models
using different training datasets

Model Dataset

ESOL FreeSolv Lipo BACE BBBP HIV ClinTox SIDER Tox21

GCN 0.08 0.07 0.48 0.13 0.16 4.12 0.07 0.16 0.32

GAT 0.10 0.06 0.47 0.12 0.12 3.89 0.07 0.17 0.48

AttentiveFP 0.39 0.17 1.01 0.50 0.47 10.06 0.10 0.42 0.69

GMT 0.57 0.24 0.82 0.63 0.68 6.51 0.40 0.62 1.02

TrimNet 0.84 0.27 0.98 0.83 0.63 6.57 0.44 0.85 1.51

D-MPNN 1.18 0.41 1.17 0.43 0.69 12.73 0.36 1.29 0.51

HiGNN 1.99 0.60 1.40 0.54 0.64 6.93 0.47 1.75 0.48

ResGCN 0.42 0.19 0.51 0.21 0.31 6.21 0.53 0.45 0.53

ResGAT 0.37 0.17 0.47 0.31 0.43 5.13 0.35 0.32 0.63

The highest performance is indicated in bold

efficiency compared to state-of-the-art models, notably out-
performing D-MPNN- and HiGNN-based models with up to
a 50% reduction in training time. While only models devel-
oped with two baseline architectures (GCN and GAT) have
shorter training times, for the ClinTox dataset, ResGCN-
basedmodels exhibit slightly higher training times than other
models, whereas ResGAT-based models still require less
time. Testing completion for our models ranged from 0.02 to
0.48 s, depending on the dataset, comparable to the two base-
line models and faster than all other models. In summary, the
results confirm that our proposed architectures are not only
robust but also time-effective.

4.3 Limitations and future work

Besides achieving goals, our proposed architecture still has
limitations that need to be improved in the future. Overall,
compared toD-MPNN andHiGNN, ResGAT (andResGCN)
show less efficiency in regression problems. In binary classi-
fication tasks, ResGAT obtains better performance under the
random sampling strategy, while HiGNN demonstrates its
powerful architecture under the scaffold sampling strategy.
In multitask classification tasks, although ResGAT works
more effectively than HiGNN under the random sampling
strategy, its performance under the scaffold sampling strat-
egy needs to be enhanced. From our experimental results, it
can be observed that our proposed architecture is more effi-
cient when dealing with classification tasks than regression
tasks. It can work competently on large datasets, especially
for multitask classification problems.

5 Conclusion

In this study, we presented ResGAT, an innovative DL archi-
tecture designed for predicting molecular properties from
graph-structured data. ResGAT is versatile, capable of han-

dling both regression and classification tasks, and it offers a
flexible tuning mechanism to accommodate various dataset
sizes. The depth of the architecture can be adjusted to specific
needs, and our experimental findings validate its robustness
and efficiency. Our results indicate that ResGAT, along with
ResGCN, are competitivewith other state-of-the-art architec-
tures. Further investigation and improvements are anticipated
to enhance their predictive power.

Author Contributions T.-H.N.-V.: Conceptualization, software, formal
analysis, visualization, writing—original draft. T.T.T.D: Validation,
writing—review and editing, supervision. B.P.N.: Conceptualization,
funding acquisition, writing—review and editing, supervision.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions The work of B.P.N was supported in part by the
Faculty Strategic Research Grant (FSRG) Number 411494 at Victoria
University ofWellington (VUW) and the Endeavour Fund (Smart Ideas)
from the New Zealand Ministry of Business, Innovation and Employ-
ment (MBIE) under contract RTVU2301.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Memetic Computing (2024) 16:491–503 503

References

1. Tang Y, Zhu W, Chen K, Jiang H (2006) New technologies in
computer-aided drug design: toward target identification and new
chemical entity discovery. Drug Discov Today Technol 3(3):307–
313. https://doi.org/10.1016/j.ddtec.2006.09.004

2. Shen J, Nicolaou CA (2019) Molecular property prediction: recent
trends in the era of artificial intelligence. Drug Discov Today Tech-
nol 32–33:29–36. https://doi.org/10.1016/j.ddtec.2020.05.001

3. Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D,
Poroikov V, Oprea TI, Baskin II, Varnek A, Roitberg A, Isayev
O, Curtalolo S, Fourches D, Cohen Y, Aspuru-Guzik A, Winkler
DA, Agrafiotis D, Cherkasov A, Tropsha A (2020) QSAR with-
out borders. Chem Soc Rev 49(11):3525–3564. https://doi.org/10.
1039/d0cs00098a

4. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G
(2009) The graph neural network model. IEEE Trans Neural Netw
20(1):61–80. https://doi.org/10.1109/tnn.2008.2005605

5. Baskin II, Palyulin VA, Zefirov NS (1997) A neural device for
searching direct correlations between structures and properties of
chemical compounds. J Chem Inf Comput Sci 37(4):715–721.
https://doi.org/10.1021/ci940128y

6. Micheli A, Sperduti A, Starita A, Bianucci AM (2000) Analysis of
the internal representations developed by neural networks for struc-
tures applied to quantitative structure–activity relationship studies
of benzodiazepines. JChemInfComputSci 41(1):202–218. https://
doi.org/10.1021/ci9903399

7. Goulon A, Picot T, Duprat A, Dreyfus G (2007) Predicting activ-
ities without computing descriptors: graph machines for QSAR.
SAR QSAR Environ Res 18(1–2):141–153. https://doi.org/10.
1080/10629360601054313

8. Li P, Li Y, Hsieh C-Y, Zhang S, Liu X, Liu H, Song S, YaoX (2020)
TrimNet: learning molecular representation from triplet messages
for biomedicine. Brief Bioinform 22(4):bbaa266. https://doi.org/
10.1093/bib/bbaa266

9. Zhu W, Zhang Y, Zhao D, Xu J, Wang L (2022) HiGNN: a hier-
archical informative graph neural network for molecular property
prediction equipped with feature-wise attention. J Chem InfModel
63(1):43–55. https://doi.org/10.1021/acs.jcim.2c01099

10. Xiong Z,WangD, Liu X, Zhong F,WanX, Li X, Li Z, LuoX, Chen
K, Jiang H, Zheng M (2019) Pushing the boundaries of molecular
representation for drug discovery with the graph attention mech-
anism. J Med Chem 63(16):8749–8760. https://doi.org/10.1021/
acs.jmedchem.9b00959

11. Wu Z, Jiang D, Hsieh C-Y, Chen G, Liao B, Cao D, Hou T (2021)
Hyperbolic relational graph convolution networks plus: a sim-
ple but highly efficient QSAR-modeling method. Brief Bioinform
22(5):bbab112. https://doi.org/10.1093/bib/bbab112

12. Li P, Wang J, Qiao Y, Chen H, Yu Y, Yao X, Gao P, Xie G, Song S
(2021) An effective self-supervised framework for learning expres-
sive molecular global representations to drug discovery. Brief
Bioinform 22(6):bbab109. https://doi.org/10.1093/bib/bbab109

13. CaiH, ZhangH, ZhaoD,Wu J,WangL (2022) FP-GNN: a versatile
deep learning architecture for enhancedmolecular property predic-
tion. Brief Bioinform 23(6):bbac408. https://doi.org/10.1093/bib/
bbac408

14. Kipf TN, Welling M (2016) Semi-supervised classification with
graph convolutional networks. arXiv. https://doi.org/10.48550/
arxiv.1609.02907

15. WiederO,Kohlbacher S,KuenemannM,GaronA,Ducrot P, Seidel
T, Langer T (2020) A compact review of molecular property pre-
diction with graph neural networks. Drug Discov Today Technol
37:1–12. https://doi.org/10.1016/j.ddtec.2020.11.009

16. Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, Gómez-
Bombarelli R, Hirzel T, Aspuru-Guzik A, Adams RP (2015)

Convolutional networks on graphs for learning molecular finger-
prints. arXiv. https://doi.org/10.48550/arxiv.1509.09292

17. Gilmer J, Schoenholz, SS, Riley PF, Vinyals O, Dahl GE (2017)
Neural message passing for quantum chemistry. In: Precup D, Teh
YW (eds) Proceedings of the 34th international conference on
machine learning. Proceedings of machine learning research, vol
70. PMLR, Sydney, NSW, Australia, pp 1263–1272. https://doi.
org/10.5555/3305381.3305512

18. Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-
Perez A, Hopper T, Kelley B, Mathea M, Palmer A, Settels V,
Jaakkola T, Jensen K, Barzilay R (2019) Analyzing learned molec-
ular representations for property prediction. J Chem Inf Model
59(8):3370–3388. https://doi.org/10.1021/acs.jcim.9b00237

19. Baek J, Kang M, Hwang SJ (2021) Accurate learning of graph
representations with graph multiset pooling. arXiv. https://doi.org/
10.48550/arxiv.2102.11533

20. Socher R, Chen D, Manning CD, Ng AY (2013) Reasoning with
neural tensor networks for knowledge base completion. In: Burges
CJ, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds)
NIPS’13: proceedings of the 26th international conference on neu-
ral information processing systems, vol 1. Curran Associates, Inc.,
Lake Tahoe, Nevada, United States, pp 926–934. https://doi.org/
10.5555/2999611.2999715

21. Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the
art of compiling and using ‘drug-like’ chemical fragment spaces.
ChemMedChem 3(10):1503–1507. https://doi.org/10.1002/cmdc.
200800178

22. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y
(2017) Graph attention networks. arXiv. https://doi.org/10.48550/
arXiv.1710.10903

23. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep
residual networks. In: 14th European conference on computer
vision (ECCV), vol 4. Springer, Amsterdam, pp 630–645. https://
doi.org/10.1007/978-3-319-46493_038

24. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation
by jointly learning to align and translate. arXiv. https://doi.org/10.
48550/arXiv.1409.0473

25. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu
AS, Leswing K, Pande V (2018) MoleculeNet: a benchmark for
molecular machine learning. Chem Sci 9(2):513–530. https://doi.
org/10.1039/c7sc02664a

26. Nguyen-Vo T-H, Trinh QH, Nguyen L, Nguyen-Hoang P-U,
Nguyen T-N, Nguyen DT, Nguyen BP, Le L (2021) iCYP-MFE:
identifying human cytochrome P450 inhibitors using multitask
learning and molecular fingerprint-embedded encoding. J Chem
Inf Model 62(21):5059–5068. https://doi.org/10.1021/acs.jcim.
1c00628

27. NguyenL,NguyenVoT-H,TrinhQH,NguyenBH,Nguyen-Hoang
P-U, Le L, Nguyen BP (2022) iANP-EC: identifying anticancer
natural products using ensemble learning incorporated with evolu-
tionary computation. J Chem InfModel 62(21):5080–5089. https://
doi.org/10.1021/acs.jcim.1c00920

28. Vinh T, Trinh QH, Nguyen L, Nguyen-Vo T-H, Nguyen BP (2024)
Predicting cardiotoxicity of molecules using attention-based graph
neural network. J Chem Inf Model 64(6):1816–1827. https://doi.
org/10.1021/acs.jcim.3c01286

29. LandrumG et al (2022) RDKit: open-source cheminformatics soft-
ware (Release 2022.03.2). https://doi.org/10.5281/zenodo.591637

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.ddtec.2006.09.004
https://doi.org/10.1016/j.ddtec.2020.05.001
https://doi.org/10.1039/d0cs00098a
https://doi.org/10.1039/d0cs00098a
https://doi.org/10.1109/tnn.2008.2005605
https://doi.org/10.1021/ci940128y
https://doi.org/10.1021/ci9903399
https://doi.org/10.1021/ci9903399
https://doi.org/10.1080/10629360601054313
https://doi.org/10.1080/10629360601054313
https://doi.org/10.1093/bib/bbaa266
https://doi.org/10.1093/bib/bbaa266
https://doi.org/10.1021/acs.jcim.2c01099
https://doi.org/10.1021/acs.jmedchem.9b00959
https://doi.org/10.1021/acs.jmedchem.9b00959
https://doi.org/10.1093/bib/bbab112
https://doi.org/10.1093/bib/bbab109
https://doi.org/10.1093/bib/bbac408
https://doi.org/10.1093/bib/bbac408
https://doi.org/10.48550/arxiv.1609.02907
https://doi.org/10.48550/arxiv.1609.02907
https://doi.org/10.1016/j.ddtec.2020.11.009
https://doi.org/10.48550/arxiv.1509.09292
https://doi.org/10.5555/3305381.3305512
https://doi.org/10.5555/3305381.3305512
https://doi.org/10.1021/acs.jcim.9b00237
https://doi.org/10.48550/arxiv.2102.11533
https://doi.org/10.48550/arxiv.2102.11533
https://doi.org/10.5555/2999611.2999715
https://doi.org/10.5555/2999611.2999715
https://doi.org/10.1002/cmdc.200800178
https://doi.org/10.1002/cmdc.200800178
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.1007/978-3-319-46493_038
https://doi.org/10.1007/978-3-319-46493_038
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.1039/c7sc02664a
https://doi.org/10.1039/c7sc02664a
https://doi.org/10.1021/acs.jcim.1c00628
https://doi.org/10.1021/acs.jcim.1c00628
https://doi.org/10.1021/acs.jcim.1c00920
https://doi.org/10.1021/acs.jcim.1c00920
https://doi.org/10.1021/acs.jcim.3c01286
https://doi.org/10.1021/acs.jcim.3c01286
https://doi.org/10.5281/zenodo.591637

	ResGAT: Residual Graph Attention Networks for molecular property prediction
	Abstract
	1 Introduction
	2 Proposed architecture
	2.1 Residual graph attention network
	2.2 Graph attention layer

	3 Experiments
	3.1 Overview
	3.2 Benchmark datasets
	3.3 Data curation
	3.4 Molecular encoding scheme
	3.5 Model development
	3.6 Evaluation metrics

	4 Results and discussion
	4.1 Model evaluation
	4.2 Model benchmarking
	4.3 Limitations and future work

	5 Conclusion
	References

