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Abstract
Molecular representations have essential roles in bio-cheminformatics as they facilitate the growth of machine learning
applications in numerous sub-domains of biology and chemistry, especially drug discovery. These representations transform
the structural and chemical information of molecules into machine-readable formats that can be efficiently processed by
computer programs. In this paper, we present a comprehensive review, providing readers with diverse perspectives on the
strengths andweaknesses of well-knownmolecular representations, alongwith their respective categories and implementation
sources. Moreover, we provide a summary of the applicability of these representations in de novomolecular design, molecular
property prediction, and chemical reactions. Besides, representations for macromolecules are discussed with highlighted pros
and cons. By addressing these aspects, we aim to offer a valuable resource on the significant role of molecular representations
in advancing bio-cheminformatics and its related domains.

Keywords Molecular representation · Molecular property prediction · Molecular fingerprint · Language models · Graph
neural networks · Drug discovery

1 Molecular representations for machine
learning

Molecular representations and features play an essential role
inmachine learning applications in the domains of chemistry,
drug discovery, and materials science. These representations
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convert the structural and chemical information of molecules
into a format that can be efficiently processed by compu-
tational models. In recent years, several reviews on these
representations have been published [1–3] to give readers
different perspectives on the pros and cons of known repre-
sentations as well as how they are categorized. Despite their
valuable information, these works need to be updated with
recent advances. Building partially on previous reviews and
incorporating updated information and a holistic understand-
ing of these representations, we conducted a comprehensive
review of molecular representations for machine learning
in bio-cheminformatics. Within the scope of this study, we
focus on those that are commonly used in de novo molecu-
lar design and Quantitative Structure–Activity Relationship
(QSAR) modeling. In this section, we introduce various
molecular representations that are classified into six groups:
string-based, property-based, molecular fingerprints, lan-
guage model-based, graph-based, and others based on their
characteristics.

1.1 String-based representations

String-based representations include all types that describe
molecular bonds and structures using special symbols (e.g.,
‘//’, ‘@’), alphabet letters (e.g., ‘H’, ‘C’), or any other non-
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numeric forms. One of the most widely used string-based
molecular representations is the Simplified Molecular-input
Line-Entry System (SMILES) [4] (Fig. 1). The SMILES rep-
resentation of a molecule is a compact textual notation that
encodes its molecular structure, where atoms are represented
by chemical symbols (e.g., ‘S’ for ‘Sulfur’, ‘O’ for‘Oxygen’)
and bonds are represented by special symbols (e.g., ‘-’ for a
single bond, ‘=’ for a double bond, and ‘:’ for an aromatic
bond). SMILES has found extensive applications in chemin-
formatics and drug discovery due to its simplicity and ease
of use. The SMILES notation follows a set of predefined
rules and syntax, facilitating the conversion between molec-
ular structures and textual representations. It enables the
storage, retrieval, and manipulation of molecular informa-
tion in databases and machine learning workflows. However,
the direct input of SMILES representations into machine
learning models is not ideal without being transformed into
corresponding numeric forms (e.g., one-hot encoding) [5]. It
has also been observed that SMILES syntax is redundant, as
multiple SMILES strings can represent the same compound.
Besides SMILES, there are several other string-based rep-
resentations, such as the International Chemical Identifier
(InChI) [6], InChI Key [6], and SYBYL Line Notation [7].
SELFIES (Self-Referencing Embedded Strings), introduced
by Krenn et al. [8], is a more advanced, unique, and concise
string-based representation developed with rules for molec-
ular reconstruction.

Most string-based representations are supported by the
RDKit library [9], open-source software for cheminformat-
ics. SMARTS and SMIRKS are two specific representations
used for structural pattern searching and chemical reaction
description, respectively. While SMARTS is supported by
RDKit, SMIRKS, a hybrid representation based on SMILES
and SMARTS, can be generated using Ambit-SMIRKS [10].
SLN is versatile and used for expressing chemical structures,
conducting searches, and describing chemical reactions in
3D chemical structures, whereas SMILES is specifically
designed for representing 2D structures. Ambit-SLN [11]
facilitates the processing of SLN conversion. Table 1 sum-
marizes tools and software that support translation from one
string-based representation to another.

1.2 Property-based representations

Property-based representations of molecules are numerical
vectors or matrices that carry information on theoretically-
derived molecular properties and characteristics (Fig. 2).
Molecular descriptors, which are typical property-based rep-
resentations, can be either continuous or categorical values
computed based on the 2Dor 3D structures ofmolecules [12].
These descriptors provide a quantitative representation of
molecular structures, which can be directly used in machine

learning tasks, exploratory data analysis, or structural simi-
larity assessment.

Molecular descriptors cover awide range of physicochem-
ical properties, including topological, geometrical, electro-
static, and quantum-chemical properties. Many molecular
descriptor sets (e.g., Chemopy, CDK, etc.) are defined by
different groups of properties. Numerous non-commercial
libraries [9, 13, 14], software [15], and web servers [16]
support the computation of these descriptors. In addition to
molecular descriptors, electrostatically computed matrices,
such as the Coulomb matrix, the Ewald sum matrix, and
the Sine matrix, also serve as property-based representations
[14]. However, these matrices are expressed in a similar pat-
tern to the adjacency matrix of the molecular graph. Table 2
summarizes tools and software that support property-based
representations.

1.3 Molecular fingerprints

Molecular fingerprints, also known as chemical fingerprints
or simply fingerprints, are numerical expressions that indi-
cate the presence or absence of specific substructures. The
fingerprint vector contains information about substructural
patterns within amolecule (Fig. 3). The diversity of fragmen-
tation methods for substructural hashing creates a variety
of fingerprints. While most fingerprint vectors are binary,
others are substructure-count vectors. A binary fingerprint
reader scans the molecular structure and, upon detecting
a substructure, counts it as ‘one (1)’, ignoring any sub-
sequent occurrences of the same substructure. In contrast,
substructure-count fingerprint readers count all occurrences
of repetitive substructures, highlighting differences in the fre-
quency of substructures. Fingerprint vectors are useful for
similarity searches [20] and various machine learning tasks,
except for de novo molecular design. The high computa-
tional cost of reconstructing a molecule from its fingerprint
is the primary barrier to the applications of fingerprints in
this field. Furthermore, these reconstruction methods often
lack precision. E-State and Extended-Connectivity are typi-
cal examples of binary fingerprinting tools found inCDKand
PubChem [15]. Klekota-Roth, AtomPairs2D, and Substruc-
ture fingerprints support both substructure-count and binary
forms [15]. Since afingerprint vector is simply abinaryvector
of annotated substructures, users can customize their finger-
prints by defining which substructures should be detected.
NC-MFP [21] is an example of a fingerprint customized
for natural compounds. Similar to molecular descriptors,
fingerprint vectors can be easily computed using different
non-commercial libraries [9, 13], software [15], and web
servers [16].

Table 3 provides information on tools and software that
support typical molecular fingerprints. ChemDes [16] can
currently be used to compute 59 commonly used types of fin-
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Fig. 1 An example of
string-based representations
(Compound: Nicotine)

Table 1 Tools and software that
support string-based
representations

String type Short term Tool/software

Simplified Molecular-input Line-Entry System SMILES RDKit [9]

International Chemical Identifier InChI RDKit [9]

International Chemical Identifier Key InChI Key RDKit [9]

SMILES arbitrary target specification SMARTS RDKit [9]

Hybrid of SMILES and SMARTS SMIRKS Ambit-SMIRKS [10]

SYBYL line notation SLN Ambit-SLN [11]

Fig. 2 An example of
property-based representations.
The Ethene (C2H4)’s Coulomb
matrix is constructed from N 2

(where N = 6) Coulomb
potential values (MCoulomb

i, j )
which are computed based on
the pairwise inter-atomic
distance between any pair of
constitutional atoms as follows:
MCoulomb

i, j ={
0.52 × Z2.4

i ∀ i = j
Zi×Z j

|Ri−R j | ∀ i �= j
, where

Z and |Ri − R j | are the atomic
number and the Euclidean
distance between atoms i and j ,
respectively

Table 2 Tools and software that
support property-based
representations

Descriptor set Number of features Tool/software

RDKit descriptors 196 RDkit [9], ChemDes [16]

ChemoPy descriptors 1135 ChemoPy [17], ChemDes [16]

CDK descriptors 275 CDK [18], ChemDes [16]

Pybel descriptors 24 Pybel [19], ChemDes [16]

BlueDesc descriptors 174 ChemDes [16]

PaDEL descriptors 1875 PaDEL [15], ChemDes [16], Mordred [13]

Coulomb matrix n/a DScribe [14]

Ewald sum matrix n/a DScribe [14]

Sine matrix n/a DScribe [14]
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Fig. 3 An example of structure-based representations. Aspirin’s Mor-
gan fingerprints are a binary vector in which ‘one (1)’ and ‘zero (0)’
indicate the ‘presence’ and ‘absence’ of a defined substructure, respec-
tively. A set of Morgan substructures is determined by the number of
selected bits (e.g., 1024, 2048) and radius (r ). The size of the substruc-
ture is associated with the radius

gerprints. Among these, MACCS (166 bits), PubChem (881
bits), Morgan (1024 × n bits), and Substructure (307 bits)
are frequently used formolecular featurization. TheKlekota-
Roth fingerprint (4860 bits), introduced by Klekota and Roth
[22], creates high-dimensional sparse vectors, whereas the
E-State fingerprint (79 bits) generates low-dimensional vec-
tors. The number of bits and the radius (r ) can be adjusted for
the Extended-Connectivity Fingerprint (ECFP) [23], a more
generalized and adaptable version of the Morgan fingerprint.
In the Morgan fingerprint, the radius indicates the size of cir-
cular substructures; for example, a radius of 2 indicates that
each substructure is composed of two atoms. Varying the
number of bits and the radius results in different fingerprints.
ECFP is frequently followed by a number indicating the cho-
sen diameter (twice the radius), such as ECFP2, ECFP4, and
ECFP6, which correspond to radius of 1, 2, and 3 atoms
away, respectively. The performance of a downstream task is
often influenced by the selected number of bits. It is impor-
tant to choose a sufficiently large number of bits to cover
the most essential substructures in the chemical set, but an
excessively large number can result in sparse vectors that
slow down computation. Although there is no strict rule for
selecting the number of bits, researchers commonly set it to
be a multiple of 512 (e.g., 1024, 2048). Additionally, ECFP
is used to create language model-based representations, such
asMol2vec [21] andNPBERT [24]. AnECFPfingerprint can
also be converted to an indexing vector and then transformed
into an embeddingmatrix for amolecular property prediction
task [25, 26]. The Natural Compound-Molecular Fingerprint
(NC-MFP) [27], a fingerprint customized for natural com-
pounds, is not readily available as a module. Developing and
reimplementing NC-MFP (10,016 bits) is challenging due to
the numerous unconnected processing stages and software
required. Menke et al. [27] trained a deep neural network
to encode the Natural Product Fingerprint (NPFP) vectors,

demonstrating that NC-MFP was less effective compared to
NPFP in downstream tasks.

1.4 Languagemodel-based representations

Language model-based representations are continuous vec-
tors or matrices created by ‘molecular encoders’ (Fig. 4).
Molecular encoders are pre-trained models developed using
a large set of molecules. During training, these molecular
encoders learn the structural patterns and characteristics of
molecules to map them to corresponding continuous forms,
which are expected to be convertible back to their original
structures. Examples ofmolecular encoders includeMol2vec
[28], ChemBERTa [29], and NPBERT [24]. Most molecular
encoders are developed using language models, where each
molecule (defined by a specific set of substructures) is treated
as a ‘sentence’, and its substructures are treated as ‘words’.
A ‘valid molecule’ is analogous to a ‘meaningful sentence’,
emphasizing the importance of the order of substructures.
The molecular encoders learn the ‘grammar of molecules’
to create a vector space capable of effectively encoding any
inputted molecule. The inputs for molecular encoders can
include index vectors, one-hot vectors, graph-based matri-
ces, or any other form readable by the model. The quality
of the vector space depends on the volume of training data,
the architecture used, and the training strategies. These lan-
guagemodel-based representations are thenused as inputs for
downstream machine learning tasks. The use of continuous
representations enables more efficient optimization through
gradient descent and other brute-force methods [3].

Table 4 presents tools and software that support language
model-based representations. Mol2vec [28], a pre-trained
model, was the first molecular encoder to convert molecules
into corresponding language model-based features. It draws
inspiration from Word2vec [30], a method for word embed-
ding. These encoders are trained using language models and
vast sources of data. For developing Mol2vec, Jaeger et al.
[28] used nearly 20 million chemical structures as training
samples, initially translated into ECFP vectors with 2048 bits
and radii of 0 and 1. The Mol2vec encoder was trained with
two approaches: Continuous Bag-of-Words (CBOW) and
Skip-gram, resulting in two embedding sizes for molecules:
100- and 300-dimensional continuous vectors. Motivated
by Mol2vec and aided by advanced deep learning archi-
tectures, various molecular encoders have been constructed
for specific purposes. Examples include SMILES-BERT
[31], MolBERT [32], ChemBERTa [29, 33], NPBERT [24],
and FP-BERT [34], all developed using the Bidirectional
Encoder Representations from Transformers (BERT) archi-
tecture [35]. Currently, BERT is one of the most robust
Transformer architectures, employing self-supervised learn-
ing methods. SMILES-BERT, MolBERT, and ChemBERTa
are designed to learn the syntax of SMILES for encoding
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Table 3 Tools and software that
support molecular fingerprints

Fingerprint No. of bits Tool/software

CDK 1024 CDK [18], PaDEL [15]

CDK Extended 1024 CDK [18], PaDEL [15]

CDK Graph-only 1024 CDK [18], PaDEL [15]

E-State 79 RDkit [9], PaDEL [15]

MACCS 166 PaDEL [15], ChemDes [16]

PubChem 881 PaDEL [15], ChemDes [16]

Substructure 307 PaDEL [15], ChemDes [16]

Substructure-count 307 PaDEL [15], ChemDes [16]

Klekota-Roth 4860 PaDEL [15], ChemDes [16]

Klekota-Roth-count 4860 PaDEL [15], ChemDes [16]

Morgan flexible RDkit [9], ChemDes [16]

NC-MFP 10,016 Seo et al. [21]

NPFP n/a Menke et al. [27]

Source of molecules Model learned structural pattterns

Training

- Lower-dimension
- Continuous values

New molecule

Encoding

- High-dimension
- Discrete values

Fig. 4 An example of language model-based representation

input SMILES strings of molecules. The training datasets
for SMILES-BERT, MolBERT, and ChemBERTa contained
approximately 18million, 1.6 million, and 77million molec-
ular structures, respectively. NPBERT and FP-BERT are
trained to learn the ECFP fingerprints of the substructures
according to their appearance orders in the molecule. The
NPBERT training dataset was enriched with 250k structures
of natural products and about 1.9 million ordinary chemical
data points. FP-BERT was trained with roughly 2.0 million
compounds.

Besides using SMILES, ChemBERTa [29, 33] has another
version trained with SELFIES. Similarly, SELFormer [36]
was designed to create representations from SELFIES using
RoBERTa [37], a robustly optimized BERT variant. Chem-
Former [38] was constructed using the Bidirectional and
Auto-Regressive Transformer (BART) [39] architecture.
Contrary to BERT-based models, BART-based models prior-
itize the correction of sequences that have been altered with
random tokens instead of using masked language modeling

in their pre-training phase. MoLFormer [40] was devel-
oped using the RoFormer [41] architecture, an enhanced
Transformer version with rotary position embedding. X-
MOL [42], a large-scale molecular encoder, was trained
using a Transformer architecture with 12 pairs of Encoder-
Decoder. MolMap [43] learned 1,456 molecular descriptors
and 16,204-bit fingerprints from about 8.5 million molecules
using a dual-path convolutional neural network [44] to create
3D fingerprint maps of size 37 × 36 × 3.

Language model-based representations can also be gener-
ated fromgraph-based encoders. TheHierarchicalMolecular
Graph Self-supervised Learning (HiMol) encoder [45] uses
three levels of molecular graph information: node, motif, and
graph. Initially, the input molecular graph (atom node-level)
is fragmented into motifs to create motif-level nodes before
adding a graph-level node. These three levels of a molecular
graph’s features are learned by an encoder to create three cor-
responding representation levels. FunQG [46] is a molecular
encoder trained with Quotient Graphs of Functional groups.
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Instead of using traditional molecular graphs constructed by
a network of nodes, Hajiabolhassan et al. [46] considered
each functional group as a specific node, resulting in more
informative graphs. However, their representation learning
is most useful for encoding heavy molecules with complex
structures, as small molecules typically consist of a limited
number of functional groups.

1.5 Graph-based representations

Graph-based representations provide graphical expressions
of the structural connectivity of molecules. In these repre-
sentations, atoms are considered ‘nodes’ or ‘vertices’, and
‘intramolecular bonds’ are considered ‘edges’ (Fig. 5). Thus,
a molecule can be viewed as a graph G = (V, E), defined
by a set of nodes (atoms) V and a set of edges (bonds)
E , where E ⊆ vi , v j | vi , v j ∈ V and vi �= v j . Employing
molecular graphs helps to extract valuable information on
molecular connectivity, such as substructures, symmetry,
and functional groups, to predict possible molecular prop-
erties (e.g., toxicity, solubility) or to explain the origins of
these properties (e.g., alert structures). To be processed by
machine learning models, a molecule is transformed into a
node matrix’, which is an adjacency matrix indicating con-
nections among all atoms within the molecule. In addition
to the node matrix, novel graph-based neural networks uti-
lize additional matrices indicating node or edge attributes
to enhance learning efficiency. For molecular graphs, the
‘edge attribute matrix’ provides information on the types of
bonds between atom pairs, while the ‘node attribute matrix’
includes additional molecular characteristics (e.g., element,
orbital hybridization, charge status). To facilitate the learn-
ing process with graph-based representations, a number of
graph-based deep learning architectures have been devel-
oped and continue to evolve, fully exploiting the potential
of molecular graphs [47]. Numerous graph-based represen-
tations have been derived from molecular graphs, such as
graph-embedding features [48–50]. The graph-based repre-
sentation shown in Fig. 5 is just one of many possible graphs.
The node order in the adjacency matrix can change depend-
ing on the graph traversal algorithm used. A single molecule
can have multiple graph representations tailored for specific
tasks. Some examples can be found in [51, 52].

While graphs are inherently 2D data structures with no
spatial relationships between elements, they can effectively
encode 3D information and stereochemical details by incor-
porating such data into the node and edge features. Graph
representations have significant advantages over linear nota-
tions due to their ability to naturally encode 3D information
and the interpretability of all molecular subgraphs. However,
there are also some disadvantages to using molecular graph
representations for certain applications.Molecular graphs are
inadequate for representing certain types of molecules, par-

ticularly those with delocalized bonds, polycentric bonds,
ionic bonds, or metal-metal bonds. Organometallic com-
pounds, for instance, cannot be effectively described by
molecular graphs due to their complex bonding schemes.
Hypergraphs offer a solution for handlingmulti-valent bonds
by representing edges as sets of atoms, but their use is
not widespread. Additionally, for molecules with constantly
changing 3D structures, a single static graph representation is
not meaningful and could hinder problem-solving. A signifi-
cant challenge with graph-based representations is their lack
of compactness, both in memory usage and size. Represent-
ing a molecular graph requires complex data structures that
are harder to search than compact linear representations. As a
graph grows larger, itsmemory requirements increase signifi-
cantly. In contrast, linear notations providemore compact and
memory-efficient molecular representations, making them
easier to use for identity searches, though less effective for
substructure searches.

Table 5 summarizes tools and software that support graph
representations. Initially, DeepChem [53] was launched as
a community project focusing on the applications of deep
learning in chemistry and drug discovery. Over the years, the
project has expanded to encompass a broader range of appli-
cations in molecular science. It now provides an open-source
Python library with useful modules for processing multiple
molecular representations, including graphs. DGL-LifeSci,
developed by Li et al. [54], is another open-source Python
library that supports deep learning on graphs in life sciences.
Surge, created byMcKay et al. [55], is a quick command-line
tool for generating molecular graphs from SMILES. How-
ever, it struggles to process complex aromatic structures.

1.6 Other representations

In addition to the five types of molecular representations
mentioned earlier, other formats, such as ‘3D voxelized’
and ‘image-based’ representations (Fig. 6), can also be
employed for machine learning tasks [56]. However, their
applications are somewhat restricted due to unaddressed
limitations. The 3D voxelized representation creates 3D
arrays that often exhibit high sparsity and dimensional-
ity, but this method lacks invariant information regarding
molecular rotation, translation, and permutation [57–59].
Conversely, image-based representations typically convert
most small molecules into 2D images. Drawing on the suc-
cess ofGoogle’s Inception-ResNet [60]. Goh et al. developed
Chemception [61], a specialized approach for molecular
embedding. Building on the Chemception concept, Bjer-
rum et al. [62] introduced another molecular encoder capable
of creating five-band molecular images, offering more com-
prehensive information for downstream machine learning
tasks. Table 6 lists the tools and software used in comput-
ing these alternative representations.
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Table 4 Tools and software that
support language model-based
representations

Encoder Source

Mol2vec [28] github.com/samoturk/mol2vec

SMILES-BERT [31] github.com/uta-smile/SMILES-BERT

MolBERT [32] github.com/BenevolentAI/MolBERT

ChemBERTa [29] github.com/seyonechithrananda/bert-loves-chemistry

ChemBERTa-2 [29, 33] github.com/seyonechithrananda/bert-loves-chemistry

NPBERT [24] github.com/mldlproject/2021-NPBERT-Antimalaria

FP-BERT [34] github.com/fanganpai/fp2bert

SELFormer [36] github.com/HUBioDataLab/SELFormer

Chemformer [38] github.com/MolecularAI/Chemformer

MoLFormer [40] github.com/IBM/molformer

X-MOL [42] github.com/bm2-lab/x-mol

MolMap [43] github.com/shenwanxiang/bidd-molmap

HiMol [45] github.com/ZangXuan/HiMol

FunQG [46] github.com/hhaji/funqg

Fig. 5 An example of the graph representation. The node and edge
matrices of ethanoic acid (CH3COOH) are generated based on the
connectivities (bonds) among atoms and their bond types (e.g., single,

double, triple). Only heavy atoms (excluding hydrogen) are considered
when creating these node and edge matrices

Table 5 Tools and software that support graph-based representations

Tool/software Source

DeepChem [53] https://deepchem.io

DGL-LifeSci [54] github.com/awslabs/dgl-lifesci

Surge [55] https://structuregenerator.github.io

1.7 De novomolecular design and property
prediction

Thevariety ofmolecular representations provides researchers
with numerous options for creating new computational
frameworks. No study has conclusively shown that one rep-
resentation is consistently superior, as model performance
depends on many factors, including data volume, learning
strategies, and the characteristics of the molecules. Molec-
ular descriptors and fingerprints might be more appropriate

for small datasets because they can be quickly computed
and are compatiblewith traditionalmachine learningmodels.
However, using these representations often requires feature
engineering and selection. Additionally, they are restricted
to property prediction tasks because they are uninvertible. In
contrast, string-based representations are primarily used for
de novo molecular design due to their invertibility, while
graph-based representations are well-suited for handling
large datasets with deep learning models, removing the need
for feature engineering. Language model-based representa-
tions are particularly effective for exploratory data analysis
of molecular structures and property prediction tasks. Their
continuous nature allows for more efficient optimization of
the learning process compared to other types, such as one-
hot matrices and binary vectors. Additionally, as learnable
representations, language model-based representations can
be customized to distinguish between different classes of
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Table 6 Tools and software that
support other representations

Tool/software Source

gnina [63] github.com/gnina

DeepChem [53] https://deepchem.io

OctSurf [64] github.uconn.edu/mldrugdiscovery/OctSurf

LiGAN [65] github.com/mattragoza/liGAN

RDKit [9] https://www.rdkit.org

Fig. 6 An example of the other representations

molecules, potentially improving the model’s performance.
Table 7 summarizes molecular representations and their
applicable tasks.

2 Representations for structural
preservation

Representations for structural preservation are responsible
for holding information about the atoms, bonds, connec-
tivity, and coordinates of a molecule. They contain header
information, atom information, bond connections, and types,
followed by sections for more complex information.

2.1 Connection table

While graphs are fundamental for molecular representa-
tion, their connectivity matrices are not compact and scale
quadratically with the number of atoms. The connection
table (Ctab) provides a more structured format, compris-
ing six parts: Counts line, Atom block, Bond block, Atom
list block, Structural text descriptor block, and Properties
block. The Counts line offers an overview of the structure by

specifying the number of atoms, bonds, atom lists, and chi-
rality presence, along with the version (V2000 or V3000).
The Atom block lists atom identities, atomic symbols, mass
differences, charges, stereochemistry, and associated hydro-
gens, often treating hydrogens implicitly to reduce size. The
Bond block details atom connectivity and bond types, includ-
ing bond order. These core blocks form the basis of the Ctab,
which is extensible to include additional properties. Con-
nection tables have become standard for handling chemical
structural information due to their backward compatibility
and widespread use, particularly inMolfile formats. Notably,
connection tables are not file formats themselves but serve as
the foundational structure for chemical table files (CTfiles).

2.2 TheMolfile format

The Molfile (or CTfile) family utilizes connection tables
to represent molecular structures. These formats were first
developed by MDL Information Systems (MDL), later
acquired by Symyx Technologies, and are now known as
BIOVIA [66]. TheCTfile format is released in an open format
that requires users to register to download the specifications.
CTfiles are highly extensible, leading to the creation of a
series of widely adopted file formats for transferring chemi-
cal information. The connection table (Ctab) is encapsulated
within the Molfile format, which can be further integrated
into a structure-data (SD) file, including both structural infor-
mation and additional property data for multiple molecules.
Similarly, the Reaction file (RXNfile) [67] describes individ-
ual reactions, while the Reaction-Data (RDfile) [66] stores
either reactions ormolecules alongwith their associated data.
The Reaction Query file (RGfile) [68] is designed for han-
dling queries, and theExtendedData file (XDfile) [67],which
is XML-based, facilitates the transfer of structures or reac-
tions along with their metadata. Further information on these
file types and their structures is available in MDL documen-
tation and cheminformatics textbooks. Although Molfiles
themselves contain rich structural information, they are not
directly suitable for trainingmachine learningmodels in their
raw forms. Therefore, they need to be pre-processed and
converted into a machine-readable format (e.g., molecular
fingerprints, descriptors). Figure7 visualizes the key features
of these CTfiles.
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Table 7 Eligible tasks for
different molecular
representations

Representation Invertibility Task
Yes No Property prediction De novo molecular design

String-based � � �
Property-based � �
Structure-based � �
Language model-based � � �
Graph-based � �
3D voxelised � � �
Image-based � �

3 Representations for chemical reactions

Chemical reactions, which involve the transformation of
one set of molecules into another under specific conditions,
have been extensively documented, with around 127 mil-
lion reactions recorded to date [69]. Recently, there has been
renewed interest in developingmodels to predict reactionout-
comes, synthetic routes, and analyze reaction networks [70].
While traditional graphical representations of reactions are
common, they are not easily machine-readable. Thus, vari-
ous machine-readable reaction data exchange formats (e.g.,
RXNfiles, RDfiles) have been developed. These formats are
essential for applications in computer-aided synthesis design
and autonomous discovery, accommodating the complexities
and limitations of different molecular representations.

3.1 SMILES Reaction Kinetics Scheme

SMILES, which describes ordinary text-based molecular
structures, has been extended to include the SMILES Reac-
tion Kinetics Scheme (SMIRKS), a notation developed
by Daylight Chemical Information Systems for describing
generic chemical reaction transformations. SMIRKS extends
both SMILES and SMARTS. While SMILES is used to rep-
resent specific molecules and SMARTS to define molecular
patterns or substructures, SMIRKS is specifically designed
to encode reaction transformations, identifying which atoms
and bonds change during a reaction.

In Reaction SMILES, reactants, agents, and products are
represented as SMILES strings, separated by ’>’ or ’�’.
Atom mappings, which connect reactants to products, are
included, but additional information like reaction centers or
conditions is not supported. Other formats, such as RXNfiles
and RDfiles, can store this additional metadata. SMIRKS
describes generic reaction transformations by specifying
reaction centers and changes in bonds and atoms. It combines
features of SMILES and SMARTS, requiring specific rules
for application, such as the correspondence of mapped atoms
and explicit hydrogens in reactants and products. SMIRKS
are then converted into reaction graphs for further use.

3.2 Reaction InChI

Reaction InChI (RInChI) [71, 72], developed between 2008
and 2018, provides a unique, order-invariant identifier for
chemical reactions to aid reproducibility and consistency in
reaction representation. Unlike Reaction SMILES, RInChI
uses InChIs for individual molecules and tracks structureless
entities when InChIs cannot be generated. RInChI includes
information about equilibrium, unbalanced, or multi-step
reactions, and employs a layering system to describe dis-
tinct aspects of the reaction, such as solvents, catalysts,
and reaction direction. This makes it particularly useful for
identifying practically identical reactions conducted under
specific conditions. An extension, ProcAuxInfo [73], allows
for the storage of metadata like yields and reaction condi-
tions. While RInChI can identify duplicate reactions and
efficiently indexing and searching reaction data, it lacks
equivalents to SMARTS or SMIRKS, limiting its use for
substructure searches and encoding generic transformations.

As a standardized textual identifier for chemical reac-
tions, RInChI facilitates the sharing and indexing of chemical
reaction information by encoding the reactants, products,
and, optionally, the agents involved. The RInChI system is
designed to provide a unique and machine-readable repre-
sentation of chemical reactions, making it easier to search
for, retrieve, and exchange reaction data across different
databases and platforms. It includes details about the reaction
participants and can also capture information about the reac-
tion conditions, ensuring consistency and interoperability in
cheminformatics and related fields.

3.3 Other representations

Varnek et al. developed the Condensed Graph of Reactions
(CGR) [74] to encode molecular structures in a matrix,
identifying fragment occurrences and highlighting changes
in atoms and bonds between reactants and products. This
method was inspired by Fujita’s concept of imaginary tran-
sition states. CGRtools [75] was developed to support CGR.
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Fig. 7 The MDL family of CTfiles are created based on the connection
tables (Ctab). The connection table is specified by atom and bond blocks
that describe the atoms and their corresponding connectivity. Molfiles
and RXNfiles are used to describe single molecules and reactions,

respectively. SDfiles and RDfiles store a series of structures or reac-
tions and associated data. RGfiles are used to handle reaction queries.
XDfiles are used for transferring structure or reaction data using the
XML format

TheBond-Electron (BE)matrix [76], proposedbyDugundji
and Ugi, represents reactions in a matrix format. It has been
employed by the EROS software [77] and the WODCA sys-
tem [78] for reaction classification. The BE-matrix is an
N ×N where N is the number of atoms in a molecule; diago-
nal entries denote free valence electrons, while off-diagonal
entries indicate bond orders. Reactions are represented by an
“R-matrix” that records bond changes, with positive values
for bond formation and negative values for bond breakage.
Adding the R-matrix to the reactant’s BE-matrix yields the
product’s BE-matrix, providing an alternative way to rep-
resent reaction centers and illustrating the integration of
detailed information into matrix representations.

Hierarchical Organization of Reactions through Attribute
and Condition Education (HORACE) [79] utilizes a machine
learning algorithm to classify chemical reactions, notable for
its hierarchical reaction description. It captures both specific
reaction instances and abstract reaction types using three
abstraction levels. At the base level, it describes the partial
order of atom types, establishing a hierarchy based on atom
similarity. The next level characterizesmolecules using func-
tional groups, linking them to the reaction center. The top
level specifies physicochemical properties, which describe

the functional aspects of the corresponding structures. This
hierarchical model provides amore comprehensive depiction
of chemical reactions than purely structural approaches like
SMILES.

Saller et al. introduced the InfoChem CLASSIFY algo-
rithm [80], a method for reaction representation that has
significantly influenced the development of rule-based syn-
thesis planningmethods [81, 82]. This approach identifies the
reaction center by detecting atoms that change their implicit
hydrogens, valency, π -electrons, atomic charges, or have
bondsmadeor broken,mapping equivalent atoms in reactants
and products. However, determining the reaction center is a
key challenge [83–85]. To address this issue, the maximum
common substructure (MCS) between reactants and products
is first identified. Once found, hash codes for atoms in the
reaction center are calculated using a modifiedMorgan algo-
rithm [86], incorporating a wide range of properties such as
atom type, valence, hydrogen count, π -electrons, aromatic-
ity, and formal charges. These hash codes are then summed
across reactants and one product to yield a unique reaction
center representation. This description can be extended to
include adjacent atoms for varying specificity: the reaction
center alone provides a broaddescription, adding alpha atoms
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gives a medium description, and including further adjacent
atoms results in a narrower, more specific description. These
hash codes facilitate reaction classification and are used in
later synthetic planning tools.

The concept of reaction fingerprints involves using binary
vectors to capture the structural changes occurring in the
reaction center. This method constructs fingerprints (e.g.,
ECFP variant [23]) and computes the difference between
product and reactant vectors, optionally including agents.
Patel et al. first discussed reaction vectors [87], which were
later utilized in de novo design and classification approaches
[88]. Schneider et al. employed difference fingerprints with
the atom-pair variant to develop a prediction framework
for classifying 50 reaction types [89]. While reaction fin-
gerprints offer an alternative method to traditional reaction
center detection and representation, they struggle with con-
vertibility into reaction graphs, and handling stereochemistry
remains an ongoing research topic [90]. Colley et al. devel-
oped RDChiral [90], an RDKit-based wrapper for managing
stereochemistry in retrosynthetic template extraction and
future approaches.

4 Representations for macromolecules

4.1 Peptides and proteins

Peptides and proteins are both constructed from amino acids
(AAs). A single AA is characterized by an amine (-NH2)
group, a carboxyl (-COOH) group, and a distinct side chain.
AAs are typically denoted by either a one-letter symbol or
a three-letter abbreviation [91]. Although the Latin alphabet
is sufficient to represent the 20 AAs in the genetic code,
more symbols are required to represent the large number of
naturally occurring AAs.

Peptides are biological sequences of 2 to 50 amino acids
(AAs) that connect to each other via peptide bonds. These
sequences get involved in diverse biological activities, rang-
ing from antibiotics to biological modulators. In 1994, Siani
et al. developed the CHUCKLES method [92] to create
SMILES for polymers based on their sequences and vice
versa, facilitating Forward Translation (FT) in cheminfor-
matics. The CHUCKLES method uses a lookup table that
maps monomer sequences to their corresponding SMILES,
with atoms involved in monomer bonds removed. This
approach is suitable for oligomeric peptides and is integrated
into BIOPEP-UWM [93]. CHORTLES [94], an upgraded
version of CHUCKLES, was then created to deal with
oligomeric mixtures.

Hierarchical Editing Language for Macromolecules
(HELM) [95, 96] and the Self-Contained Sequence Rep-
resentation (SCSR) [97] are two prominent notations for
describing a high variety of macromolecules. While HELM

utilizes SMILES, SCSR uses the v3000Molfiles. Conversion
between these two types can be done by BIOVIA’s toolkit.
Pfizer developed HELM under the auspices of the Pistoia
Alliance to represent macromolecules composed of diverse
structures (e.g., peptides, antibodies). Initially, HELM could
only process molecules with well-defined structures, but the
introduction of HELM2 expanded its capabilities to handle
polymer mixtures and free-form annotations. HELM uses
streamlined CHUCKLES and graphs to represent monomers
in simple polymers and complex polymers, respectively. Its
structure hierarchy reflects the granularity of the compo-
nents: complex polymer, simple polymer, monomer, and
atom. HELM is widely used by numerous pharmaceuti-
cal companies, public databases (e.g., ChEMBL), software
(e.g., ChemDraw, ChemAxon), and toolkits (e.g., RDKit,
Biomolecule Toolkit) [98].

4.2 Glycans

Glycans, or carbohydrates, refer to polymers such as oligosac-
charides and polysaccharides that are built of multiple
monosaccharides (monomers). These macromolecules play
crucial roles in most biological processes, including cell-cell
communication, immune response, and protein stabilization.
In drug discovery, glycans are of particular interest for their
potential as receptors, small-molecule glycomimetics, ther-
apeutic glycopeptides, and vaccines. Oligosaccharides and
polysaccharides are polymers that are composed ofmore than
3 and 20 monomers, respectively.

Glycan databases are essential for carbohydrate research,
typically using monosaccharide-based notations to record
structures [99–102]. However, these notations are inadequate
for analyzing glycan-protein interactions, which require
atom-based representations. To address this, several tools
have been developed to translate monosaccharide-based
notations into atom-based formats. The Web3 Unique Rep-
resentation of Carbohydrate Structures (WURCS) [103]
was created to provide a linear, unique notation compati-
ble with the semantic web, integrating bioinformatics and
cheminformatics features. The latest version of WURCS
[104], used by GlyTouCan [105], the International Glycan
Structure Repository, encodes the main carbon backbone
of monosaccharide residues, backbone modifications, and
linkage information, while also handling unspecified struc-
tures. Despite its widespread adoption in databases,WURCS
remains unsupported by most cheminformatics software.
Besides, other independent representations have been pro-
posed to tackle specific issues [106].

4.3 Polymeric drugs

Polymers are used to deliver drug molecules. However, sev-
eral polymers with therapeutic activities and are used as
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bioactive agents in treatments, known as polymeric drugs.
TheBigSMILES [107] syntaxwas recently created to encode
diverse polymer structures, including homopolymers, ran-
dom and block co-polymers, and complex connectivity types
(e.g., linear, ring, and branched). The stochastic units of these
polymers are marked by curly brackets, with repeated units
separated by commaswithin the brackets. Since BigSMILES
notation has not yet supported canonicalization, several
canonicalization methods have been proposed to eliminate
multiplicity [108]. There are currently no practical applica-
tions for this notation, but its prospective applications in drug
discovery modeling are promising.

5 Discussion

5.1 Representations for machine learning

Property-based representations are continuous or discrete
numeric features computed by software or libraries. These
features, such as molecular descriptors, can be used for var-
ious molecular prediction tasks, including solubility, bioac-
tivity, and toxicity prediction. When using these features
with distance-based algorithms (e.g., k-Nearest Neighbors)
or linear algorithms (e.g., Logistic Regression, Support
Vector Machines), data normalization is often required to
ensure that all features contribute equally to the model. This
normalization step helps improve the performance and con-
vergence of these algorithms. In contrast, when tree-based
algorithms (e.g., Random Forest, Extremely Randomized
Trees, Gradient Boosting Machines) are employed, data nor-
malization can be omitted. Tree-based methods inherently
handle features with different scales and are robust to varying
feature distributions. This makes them particularly advanta-
geous for dealing with heterogeneous datasets where feature
scaling might be challenging or unnecessary. Furthermore,
property-based representations can be combinedwith ensem-
ble methods to enhance prediction accuracy and robustness.
By leveraging multiple algorithms, ensemble methods can
capture a broader range of patterns and relationships within
the data, leading to improved model performance. These
representations can also be integrated with feature selection
techniques to identify the most informative features, reduc-
ing dimensionality and potentially enhancing computational
efficiency and interpretability.

Unlike property-based representations, most molecular
fingerprints are binary featureswith lengths that vary depend-
ing on the type used. Since these features are binary, data
scaling is not necessary. However, distance-based machine
learning algorithms are generally unsuitable for molecu-
lar fingerprints due to the lack of robust distance metrics
for binary vectors. This limitation is especially applicable
when handling unbalanced datasets. For example, the Syn-

thetic Minority Over-sampling Technique (SMOTE) [109]
is not suitable for molecular fingerprints because it relies
on computing distances and using interpolation, which are
not suitable to binary data. Tree-based algorithms are more
appropriate formolecular fingerprints because they can effec-
tively manage binary features. Those algorithms are capable
of capturing complex relationships and interactions within
the binary features without the need for distance metrics.
Some advanced tree-based algorithms (e.g., eXtreme Gradi-
ent Boosting [110], LightGBM [111], and CatBoost [112])
are proficient in the management of unbalanced datasets and
can integrate feature importance metrics to identify the most
pertinent binary features. Ensemble learning techniques can
also be used to improve the performance of tree-based algo-
rithms [113]. Furthermore, the representation of molecular
fingerprints can be optimized by integrating tree-basedmeth-
ods with feature selection and extraction techniques, thereby
reducing dimensionality and enhancing computational effi-
ciency.

Language model-based representations are continuous
numeric features generated by molecular encoders, which
are pre-trained neural networks that map the substructural
information of molecules into vectors of continuous values,
known as molecular embeddings. Since each molecule is
represented by a fixed-length vector, data scaling is unnec-
essary. For a given encoder, these molecular embeddings
are generated based on a learnable distribution. As medium-
dimensional continuous vectors or matrices, these embed-
dings are highly compatible with distance-based, linear, and
tree-based models. Additionally, molecular decoders can
reconstruct the corresponding molecular structures from the
embeddings. Depending on their configuration, molecular
decoders may translate the embeddings into either identi-
cal or slightly different structures. This reconstructability is
crucial for de novo molecular design. Combining molecular
generative models with one or more pre-defined networks
for property prediction results in property-directed molecule
generation systems. These systems generate molecules with
desired properties through a multi-objective optimization
process. Essentially, the molecular encoder learns a distri-
bution, forming a chemical vector space. The embeddings
created within this space can then be transformed into valid
molecules with the desired properties.

5.2 Representations for chemical reactions

The SMIRKS, RInChI, and other representations for chemi-
cal reactions each have strengths and weaknesses. SMIRKS,
an extension of the SMILES notation, excels in simplicity
and can encode complex reaction rules in a text-based for-
mat, making it accessible for computational applications.
However, its simplicity can be a drawback when dealing
with intricate reactions or stereochemistry. On the other
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hand, RInChI, a reaction-specific version of the InChI sys-
tem, offers a more standardized and detailed representation,
capturing precise information about reactants, products, and
conditions. This standardization aids in data sharing and
interoperability but can be cumbersome to generate and
interpret due to its complexity. Additionally, other represen-
tations, like reaction graphs, provide a visual and intuitive
depiction of chemical reactions, highlighting connectivity
and transformations betweenmolecules.While these are ben-
eficial for education and initial analysis, they may lack the
depth andprecisionneeded for advanced computationalmod-
eling. Ultimately, the choice of representation depends on the
specific needs of the task, balancing ease of use, detail, and
computational efficiency.

5.3 Representations for macromolecules

Representations for macromolecules offer advantages over
purely atomic-based notations in developing modified drug
peptides. Replacing natural L-amino acids (L-AA) with D-
amino acids (D-AA), for instance, can enhance a peptide’s
oral bioavailability. HELM simplifies these modifications by
providing readability at the polymer level, whereas SMILES
operates at the atomic level. These approaches advance the
integration of cheminformatics and bioinformatics. How-
ever, translation errors between biological and chemical
peptide notations have been confirmed, and solutions have
been proposed to address them.

5.4 Limitations and challenges

Despite being essential in bioinformatics, cheminformatics,
and drug discovery, molecular representations face several
limitations and challenges. The molecular world is vast
and complex, with many aspects still unknown to humans.
Molecules exhibit awide range of structures, from simple lin-
ear chains to highly complex branched and ring structures.
Large molecules, especially those with intricate 3D config-
urations, are often inadequately represented by most current
methods. Macromolecules, such as proteins and polymers,
present additional difficulties due to their long chains, bulky
structures, and significant molecular weights, complicating
the processes of featurization and encoding. String-based
representations, such as SMILES or InChI, offer simpli-
fied expressions for all molecules but may fail to accurately
capture stereochemistry or conformational details. Graph-
based representations include connectivity information but
still struggle to represent 3D conformations. Because single
bonds can rotate, a molecule can exist in multiple con-
formations, known as conformers. While conformational
information is often ignored in some modeling tasks, it can
be incorporated into the main graphs as node attributes. Rep-
resenting molecules with full information on their chiral

centers and stereoisomers requires substantial computational
resources and specialized tools or software. Current chemin-
formatics toolkits and libraries can support property-based
representations for small or medium-sized molecules but
may be slow to process complex structures or unable to
compute the physicochemical properties of large molecules.
Language model-based representations play crucial roles
in various tasks, including property-directed molecule gen-
eration, QSAR modeling, and other downstream machine
learning tasks. The effectiveness of these representations
largely depends on how the pre-trained molecular encoder is
developed and can vary across different tasks. Table 8 sum-
marizes all types of molecular representations, highlighting
their advantages and disadvantages.

5.5 Future directions and emerging trends

Emerging trends and innovative molecular representations
are transforming cheminformatics, particularly in drug dis-
covery, by addressing the limitations of traditional methods.
Recently, advanced graph-based deep learning architectures
have been developed to tackle challenges in molecular
property prediction, de novomolecular design, and represen-
tation learning. The introduction of Message Passing Neural
Networks (MPNNs) and their learning mechanisms has sig-
nificantly influenced the development of other deep learning
architectures for molecular graphs [114]. Modern graph-
based neural networks now incorporate not only connectivity
information but also data on molecular structures, substruc-
tures, conformation, and properties. Additionally, quantum
molecular graphs have emerged as promising alternatives for
representing molecules based on quantum mechanical prop-
erties andwave functions [115–117]. The rise of transformers
and self-attention mechanisms has spurred the development
of novel language model-based representations, which can
customize the structural patterns of groups of molecules
[118]. Quantum computing has made significant progress in
recent years, driven by advances in both hardware and algo-
rithms. The potential applications of quantum computing in
drug discovery have been extensively discussed [119–121].
While opinions on the practical benefits of quantum comput-
ing vary, most computational scientists agree that it can save
time and effort by substantially accelerating modeling pro-
cesses. This acceleration allows for the production of larger
models with high generalizability in a shorter time. Quan-
tum computing is also expected to enhance the processing of
larger molecular graphs and speed up training and prediction
phases. Moreover, pre-trained networks for language model-
based representations can be trained on a significantly larger
number ofmolecules than existingmodels, further enhancing
their utility and effectiveness in cheminformatics and drug
discovery.
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6 Conclusion

The role of molecular representations is pivotal since they
provide a variety of methods for converting complex chem-
ical structures into numerical formats that can be efficiently
processed and analyzed. The selection of representation may
significantly impact the outcomes of downstream tasks, with
an appropriate balance between capturing relevant struc-
tural information and computational efficiency. Molecular
representations facilitate various tasks, including similarity
searches, virtual screening, and machine learning. In the
future, the ceaseless development ofmore efficientmolecular
representationswill help improve the power of computational
approaches and unlock novel directions in cheminformatics
and drug discovery.
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